forked from Minki/linux
542f903814
Remove the restriction that limits a target's specified maximum incoming I/O size to be a power of 2. Rename this setting from 'split_io' to the less-ambiguous 'max_io_len'. Change it from sector_t to uint32_t, which is plenty big enough, and introduce a wrapper function dm_set_target_max_io_len() to set it. Use sector_div() to process it now that it is not necessarily a power of 2. Signed-off-by: Mike Snitzer <snitzer@redhat.com> Signed-off-by: Alasdair G Kergon <agk@redhat.com>
1297 lines
34 KiB
C
1297 lines
34 KiB
C
/*
|
|
* Copyright (C) 2010-2011 Neil Brown
|
|
* Copyright (C) 2010-2011 Red Hat, Inc. All rights reserved.
|
|
*
|
|
* This file is released under the GPL.
|
|
*/
|
|
|
|
#include <linux/slab.h>
|
|
#include <linux/module.h>
|
|
|
|
#include "md.h"
|
|
#include "raid1.h"
|
|
#include "raid5.h"
|
|
#include "bitmap.h"
|
|
|
|
#include <linux/device-mapper.h>
|
|
|
|
#define DM_MSG_PREFIX "raid"
|
|
|
|
/*
|
|
* The following flags are used by dm-raid.c to set up the array state.
|
|
* They must be cleared before md_run is called.
|
|
*/
|
|
#define FirstUse 10 /* rdev flag */
|
|
|
|
struct raid_dev {
|
|
/*
|
|
* Two DM devices, one to hold metadata and one to hold the
|
|
* actual data/parity. The reason for this is to not confuse
|
|
* ti->len and give more flexibility in altering size and
|
|
* characteristics.
|
|
*
|
|
* While it is possible for this device to be associated
|
|
* with a different physical device than the data_dev, it
|
|
* is intended for it to be the same.
|
|
* |--------- Physical Device ---------|
|
|
* |- meta_dev -|------ data_dev ------|
|
|
*/
|
|
struct dm_dev *meta_dev;
|
|
struct dm_dev *data_dev;
|
|
struct md_rdev rdev;
|
|
};
|
|
|
|
/*
|
|
* Flags for rs->print_flags field.
|
|
*/
|
|
#define DMPF_SYNC 0x1
|
|
#define DMPF_NOSYNC 0x2
|
|
#define DMPF_REBUILD 0x4
|
|
#define DMPF_DAEMON_SLEEP 0x8
|
|
#define DMPF_MIN_RECOVERY_RATE 0x10
|
|
#define DMPF_MAX_RECOVERY_RATE 0x20
|
|
#define DMPF_MAX_WRITE_BEHIND 0x40
|
|
#define DMPF_STRIPE_CACHE 0x80
|
|
#define DMPF_REGION_SIZE 0X100
|
|
struct raid_set {
|
|
struct dm_target *ti;
|
|
|
|
uint32_t bitmap_loaded;
|
|
uint32_t print_flags;
|
|
|
|
struct mddev md;
|
|
struct raid_type *raid_type;
|
|
struct dm_target_callbacks callbacks;
|
|
|
|
struct raid_dev dev[0];
|
|
};
|
|
|
|
/* Supported raid types and properties. */
|
|
static struct raid_type {
|
|
const char *name; /* RAID algorithm. */
|
|
const char *descr; /* Descriptor text for logging. */
|
|
const unsigned parity_devs; /* # of parity devices. */
|
|
const unsigned minimal_devs; /* minimal # of devices in set. */
|
|
const unsigned level; /* RAID level. */
|
|
const unsigned algorithm; /* RAID algorithm. */
|
|
} raid_types[] = {
|
|
{"raid1", "RAID1 (mirroring)", 0, 2, 1, 0 /* NONE */},
|
|
{"raid4", "RAID4 (dedicated parity disk)", 1, 2, 5, ALGORITHM_PARITY_0},
|
|
{"raid5_la", "RAID5 (left asymmetric)", 1, 2, 5, ALGORITHM_LEFT_ASYMMETRIC},
|
|
{"raid5_ra", "RAID5 (right asymmetric)", 1, 2, 5, ALGORITHM_RIGHT_ASYMMETRIC},
|
|
{"raid5_ls", "RAID5 (left symmetric)", 1, 2, 5, ALGORITHM_LEFT_SYMMETRIC},
|
|
{"raid5_rs", "RAID5 (right symmetric)", 1, 2, 5, ALGORITHM_RIGHT_SYMMETRIC},
|
|
{"raid6_zr", "RAID6 (zero restart)", 2, 4, 6, ALGORITHM_ROTATING_ZERO_RESTART},
|
|
{"raid6_nr", "RAID6 (N restart)", 2, 4, 6, ALGORITHM_ROTATING_N_RESTART},
|
|
{"raid6_nc", "RAID6 (N continue)", 2, 4, 6, ALGORITHM_ROTATING_N_CONTINUE}
|
|
};
|
|
|
|
static struct raid_type *get_raid_type(char *name)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(raid_types); i++)
|
|
if (!strcmp(raid_types[i].name, name))
|
|
return &raid_types[i];
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static struct raid_set *context_alloc(struct dm_target *ti, struct raid_type *raid_type, unsigned raid_devs)
|
|
{
|
|
unsigned i;
|
|
struct raid_set *rs;
|
|
sector_t sectors_per_dev;
|
|
|
|
if (raid_devs <= raid_type->parity_devs) {
|
|
ti->error = "Insufficient number of devices";
|
|
return ERR_PTR(-EINVAL);
|
|
}
|
|
|
|
sectors_per_dev = ti->len;
|
|
if ((raid_type->level > 1) &&
|
|
sector_div(sectors_per_dev, (raid_devs - raid_type->parity_devs))) {
|
|
ti->error = "Target length not divisible by number of data devices";
|
|
return ERR_PTR(-EINVAL);
|
|
}
|
|
|
|
rs = kzalloc(sizeof(*rs) + raid_devs * sizeof(rs->dev[0]), GFP_KERNEL);
|
|
if (!rs) {
|
|
ti->error = "Cannot allocate raid context";
|
|
return ERR_PTR(-ENOMEM);
|
|
}
|
|
|
|
mddev_init(&rs->md);
|
|
|
|
rs->ti = ti;
|
|
rs->raid_type = raid_type;
|
|
rs->md.raid_disks = raid_devs;
|
|
rs->md.level = raid_type->level;
|
|
rs->md.new_level = rs->md.level;
|
|
rs->md.dev_sectors = sectors_per_dev;
|
|
rs->md.layout = raid_type->algorithm;
|
|
rs->md.new_layout = rs->md.layout;
|
|
rs->md.delta_disks = 0;
|
|
rs->md.recovery_cp = 0;
|
|
|
|
for (i = 0; i < raid_devs; i++)
|
|
md_rdev_init(&rs->dev[i].rdev);
|
|
|
|
/*
|
|
* Remaining items to be initialized by further RAID params:
|
|
* rs->md.persistent
|
|
* rs->md.external
|
|
* rs->md.chunk_sectors
|
|
* rs->md.new_chunk_sectors
|
|
*/
|
|
|
|
return rs;
|
|
}
|
|
|
|
static void context_free(struct raid_set *rs)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < rs->md.raid_disks; i++) {
|
|
if (rs->dev[i].meta_dev)
|
|
dm_put_device(rs->ti, rs->dev[i].meta_dev);
|
|
md_rdev_clear(&rs->dev[i].rdev);
|
|
if (rs->dev[i].data_dev)
|
|
dm_put_device(rs->ti, rs->dev[i].data_dev);
|
|
}
|
|
|
|
kfree(rs);
|
|
}
|
|
|
|
/*
|
|
* For every device we have two words
|
|
* <meta_dev>: meta device name or '-' if missing
|
|
* <data_dev>: data device name or '-' if missing
|
|
*
|
|
* The following are permitted:
|
|
* - -
|
|
* - <data_dev>
|
|
* <meta_dev> <data_dev>
|
|
*
|
|
* The following is not allowed:
|
|
* <meta_dev> -
|
|
*
|
|
* This code parses those words. If there is a failure,
|
|
* the caller must use context_free to unwind the operations.
|
|
*/
|
|
static int dev_parms(struct raid_set *rs, char **argv)
|
|
{
|
|
int i;
|
|
int rebuild = 0;
|
|
int metadata_available = 0;
|
|
int ret = 0;
|
|
|
|
for (i = 0; i < rs->md.raid_disks; i++, argv += 2) {
|
|
rs->dev[i].rdev.raid_disk = i;
|
|
|
|
rs->dev[i].meta_dev = NULL;
|
|
rs->dev[i].data_dev = NULL;
|
|
|
|
/*
|
|
* There are no offsets, since there is a separate device
|
|
* for data and metadata.
|
|
*/
|
|
rs->dev[i].rdev.data_offset = 0;
|
|
rs->dev[i].rdev.mddev = &rs->md;
|
|
|
|
if (strcmp(argv[0], "-")) {
|
|
ret = dm_get_device(rs->ti, argv[0],
|
|
dm_table_get_mode(rs->ti->table),
|
|
&rs->dev[i].meta_dev);
|
|
rs->ti->error = "RAID metadata device lookup failure";
|
|
if (ret)
|
|
return ret;
|
|
|
|
rs->dev[i].rdev.sb_page = alloc_page(GFP_KERNEL);
|
|
if (!rs->dev[i].rdev.sb_page)
|
|
return -ENOMEM;
|
|
}
|
|
|
|
if (!strcmp(argv[1], "-")) {
|
|
if (!test_bit(In_sync, &rs->dev[i].rdev.flags) &&
|
|
(!rs->dev[i].rdev.recovery_offset)) {
|
|
rs->ti->error = "Drive designated for rebuild not specified";
|
|
return -EINVAL;
|
|
}
|
|
|
|
rs->ti->error = "No data device supplied with metadata device";
|
|
if (rs->dev[i].meta_dev)
|
|
return -EINVAL;
|
|
|
|
continue;
|
|
}
|
|
|
|
ret = dm_get_device(rs->ti, argv[1],
|
|
dm_table_get_mode(rs->ti->table),
|
|
&rs->dev[i].data_dev);
|
|
if (ret) {
|
|
rs->ti->error = "RAID device lookup failure";
|
|
return ret;
|
|
}
|
|
|
|
if (rs->dev[i].meta_dev) {
|
|
metadata_available = 1;
|
|
rs->dev[i].rdev.meta_bdev = rs->dev[i].meta_dev->bdev;
|
|
}
|
|
rs->dev[i].rdev.bdev = rs->dev[i].data_dev->bdev;
|
|
list_add(&rs->dev[i].rdev.same_set, &rs->md.disks);
|
|
if (!test_bit(In_sync, &rs->dev[i].rdev.flags))
|
|
rebuild++;
|
|
}
|
|
|
|
if (metadata_available) {
|
|
rs->md.external = 0;
|
|
rs->md.persistent = 1;
|
|
rs->md.major_version = 2;
|
|
} else if (rebuild && !rs->md.recovery_cp) {
|
|
/*
|
|
* Without metadata, we will not be able to tell if the array
|
|
* is in-sync or not - we must assume it is not. Therefore,
|
|
* it is impossible to rebuild a drive.
|
|
*
|
|
* Even if there is metadata, the on-disk information may
|
|
* indicate that the array is not in-sync and it will then
|
|
* fail at that time.
|
|
*
|
|
* User could specify 'nosync' option if desperate.
|
|
*/
|
|
DMERR("Unable to rebuild drive while array is not in-sync");
|
|
rs->ti->error = "RAID device lookup failure";
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* validate_region_size
|
|
* @rs
|
|
* @region_size: region size in sectors. If 0, pick a size (4MiB default).
|
|
*
|
|
* Set rs->md.bitmap_info.chunksize (which really refers to 'region size').
|
|
* Ensure that (ti->len/region_size < 2^21) - required by MD bitmap.
|
|
*
|
|
* Returns: 0 on success, -EINVAL on failure.
|
|
*/
|
|
static int validate_region_size(struct raid_set *rs, unsigned long region_size)
|
|
{
|
|
unsigned long min_region_size = rs->ti->len / (1 << 21);
|
|
|
|
if (!region_size) {
|
|
/*
|
|
* Choose a reasonable default. All figures in sectors.
|
|
*/
|
|
if (min_region_size > (1 << 13)) {
|
|
DMINFO("Choosing default region size of %lu sectors",
|
|
region_size);
|
|
region_size = min_region_size;
|
|
} else {
|
|
DMINFO("Choosing default region size of 4MiB");
|
|
region_size = 1 << 13; /* sectors */
|
|
}
|
|
} else {
|
|
/*
|
|
* Validate user-supplied value.
|
|
*/
|
|
if (region_size > rs->ti->len) {
|
|
rs->ti->error = "Supplied region size is too large";
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (region_size < min_region_size) {
|
|
DMERR("Supplied region_size (%lu sectors) below minimum (%lu)",
|
|
region_size, min_region_size);
|
|
rs->ti->error = "Supplied region size is too small";
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (!is_power_of_2(region_size)) {
|
|
rs->ti->error = "Region size is not a power of 2";
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (region_size < rs->md.chunk_sectors) {
|
|
rs->ti->error = "Region size is smaller than the chunk size";
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Convert sectors to bytes.
|
|
*/
|
|
rs->md.bitmap_info.chunksize = (region_size << 9);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Possible arguments are...
|
|
* <chunk_size> [optional_args]
|
|
*
|
|
* Argument definitions
|
|
* <chunk_size> The number of sectors per disk that
|
|
* will form the "stripe"
|
|
* [[no]sync] Force or prevent recovery of the
|
|
* entire array
|
|
* [rebuild <idx>] Rebuild the drive indicated by the index
|
|
* [daemon_sleep <ms>] Time between bitmap daemon work to
|
|
* clear bits
|
|
* [min_recovery_rate <kB/sec/disk>] Throttle RAID initialization
|
|
* [max_recovery_rate <kB/sec/disk>] Throttle RAID initialization
|
|
* [write_mostly <idx>] Indicate a write mostly drive via index
|
|
* [max_write_behind <sectors>] See '-write-behind=' (man mdadm)
|
|
* [stripe_cache <sectors>] Stripe cache size for higher RAIDs
|
|
* [region_size <sectors>] Defines granularity of bitmap
|
|
*/
|
|
static int parse_raid_params(struct raid_set *rs, char **argv,
|
|
unsigned num_raid_params)
|
|
{
|
|
unsigned i, rebuild_cnt = 0;
|
|
unsigned long value, region_size = 0;
|
|
sector_t max_io_len;
|
|
char *key;
|
|
|
|
/*
|
|
* First, parse the in-order required arguments
|
|
* "chunk_size" is the only argument of this type.
|
|
*/
|
|
if ((strict_strtoul(argv[0], 10, &value) < 0)) {
|
|
rs->ti->error = "Bad chunk size";
|
|
return -EINVAL;
|
|
} else if (rs->raid_type->level == 1) {
|
|
if (value)
|
|
DMERR("Ignoring chunk size parameter for RAID 1");
|
|
value = 0;
|
|
} else if (!is_power_of_2(value)) {
|
|
rs->ti->error = "Chunk size must be a power of 2";
|
|
return -EINVAL;
|
|
} else if (value < 8) {
|
|
rs->ti->error = "Chunk size value is too small";
|
|
return -EINVAL;
|
|
}
|
|
|
|
rs->md.new_chunk_sectors = rs->md.chunk_sectors = value;
|
|
argv++;
|
|
num_raid_params--;
|
|
|
|
/*
|
|
* We set each individual device as In_sync with a completed
|
|
* 'recovery_offset'. If there has been a device failure or
|
|
* replacement then one of the following cases applies:
|
|
*
|
|
* 1) User specifies 'rebuild'.
|
|
* - Device is reset when param is read.
|
|
* 2) A new device is supplied.
|
|
* - No matching superblock found, resets device.
|
|
* 3) Device failure was transient and returns on reload.
|
|
* - Failure noticed, resets device for bitmap replay.
|
|
* 4) Device hadn't completed recovery after previous failure.
|
|
* - Superblock is read and overrides recovery_offset.
|
|
*
|
|
* What is found in the superblocks of the devices is always
|
|
* authoritative, unless 'rebuild' or '[no]sync' was specified.
|
|
*/
|
|
for (i = 0; i < rs->md.raid_disks; i++) {
|
|
set_bit(In_sync, &rs->dev[i].rdev.flags);
|
|
rs->dev[i].rdev.recovery_offset = MaxSector;
|
|
}
|
|
|
|
/*
|
|
* Second, parse the unordered optional arguments
|
|
*/
|
|
for (i = 0; i < num_raid_params; i++) {
|
|
if (!strcasecmp(argv[i], "nosync")) {
|
|
rs->md.recovery_cp = MaxSector;
|
|
rs->print_flags |= DMPF_NOSYNC;
|
|
continue;
|
|
}
|
|
if (!strcasecmp(argv[i], "sync")) {
|
|
rs->md.recovery_cp = 0;
|
|
rs->print_flags |= DMPF_SYNC;
|
|
continue;
|
|
}
|
|
|
|
/* The rest of the optional arguments come in key/value pairs */
|
|
if ((i + 1) >= num_raid_params) {
|
|
rs->ti->error = "Wrong number of raid parameters given";
|
|
return -EINVAL;
|
|
}
|
|
|
|
key = argv[i++];
|
|
if (strict_strtoul(argv[i], 10, &value) < 0) {
|
|
rs->ti->error = "Bad numerical argument given in raid params";
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (!strcasecmp(key, "rebuild")) {
|
|
rebuild_cnt++;
|
|
if (((rs->raid_type->level != 1) &&
|
|
(rebuild_cnt > rs->raid_type->parity_devs)) ||
|
|
((rs->raid_type->level == 1) &&
|
|
(rebuild_cnt > (rs->md.raid_disks - 1)))) {
|
|
rs->ti->error = "Too many rebuild devices specified for given RAID type";
|
|
return -EINVAL;
|
|
}
|
|
if (value > rs->md.raid_disks) {
|
|
rs->ti->error = "Invalid rebuild index given";
|
|
return -EINVAL;
|
|
}
|
|
clear_bit(In_sync, &rs->dev[value].rdev.flags);
|
|
rs->dev[value].rdev.recovery_offset = 0;
|
|
rs->print_flags |= DMPF_REBUILD;
|
|
} else if (!strcasecmp(key, "write_mostly")) {
|
|
if (rs->raid_type->level != 1) {
|
|
rs->ti->error = "write_mostly option is only valid for RAID1";
|
|
return -EINVAL;
|
|
}
|
|
if (value >= rs->md.raid_disks) {
|
|
rs->ti->error = "Invalid write_mostly drive index given";
|
|
return -EINVAL;
|
|
}
|
|
set_bit(WriteMostly, &rs->dev[value].rdev.flags);
|
|
} else if (!strcasecmp(key, "max_write_behind")) {
|
|
if (rs->raid_type->level != 1) {
|
|
rs->ti->error = "max_write_behind option is only valid for RAID1";
|
|
return -EINVAL;
|
|
}
|
|
rs->print_flags |= DMPF_MAX_WRITE_BEHIND;
|
|
|
|
/*
|
|
* In device-mapper, we specify things in sectors, but
|
|
* MD records this value in kB
|
|
*/
|
|
value /= 2;
|
|
if (value > COUNTER_MAX) {
|
|
rs->ti->error = "Max write-behind limit out of range";
|
|
return -EINVAL;
|
|
}
|
|
rs->md.bitmap_info.max_write_behind = value;
|
|
} else if (!strcasecmp(key, "daemon_sleep")) {
|
|
rs->print_flags |= DMPF_DAEMON_SLEEP;
|
|
if (!value || (value > MAX_SCHEDULE_TIMEOUT)) {
|
|
rs->ti->error = "daemon sleep period out of range";
|
|
return -EINVAL;
|
|
}
|
|
rs->md.bitmap_info.daemon_sleep = value;
|
|
} else if (!strcasecmp(key, "stripe_cache")) {
|
|
rs->print_flags |= DMPF_STRIPE_CACHE;
|
|
|
|
/*
|
|
* In device-mapper, we specify things in sectors, but
|
|
* MD records this value in kB
|
|
*/
|
|
value /= 2;
|
|
|
|
if (rs->raid_type->level < 5) {
|
|
rs->ti->error = "Inappropriate argument: stripe_cache";
|
|
return -EINVAL;
|
|
}
|
|
if (raid5_set_cache_size(&rs->md, (int)value)) {
|
|
rs->ti->error = "Bad stripe_cache size";
|
|
return -EINVAL;
|
|
}
|
|
} else if (!strcasecmp(key, "min_recovery_rate")) {
|
|
rs->print_flags |= DMPF_MIN_RECOVERY_RATE;
|
|
if (value > INT_MAX) {
|
|
rs->ti->error = "min_recovery_rate out of range";
|
|
return -EINVAL;
|
|
}
|
|
rs->md.sync_speed_min = (int)value;
|
|
} else if (!strcasecmp(key, "max_recovery_rate")) {
|
|
rs->print_flags |= DMPF_MAX_RECOVERY_RATE;
|
|
if (value > INT_MAX) {
|
|
rs->ti->error = "max_recovery_rate out of range";
|
|
return -EINVAL;
|
|
}
|
|
rs->md.sync_speed_max = (int)value;
|
|
} else if (!strcasecmp(key, "region_size")) {
|
|
rs->print_flags |= DMPF_REGION_SIZE;
|
|
region_size = value;
|
|
} else {
|
|
DMERR("Unable to parse RAID parameter: %s", key);
|
|
rs->ti->error = "Unable to parse RAID parameters";
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
if (validate_region_size(rs, region_size))
|
|
return -EINVAL;
|
|
|
|
if (rs->md.chunk_sectors)
|
|
max_io_len = rs->md.chunk_sectors;
|
|
else
|
|
max_io_len = region_size;
|
|
|
|
if (dm_set_target_max_io_len(rs->ti, max_io_len))
|
|
return -EINVAL;
|
|
|
|
/* Assume there are no metadata devices until the drives are parsed */
|
|
rs->md.persistent = 0;
|
|
rs->md.external = 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void do_table_event(struct work_struct *ws)
|
|
{
|
|
struct raid_set *rs = container_of(ws, struct raid_set, md.event_work);
|
|
|
|
dm_table_event(rs->ti->table);
|
|
}
|
|
|
|
static int raid_is_congested(struct dm_target_callbacks *cb, int bits)
|
|
{
|
|
struct raid_set *rs = container_of(cb, struct raid_set, callbacks);
|
|
|
|
if (rs->raid_type->level == 1)
|
|
return md_raid1_congested(&rs->md, bits);
|
|
|
|
return md_raid5_congested(&rs->md, bits);
|
|
}
|
|
|
|
/*
|
|
* This structure is never routinely used by userspace, unlike md superblocks.
|
|
* Devices with this superblock should only ever be accessed via device-mapper.
|
|
*/
|
|
#define DM_RAID_MAGIC 0x64526D44
|
|
struct dm_raid_superblock {
|
|
__le32 magic; /* "DmRd" */
|
|
__le32 features; /* Used to indicate possible future changes */
|
|
|
|
__le32 num_devices; /* Number of devices in this array. (Max 64) */
|
|
__le32 array_position; /* The position of this drive in the array */
|
|
|
|
__le64 events; /* Incremented by md when superblock updated */
|
|
__le64 failed_devices; /* Bit field of devices to indicate failures */
|
|
|
|
/*
|
|
* This offset tracks the progress of the repair or replacement of
|
|
* an individual drive.
|
|
*/
|
|
__le64 disk_recovery_offset;
|
|
|
|
/*
|
|
* This offset tracks the progress of the initial array
|
|
* synchronisation/parity calculation.
|
|
*/
|
|
__le64 array_resync_offset;
|
|
|
|
/*
|
|
* RAID characteristics
|
|
*/
|
|
__le32 level;
|
|
__le32 layout;
|
|
__le32 stripe_sectors;
|
|
|
|
__u8 pad[452]; /* Round struct to 512 bytes. */
|
|
/* Always set to 0 when writing. */
|
|
} __packed;
|
|
|
|
static int read_disk_sb(struct md_rdev *rdev, int size)
|
|
{
|
|
BUG_ON(!rdev->sb_page);
|
|
|
|
if (rdev->sb_loaded)
|
|
return 0;
|
|
|
|
if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, 1)) {
|
|
DMERR("Failed to read superblock of device at position %d",
|
|
rdev->raid_disk);
|
|
md_error(rdev->mddev, rdev);
|
|
return -EINVAL;
|
|
}
|
|
|
|
rdev->sb_loaded = 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void super_sync(struct mddev *mddev, struct md_rdev *rdev)
|
|
{
|
|
int i;
|
|
uint64_t failed_devices;
|
|
struct dm_raid_superblock *sb;
|
|
struct raid_set *rs = container_of(mddev, struct raid_set, md);
|
|
|
|
sb = page_address(rdev->sb_page);
|
|
failed_devices = le64_to_cpu(sb->failed_devices);
|
|
|
|
for (i = 0; i < mddev->raid_disks; i++)
|
|
if (!rs->dev[i].data_dev ||
|
|
test_bit(Faulty, &(rs->dev[i].rdev.flags)))
|
|
failed_devices |= (1ULL << i);
|
|
|
|
memset(sb, 0, sizeof(*sb));
|
|
|
|
sb->magic = cpu_to_le32(DM_RAID_MAGIC);
|
|
sb->features = cpu_to_le32(0); /* No features yet */
|
|
|
|
sb->num_devices = cpu_to_le32(mddev->raid_disks);
|
|
sb->array_position = cpu_to_le32(rdev->raid_disk);
|
|
|
|
sb->events = cpu_to_le64(mddev->events);
|
|
sb->failed_devices = cpu_to_le64(failed_devices);
|
|
|
|
sb->disk_recovery_offset = cpu_to_le64(rdev->recovery_offset);
|
|
sb->array_resync_offset = cpu_to_le64(mddev->recovery_cp);
|
|
|
|
sb->level = cpu_to_le32(mddev->level);
|
|
sb->layout = cpu_to_le32(mddev->layout);
|
|
sb->stripe_sectors = cpu_to_le32(mddev->chunk_sectors);
|
|
}
|
|
|
|
/*
|
|
* super_load
|
|
*
|
|
* This function creates a superblock if one is not found on the device
|
|
* and will decide which superblock to use if there's a choice.
|
|
*
|
|
* Return: 1 if use rdev, 0 if use refdev, -Exxx otherwise
|
|
*/
|
|
static int super_load(struct md_rdev *rdev, struct md_rdev *refdev)
|
|
{
|
|
int ret;
|
|
struct dm_raid_superblock *sb;
|
|
struct dm_raid_superblock *refsb;
|
|
uint64_t events_sb, events_refsb;
|
|
|
|
rdev->sb_start = 0;
|
|
rdev->sb_size = sizeof(*sb);
|
|
|
|
ret = read_disk_sb(rdev, rdev->sb_size);
|
|
if (ret)
|
|
return ret;
|
|
|
|
sb = page_address(rdev->sb_page);
|
|
|
|
/*
|
|
* Two cases that we want to write new superblocks and rebuild:
|
|
* 1) New device (no matching magic number)
|
|
* 2) Device specified for rebuild (!In_sync w/ offset == 0)
|
|
*/
|
|
if ((sb->magic != cpu_to_le32(DM_RAID_MAGIC)) ||
|
|
(!test_bit(In_sync, &rdev->flags) && !rdev->recovery_offset)) {
|
|
super_sync(rdev->mddev, rdev);
|
|
|
|
set_bit(FirstUse, &rdev->flags);
|
|
|
|
/* Force writing of superblocks to disk */
|
|
set_bit(MD_CHANGE_DEVS, &rdev->mddev->flags);
|
|
|
|
/* Any superblock is better than none, choose that if given */
|
|
return refdev ? 0 : 1;
|
|
}
|
|
|
|
if (!refdev)
|
|
return 1;
|
|
|
|
events_sb = le64_to_cpu(sb->events);
|
|
|
|
refsb = page_address(refdev->sb_page);
|
|
events_refsb = le64_to_cpu(refsb->events);
|
|
|
|
return (events_sb > events_refsb) ? 1 : 0;
|
|
}
|
|
|
|
static int super_init_validation(struct mddev *mddev, struct md_rdev *rdev)
|
|
{
|
|
int role;
|
|
struct raid_set *rs = container_of(mddev, struct raid_set, md);
|
|
uint64_t events_sb;
|
|
uint64_t failed_devices;
|
|
struct dm_raid_superblock *sb;
|
|
uint32_t new_devs = 0;
|
|
uint32_t rebuilds = 0;
|
|
struct md_rdev *r;
|
|
struct dm_raid_superblock *sb2;
|
|
|
|
sb = page_address(rdev->sb_page);
|
|
events_sb = le64_to_cpu(sb->events);
|
|
failed_devices = le64_to_cpu(sb->failed_devices);
|
|
|
|
/*
|
|
* Initialise to 1 if this is a new superblock.
|
|
*/
|
|
mddev->events = events_sb ? : 1;
|
|
|
|
/*
|
|
* Reshaping is not currently allowed
|
|
*/
|
|
if ((le32_to_cpu(sb->level) != mddev->level) ||
|
|
(le32_to_cpu(sb->layout) != mddev->layout) ||
|
|
(le32_to_cpu(sb->stripe_sectors) != mddev->chunk_sectors)) {
|
|
DMERR("Reshaping arrays not yet supported.");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* We can only change the number of devices in RAID1 right now */
|
|
if ((rs->raid_type->level != 1) &&
|
|
(le32_to_cpu(sb->num_devices) != mddev->raid_disks)) {
|
|
DMERR("Reshaping arrays not yet supported.");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (!(rs->print_flags & (DMPF_SYNC | DMPF_NOSYNC)))
|
|
mddev->recovery_cp = le64_to_cpu(sb->array_resync_offset);
|
|
|
|
/*
|
|
* During load, we set FirstUse if a new superblock was written.
|
|
* There are two reasons we might not have a superblock:
|
|
* 1) The array is brand new - in which case, all of the
|
|
* devices must have their In_sync bit set. Also,
|
|
* recovery_cp must be 0, unless forced.
|
|
* 2) This is a new device being added to an old array
|
|
* and the new device needs to be rebuilt - in which
|
|
* case the In_sync bit will /not/ be set and
|
|
* recovery_cp must be MaxSector.
|
|
*/
|
|
rdev_for_each(r, mddev) {
|
|
if (!test_bit(In_sync, &r->flags)) {
|
|
DMINFO("Device %d specified for rebuild: "
|
|
"Clearing superblock", r->raid_disk);
|
|
rebuilds++;
|
|
} else if (test_bit(FirstUse, &r->flags))
|
|
new_devs++;
|
|
}
|
|
|
|
if (!rebuilds) {
|
|
if (new_devs == mddev->raid_disks) {
|
|
DMINFO("Superblocks created for new array");
|
|
set_bit(MD_ARRAY_FIRST_USE, &mddev->flags);
|
|
} else if (new_devs) {
|
|
DMERR("New device injected "
|
|
"into existing array without 'rebuild' "
|
|
"parameter specified");
|
|
return -EINVAL;
|
|
}
|
|
} else if (new_devs) {
|
|
DMERR("'rebuild' devices cannot be "
|
|
"injected into an array with other first-time devices");
|
|
return -EINVAL;
|
|
} else if (mddev->recovery_cp != MaxSector) {
|
|
DMERR("'rebuild' specified while array is not in-sync");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/*
|
|
* Now we set the Faulty bit for those devices that are
|
|
* recorded in the superblock as failed.
|
|
*/
|
|
rdev_for_each(r, mddev) {
|
|
if (!r->sb_page)
|
|
continue;
|
|
sb2 = page_address(r->sb_page);
|
|
sb2->failed_devices = 0;
|
|
|
|
/*
|
|
* Check for any device re-ordering.
|
|
*/
|
|
if (!test_bit(FirstUse, &r->flags) && (r->raid_disk >= 0)) {
|
|
role = le32_to_cpu(sb2->array_position);
|
|
if (role != r->raid_disk) {
|
|
if (rs->raid_type->level != 1) {
|
|
rs->ti->error = "Cannot change device "
|
|
"positions in RAID array";
|
|
return -EINVAL;
|
|
}
|
|
DMINFO("RAID1 device #%d now at position #%d",
|
|
role, r->raid_disk);
|
|
}
|
|
|
|
/*
|
|
* Partial recovery is performed on
|
|
* returning failed devices.
|
|
*/
|
|
if (failed_devices & (1 << role))
|
|
set_bit(Faulty, &r->flags);
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int super_validate(struct mddev *mddev, struct md_rdev *rdev)
|
|
{
|
|
struct dm_raid_superblock *sb = page_address(rdev->sb_page);
|
|
|
|
/*
|
|
* If mddev->events is not set, we know we have not yet initialized
|
|
* the array.
|
|
*/
|
|
if (!mddev->events && super_init_validation(mddev, rdev))
|
|
return -EINVAL;
|
|
|
|
mddev->bitmap_info.offset = 4096 >> 9; /* Enable bitmap creation */
|
|
rdev->mddev->bitmap_info.default_offset = 4096 >> 9;
|
|
if (!test_bit(FirstUse, &rdev->flags)) {
|
|
rdev->recovery_offset = le64_to_cpu(sb->disk_recovery_offset);
|
|
if (rdev->recovery_offset != MaxSector)
|
|
clear_bit(In_sync, &rdev->flags);
|
|
}
|
|
|
|
/*
|
|
* If a device comes back, set it as not In_sync and no longer faulty.
|
|
*/
|
|
if (test_bit(Faulty, &rdev->flags)) {
|
|
clear_bit(Faulty, &rdev->flags);
|
|
clear_bit(In_sync, &rdev->flags);
|
|
rdev->saved_raid_disk = rdev->raid_disk;
|
|
rdev->recovery_offset = 0;
|
|
}
|
|
|
|
clear_bit(FirstUse, &rdev->flags);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Analyse superblocks and select the freshest.
|
|
*/
|
|
static int analyse_superblocks(struct dm_target *ti, struct raid_set *rs)
|
|
{
|
|
int ret;
|
|
unsigned redundancy = 0;
|
|
struct raid_dev *dev;
|
|
struct md_rdev *rdev, *tmp, *freshest;
|
|
struct mddev *mddev = &rs->md;
|
|
|
|
switch (rs->raid_type->level) {
|
|
case 1:
|
|
redundancy = rs->md.raid_disks - 1;
|
|
break;
|
|
case 4:
|
|
case 5:
|
|
case 6:
|
|
redundancy = rs->raid_type->parity_devs;
|
|
break;
|
|
default:
|
|
ti->error = "Unknown RAID type";
|
|
return -EINVAL;
|
|
}
|
|
|
|
freshest = NULL;
|
|
rdev_for_each_safe(rdev, tmp, mddev) {
|
|
if (!rdev->meta_bdev)
|
|
continue;
|
|
|
|
ret = super_load(rdev, freshest);
|
|
|
|
switch (ret) {
|
|
case 1:
|
|
freshest = rdev;
|
|
break;
|
|
case 0:
|
|
break;
|
|
default:
|
|
dev = container_of(rdev, struct raid_dev, rdev);
|
|
if (redundancy--) {
|
|
if (dev->meta_dev)
|
|
dm_put_device(ti, dev->meta_dev);
|
|
|
|
dev->meta_dev = NULL;
|
|
rdev->meta_bdev = NULL;
|
|
|
|
if (rdev->sb_page)
|
|
put_page(rdev->sb_page);
|
|
|
|
rdev->sb_page = NULL;
|
|
|
|
rdev->sb_loaded = 0;
|
|
|
|
/*
|
|
* We might be able to salvage the data device
|
|
* even though the meta device has failed. For
|
|
* now, we behave as though '- -' had been
|
|
* set for this device in the table.
|
|
*/
|
|
if (dev->data_dev)
|
|
dm_put_device(ti, dev->data_dev);
|
|
|
|
dev->data_dev = NULL;
|
|
rdev->bdev = NULL;
|
|
|
|
list_del(&rdev->same_set);
|
|
|
|
continue;
|
|
}
|
|
ti->error = "Failed to load superblock";
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
if (!freshest)
|
|
return 0;
|
|
|
|
/*
|
|
* Validation of the freshest device provides the source of
|
|
* validation for the remaining devices.
|
|
*/
|
|
ti->error = "Unable to assemble array: Invalid superblocks";
|
|
if (super_validate(mddev, freshest))
|
|
return -EINVAL;
|
|
|
|
rdev_for_each(rdev, mddev)
|
|
if ((rdev != freshest) && super_validate(mddev, rdev))
|
|
return -EINVAL;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Construct a RAID4/5/6 mapping:
|
|
* Args:
|
|
* <raid_type> <#raid_params> <raid_params> \
|
|
* <#raid_devs> { <meta_dev1> <dev1> .. <meta_devN> <devN> }
|
|
*
|
|
* <raid_params> varies by <raid_type>. See 'parse_raid_params' for
|
|
* details on possible <raid_params>.
|
|
*/
|
|
static int raid_ctr(struct dm_target *ti, unsigned argc, char **argv)
|
|
{
|
|
int ret;
|
|
struct raid_type *rt;
|
|
unsigned long num_raid_params, num_raid_devs;
|
|
struct raid_set *rs = NULL;
|
|
|
|
/* Must have at least <raid_type> <#raid_params> */
|
|
if (argc < 2) {
|
|
ti->error = "Too few arguments";
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* raid type */
|
|
rt = get_raid_type(argv[0]);
|
|
if (!rt) {
|
|
ti->error = "Unrecognised raid_type";
|
|
return -EINVAL;
|
|
}
|
|
argc--;
|
|
argv++;
|
|
|
|
/* number of RAID parameters */
|
|
if (strict_strtoul(argv[0], 10, &num_raid_params) < 0) {
|
|
ti->error = "Cannot understand number of RAID parameters";
|
|
return -EINVAL;
|
|
}
|
|
argc--;
|
|
argv++;
|
|
|
|
/* Skip over RAID params for now and find out # of devices */
|
|
if (num_raid_params + 1 > argc) {
|
|
ti->error = "Arguments do not agree with counts given";
|
|
return -EINVAL;
|
|
}
|
|
|
|
if ((strict_strtoul(argv[num_raid_params], 10, &num_raid_devs) < 0) ||
|
|
(num_raid_devs >= INT_MAX)) {
|
|
ti->error = "Cannot understand number of raid devices";
|
|
return -EINVAL;
|
|
}
|
|
|
|
rs = context_alloc(ti, rt, (unsigned)num_raid_devs);
|
|
if (IS_ERR(rs))
|
|
return PTR_ERR(rs);
|
|
|
|
ret = parse_raid_params(rs, argv, (unsigned)num_raid_params);
|
|
if (ret)
|
|
goto bad;
|
|
|
|
ret = -EINVAL;
|
|
|
|
argc -= num_raid_params + 1; /* +1: we already have num_raid_devs */
|
|
argv += num_raid_params + 1;
|
|
|
|
if (argc != (num_raid_devs * 2)) {
|
|
ti->error = "Supplied RAID devices does not match the count given";
|
|
goto bad;
|
|
}
|
|
|
|
ret = dev_parms(rs, argv);
|
|
if (ret)
|
|
goto bad;
|
|
|
|
rs->md.sync_super = super_sync;
|
|
ret = analyse_superblocks(ti, rs);
|
|
if (ret)
|
|
goto bad;
|
|
|
|
INIT_WORK(&rs->md.event_work, do_table_event);
|
|
ti->private = rs;
|
|
ti->num_flush_requests = 1;
|
|
|
|
mutex_lock(&rs->md.reconfig_mutex);
|
|
ret = md_run(&rs->md);
|
|
rs->md.in_sync = 0; /* Assume already marked dirty */
|
|
mutex_unlock(&rs->md.reconfig_mutex);
|
|
|
|
if (ret) {
|
|
ti->error = "Fail to run raid array";
|
|
goto bad;
|
|
}
|
|
|
|
rs->callbacks.congested_fn = raid_is_congested;
|
|
dm_table_add_target_callbacks(ti->table, &rs->callbacks);
|
|
|
|
mddev_suspend(&rs->md);
|
|
return 0;
|
|
|
|
bad:
|
|
context_free(rs);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void raid_dtr(struct dm_target *ti)
|
|
{
|
|
struct raid_set *rs = ti->private;
|
|
|
|
list_del_init(&rs->callbacks.list);
|
|
md_stop(&rs->md);
|
|
context_free(rs);
|
|
}
|
|
|
|
static int raid_map(struct dm_target *ti, struct bio *bio, union map_info *map_context)
|
|
{
|
|
struct raid_set *rs = ti->private;
|
|
struct mddev *mddev = &rs->md;
|
|
|
|
mddev->pers->make_request(mddev, bio);
|
|
|
|
return DM_MAPIO_SUBMITTED;
|
|
}
|
|
|
|
static int raid_status(struct dm_target *ti, status_type_t type,
|
|
char *result, unsigned maxlen)
|
|
{
|
|
struct raid_set *rs = ti->private;
|
|
unsigned raid_param_cnt = 1; /* at least 1 for chunksize */
|
|
unsigned sz = 0;
|
|
int i, array_in_sync = 0;
|
|
sector_t sync;
|
|
|
|
switch (type) {
|
|
case STATUSTYPE_INFO:
|
|
DMEMIT("%s %d ", rs->raid_type->name, rs->md.raid_disks);
|
|
|
|
if (test_bit(MD_RECOVERY_RUNNING, &rs->md.recovery))
|
|
sync = rs->md.curr_resync_completed;
|
|
else
|
|
sync = rs->md.recovery_cp;
|
|
|
|
if (sync >= rs->md.resync_max_sectors) {
|
|
array_in_sync = 1;
|
|
sync = rs->md.resync_max_sectors;
|
|
} else {
|
|
/*
|
|
* The array may be doing an initial sync, or it may
|
|
* be rebuilding individual components. If all the
|
|
* devices are In_sync, then it is the array that is
|
|
* being initialized.
|
|
*/
|
|
for (i = 0; i < rs->md.raid_disks; i++)
|
|
if (!test_bit(In_sync, &rs->dev[i].rdev.flags))
|
|
array_in_sync = 1;
|
|
}
|
|
/*
|
|
* Status characters:
|
|
* 'D' = Dead/Failed device
|
|
* 'a' = Alive but not in-sync
|
|
* 'A' = Alive and in-sync
|
|
*/
|
|
for (i = 0; i < rs->md.raid_disks; i++) {
|
|
if (test_bit(Faulty, &rs->dev[i].rdev.flags))
|
|
DMEMIT("D");
|
|
else if (!array_in_sync ||
|
|
!test_bit(In_sync, &rs->dev[i].rdev.flags))
|
|
DMEMIT("a");
|
|
else
|
|
DMEMIT("A");
|
|
}
|
|
|
|
/*
|
|
* In-sync ratio:
|
|
* The in-sync ratio shows the progress of:
|
|
* - Initializing the array
|
|
* - Rebuilding a subset of devices of the array
|
|
* The user can distinguish between the two by referring
|
|
* to the status characters.
|
|
*/
|
|
DMEMIT(" %llu/%llu",
|
|
(unsigned long long) sync,
|
|
(unsigned long long) rs->md.resync_max_sectors);
|
|
|
|
break;
|
|
case STATUSTYPE_TABLE:
|
|
/* The string you would use to construct this array */
|
|
for (i = 0; i < rs->md.raid_disks; i++) {
|
|
if ((rs->print_flags & DMPF_REBUILD) &&
|
|
rs->dev[i].data_dev &&
|
|
!test_bit(In_sync, &rs->dev[i].rdev.flags))
|
|
raid_param_cnt += 2; /* for rebuilds */
|
|
if (rs->dev[i].data_dev &&
|
|
test_bit(WriteMostly, &rs->dev[i].rdev.flags))
|
|
raid_param_cnt += 2;
|
|
}
|
|
|
|
raid_param_cnt += (hweight32(rs->print_flags & ~DMPF_REBUILD) * 2);
|
|
if (rs->print_flags & (DMPF_SYNC | DMPF_NOSYNC))
|
|
raid_param_cnt--;
|
|
|
|
DMEMIT("%s %u %u", rs->raid_type->name,
|
|
raid_param_cnt, rs->md.chunk_sectors);
|
|
|
|
if ((rs->print_flags & DMPF_SYNC) &&
|
|
(rs->md.recovery_cp == MaxSector))
|
|
DMEMIT(" sync");
|
|
if (rs->print_flags & DMPF_NOSYNC)
|
|
DMEMIT(" nosync");
|
|
|
|
for (i = 0; i < rs->md.raid_disks; i++)
|
|
if ((rs->print_flags & DMPF_REBUILD) &&
|
|
rs->dev[i].data_dev &&
|
|
!test_bit(In_sync, &rs->dev[i].rdev.flags))
|
|
DMEMIT(" rebuild %u", i);
|
|
|
|
if (rs->print_flags & DMPF_DAEMON_SLEEP)
|
|
DMEMIT(" daemon_sleep %lu",
|
|
rs->md.bitmap_info.daemon_sleep);
|
|
|
|
if (rs->print_flags & DMPF_MIN_RECOVERY_RATE)
|
|
DMEMIT(" min_recovery_rate %d", rs->md.sync_speed_min);
|
|
|
|
if (rs->print_flags & DMPF_MAX_RECOVERY_RATE)
|
|
DMEMIT(" max_recovery_rate %d", rs->md.sync_speed_max);
|
|
|
|
for (i = 0; i < rs->md.raid_disks; i++)
|
|
if (rs->dev[i].data_dev &&
|
|
test_bit(WriteMostly, &rs->dev[i].rdev.flags))
|
|
DMEMIT(" write_mostly %u", i);
|
|
|
|
if (rs->print_flags & DMPF_MAX_WRITE_BEHIND)
|
|
DMEMIT(" max_write_behind %lu",
|
|
rs->md.bitmap_info.max_write_behind);
|
|
|
|
if (rs->print_flags & DMPF_STRIPE_CACHE) {
|
|
struct r5conf *conf = rs->md.private;
|
|
|
|
/* convert from kiB to sectors */
|
|
DMEMIT(" stripe_cache %d",
|
|
conf ? conf->max_nr_stripes * 2 : 0);
|
|
}
|
|
|
|
if (rs->print_flags & DMPF_REGION_SIZE)
|
|
DMEMIT(" region_size %lu",
|
|
rs->md.bitmap_info.chunksize >> 9);
|
|
|
|
DMEMIT(" %d", rs->md.raid_disks);
|
|
for (i = 0; i < rs->md.raid_disks; i++) {
|
|
if (rs->dev[i].meta_dev)
|
|
DMEMIT(" %s", rs->dev[i].meta_dev->name);
|
|
else
|
|
DMEMIT(" -");
|
|
|
|
if (rs->dev[i].data_dev)
|
|
DMEMIT(" %s", rs->dev[i].data_dev->name);
|
|
else
|
|
DMEMIT(" -");
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int raid_iterate_devices(struct dm_target *ti, iterate_devices_callout_fn fn, void *data)
|
|
{
|
|
struct raid_set *rs = ti->private;
|
|
unsigned i;
|
|
int ret = 0;
|
|
|
|
for (i = 0; !ret && i < rs->md.raid_disks; i++)
|
|
if (rs->dev[i].data_dev)
|
|
ret = fn(ti,
|
|
rs->dev[i].data_dev,
|
|
0, /* No offset on data devs */
|
|
rs->md.dev_sectors,
|
|
data);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void raid_io_hints(struct dm_target *ti, struct queue_limits *limits)
|
|
{
|
|
struct raid_set *rs = ti->private;
|
|
unsigned chunk_size = rs->md.chunk_sectors << 9;
|
|
struct r5conf *conf = rs->md.private;
|
|
|
|
blk_limits_io_min(limits, chunk_size);
|
|
blk_limits_io_opt(limits, chunk_size * (conf->raid_disks - conf->max_degraded));
|
|
}
|
|
|
|
static void raid_presuspend(struct dm_target *ti)
|
|
{
|
|
struct raid_set *rs = ti->private;
|
|
|
|
md_stop_writes(&rs->md);
|
|
}
|
|
|
|
static void raid_postsuspend(struct dm_target *ti)
|
|
{
|
|
struct raid_set *rs = ti->private;
|
|
|
|
mddev_suspend(&rs->md);
|
|
}
|
|
|
|
static void raid_resume(struct dm_target *ti)
|
|
{
|
|
struct raid_set *rs = ti->private;
|
|
|
|
set_bit(MD_CHANGE_DEVS, &rs->md.flags);
|
|
if (!rs->bitmap_loaded) {
|
|
bitmap_load(&rs->md);
|
|
rs->bitmap_loaded = 1;
|
|
}
|
|
|
|
clear_bit(MD_RECOVERY_FROZEN, &rs->md.recovery);
|
|
mddev_resume(&rs->md);
|
|
}
|
|
|
|
static struct target_type raid_target = {
|
|
.name = "raid",
|
|
.version = {1, 2, 0},
|
|
.module = THIS_MODULE,
|
|
.ctr = raid_ctr,
|
|
.dtr = raid_dtr,
|
|
.map = raid_map,
|
|
.status = raid_status,
|
|
.iterate_devices = raid_iterate_devices,
|
|
.io_hints = raid_io_hints,
|
|
.presuspend = raid_presuspend,
|
|
.postsuspend = raid_postsuspend,
|
|
.resume = raid_resume,
|
|
};
|
|
|
|
static int __init dm_raid_init(void)
|
|
{
|
|
return dm_register_target(&raid_target);
|
|
}
|
|
|
|
static void __exit dm_raid_exit(void)
|
|
{
|
|
dm_unregister_target(&raid_target);
|
|
}
|
|
|
|
module_init(dm_raid_init);
|
|
module_exit(dm_raid_exit);
|
|
|
|
MODULE_DESCRIPTION(DM_NAME " raid4/5/6 target");
|
|
MODULE_ALIAS("dm-raid4");
|
|
MODULE_ALIAS("dm-raid5");
|
|
MODULE_ALIAS("dm-raid6");
|
|
MODULE_AUTHOR("Neil Brown <dm-devel@redhat.com>");
|
|
MODULE_LICENSE("GPL");
|