linux/arch/x86/kernel/cpu/intel_cacheinfo.c
Fenghua Yu d57e3ab7e3 x86/intel_cacheinfo: Enable cache id in cache info
Cache id is retrieved from APIC ID and CPUID leaf 4 on x86.

For more details please see the section on "Cache ID Extraction
Parameters" in "Intel 64 Architecture Processor Topology Enumeration".

Also the documentation of the CPUID instruction in the "Intel 64 and
IA-32 Architectures Software Developer's Manual"

Signed-off-by: Fenghua Yu <fenghua.yu@intel.com>
Cc: "Ravi V Shankar" <ravi.v.shankar@intel.com>
Cc: "Tony Luck" <tony.luck@intel.com>
Cc: "David Carrillo-Cisneros" <davidcc@google.com>
Cc: "Sai Prakhya" <sai.praneeth.prakhya@intel.com>
Cc: "Peter Zijlstra" <peterz@infradead.org>
Cc: "Stephane Eranian" <eranian@google.com>
Cc: "Dave Hansen" <dave.hansen@intel.com>
Cc: "Shaohua Li" <shli@fb.com>
Cc: "Nilay Vaish" <nilayvaish@gmail.com>
Cc: "Vikas Shivappa" <vikas.shivappa@linux.intel.com>
Cc: "Ingo Molnar" <mingo@elte.hu>
Cc: "Borislav Petkov" <bp@suse.de>
Cc: "H. Peter Anvin" <h.peter.anvin@intel.com>
Link: http://lkml.kernel.org/r/1477142405-32078-4-git-send-email-fenghua.yu@intel.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2016-10-26 23:12:37 +02:00

962 lines
26 KiB
C

/*
* Routines to identify caches on Intel CPU.
*
* Changes:
* Venkatesh Pallipadi : Adding cache identification through cpuid(4)
* Ashok Raj <ashok.raj@intel.com>: Work with CPU hotplug infrastructure.
* Andi Kleen / Andreas Herrmann : CPUID4 emulation on AMD.
*/
#include <linux/slab.h>
#include <linux/cacheinfo.h>
#include <linux/cpu.h>
#include <linux/sched.h>
#include <linux/sysfs.h>
#include <linux/pci.h>
#include <asm/cpufeature.h>
#include <asm/amd_nb.h>
#include <asm/smp.h>
#define LVL_1_INST 1
#define LVL_1_DATA 2
#define LVL_2 3
#define LVL_3 4
#define LVL_TRACE 5
struct _cache_table {
unsigned char descriptor;
char cache_type;
short size;
};
#define MB(x) ((x) * 1024)
/* All the cache descriptor types we care about (no TLB or
trace cache entries) */
static const struct _cache_table cache_table[] =
{
{ 0x06, LVL_1_INST, 8 }, /* 4-way set assoc, 32 byte line size */
{ 0x08, LVL_1_INST, 16 }, /* 4-way set assoc, 32 byte line size */
{ 0x09, LVL_1_INST, 32 }, /* 4-way set assoc, 64 byte line size */
{ 0x0a, LVL_1_DATA, 8 }, /* 2 way set assoc, 32 byte line size */
{ 0x0c, LVL_1_DATA, 16 }, /* 4-way set assoc, 32 byte line size */
{ 0x0d, LVL_1_DATA, 16 }, /* 4-way set assoc, 64 byte line size */
{ 0x0e, LVL_1_DATA, 24 }, /* 6-way set assoc, 64 byte line size */
{ 0x21, LVL_2, 256 }, /* 8-way set assoc, 64 byte line size */
{ 0x22, LVL_3, 512 }, /* 4-way set assoc, sectored cache, 64 byte line size */
{ 0x23, LVL_3, MB(1) }, /* 8-way set assoc, sectored cache, 64 byte line size */
{ 0x25, LVL_3, MB(2) }, /* 8-way set assoc, sectored cache, 64 byte line size */
{ 0x29, LVL_3, MB(4) }, /* 8-way set assoc, sectored cache, 64 byte line size */
{ 0x2c, LVL_1_DATA, 32 }, /* 8-way set assoc, 64 byte line size */
{ 0x30, LVL_1_INST, 32 }, /* 8-way set assoc, 64 byte line size */
{ 0x39, LVL_2, 128 }, /* 4-way set assoc, sectored cache, 64 byte line size */
{ 0x3a, LVL_2, 192 }, /* 6-way set assoc, sectored cache, 64 byte line size */
{ 0x3b, LVL_2, 128 }, /* 2-way set assoc, sectored cache, 64 byte line size */
{ 0x3c, LVL_2, 256 }, /* 4-way set assoc, sectored cache, 64 byte line size */
{ 0x3d, LVL_2, 384 }, /* 6-way set assoc, sectored cache, 64 byte line size */
{ 0x3e, LVL_2, 512 }, /* 4-way set assoc, sectored cache, 64 byte line size */
{ 0x3f, LVL_2, 256 }, /* 2-way set assoc, 64 byte line size */
{ 0x41, LVL_2, 128 }, /* 4-way set assoc, 32 byte line size */
{ 0x42, LVL_2, 256 }, /* 4-way set assoc, 32 byte line size */
{ 0x43, LVL_2, 512 }, /* 4-way set assoc, 32 byte line size */
{ 0x44, LVL_2, MB(1) }, /* 4-way set assoc, 32 byte line size */
{ 0x45, LVL_2, MB(2) }, /* 4-way set assoc, 32 byte line size */
{ 0x46, LVL_3, MB(4) }, /* 4-way set assoc, 64 byte line size */
{ 0x47, LVL_3, MB(8) }, /* 8-way set assoc, 64 byte line size */
{ 0x48, LVL_2, MB(3) }, /* 12-way set assoc, 64 byte line size */
{ 0x49, LVL_3, MB(4) }, /* 16-way set assoc, 64 byte line size */
{ 0x4a, LVL_3, MB(6) }, /* 12-way set assoc, 64 byte line size */
{ 0x4b, LVL_3, MB(8) }, /* 16-way set assoc, 64 byte line size */
{ 0x4c, LVL_3, MB(12) }, /* 12-way set assoc, 64 byte line size */
{ 0x4d, LVL_3, MB(16) }, /* 16-way set assoc, 64 byte line size */
{ 0x4e, LVL_2, MB(6) }, /* 24-way set assoc, 64 byte line size */
{ 0x60, LVL_1_DATA, 16 }, /* 8-way set assoc, sectored cache, 64 byte line size */
{ 0x66, LVL_1_DATA, 8 }, /* 4-way set assoc, sectored cache, 64 byte line size */
{ 0x67, LVL_1_DATA, 16 }, /* 4-way set assoc, sectored cache, 64 byte line size */
{ 0x68, LVL_1_DATA, 32 }, /* 4-way set assoc, sectored cache, 64 byte line size */
{ 0x70, LVL_TRACE, 12 }, /* 8-way set assoc */
{ 0x71, LVL_TRACE, 16 }, /* 8-way set assoc */
{ 0x72, LVL_TRACE, 32 }, /* 8-way set assoc */
{ 0x73, LVL_TRACE, 64 }, /* 8-way set assoc */
{ 0x78, LVL_2, MB(1) }, /* 4-way set assoc, 64 byte line size */
{ 0x79, LVL_2, 128 }, /* 8-way set assoc, sectored cache, 64 byte line size */
{ 0x7a, LVL_2, 256 }, /* 8-way set assoc, sectored cache, 64 byte line size */
{ 0x7b, LVL_2, 512 }, /* 8-way set assoc, sectored cache, 64 byte line size */
{ 0x7c, LVL_2, MB(1) }, /* 8-way set assoc, sectored cache, 64 byte line size */
{ 0x7d, LVL_2, MB(2) }, /* 8-way set assoc, 64 byte line size */
{ 0x7f, LVL_2, 512 }, /* 2-way set assoc, 64 byte line size */
{ 0x80, LVL_2, 512 }, /* 8-way set assoc, 64 byte line size */
{ 0x82, LVL_2, 256 }, /* 8-way set assoc, 32 byte line size */
{ 0x83, LVL_2, 512 }, /* 8-way set assoc, 32 byte line size */
{ 0x84, LVL_2, MB(1) }, /* 8-way set assoc, 32 byte line size */
{ 0x85, LVL_2, MB(2) }, /* 8-way set assoc, 32 byte line size */
{ 0x86, LVL_2, 512 }, /* 4-way set assoc, 64 byte line size */
{ 0x87, LVL_2, MB(1) }, /* 8-way set assoc, 64 byte line size */
{ 0xd0, LVL_3, 512 }, /* 4-way set assoc, 64 byte line size */
{ 0xd1, LVL_3, MB(1) }, /* 4-way set assoc, 64 byte line size */
{ 0xd2, LVL_3, MB(2) }, /* 4-way set assoc, 64 byte line size */
{ 0xd6, LVL_3, MB(1) }, /* 8-way set assoc, 64 byte line size */
{ 0xd7, LVL_3, MB(2) }, /* 8-way set assoc, 64 byte line size */
{ 0xd8, LVL_3, MB(4) }, /* 12-way set assoc, 64 byte line size */
{ 0xdc, LVL_3, MB(2) }, /* 12-way set assoc, 64 byte line size */
{ 0xdd, LVL_3, MB(4) }, /* 12-way set assoc, 64 byte line size */
{ 0xde, LVL_3, MB(8) }, /* 12-way set assoc, 64 byte line size */
{ 0xe2, LVL_3, MB(2) }, /* 16-way set assoc, 64 byte line size */
{ 0xe3, LVL_3, MB(4) }, /* 16-way set assoc, 64 byte line size */
{ 0xe4, LVL_3, MB(8) }, /* 16-way set assoc, 64 byte line size */
{ 0xea, LVL_3, MB(12) }, /* 24-way set assoc, 64 byte line size */
{ 0xeb, LVL_3, MB(18) }, /* 24-way set assoc, 64 byte line size */
{ 0xec, LVL_3, MB(24) }, /* 24-way set assoc, 64 byte line size */
{ 0x00, 0, 0}
};
enum _cache_type {
CTYPE_NULL = 0,
CTYPE_DATA = 1,
CTYPE_INST = 2,
CTYPE_UNIFIED = 3
};
union _cpuid4_leaf_eax {
struct {
enum _cache_type type:5;
unsigned int level:3;
unsigned int is_self_initializing:1;
unsigned int is_fully_associative:1;
unsigned int reserved:4;
unsigned int num_threads_sharing:12;
unsigned int num_cores_on_die:6;
} split;
u32 full;
};
union _cpuid4_leaf_ebx {
struct {
unsigned int coherency_line_size:12;
unsigned int physical_line_partition:10;
unsigned int ways_of_associativity:10;
} split;
u32 full;
};
union _cpuid4_leaf_ecx {
struct {
unsigned int number_of_sets:32;
} split;
u32 full;
};
struct _cpuid4_info_regs {
union _cpuid4_leaf_eax eax;
union _cpuid4_leaf_ebx ebx;
union _cpuid4_leaf_ecx ecx;
unsigned int id;
unsigned long size;
struct amd_northbridge *nb;
};
static unsigned short num_cache_leaves;
/* AMD doesn't have CPUID4. Emulate it here to report the same
information to the user. This makes some assumptions about the machine:
L2 not shared, no SMT etc. that is currently true on AMD CPUs.
In theory the TLBs could be reported as fake type (they are in "dummy").
Maybe later */
union l1_cache {
struct {
unsigned line_size:8;
unsigned lines_per_tag:8;
unsigned assoc:8;
unsigned size_in_kb:8;
};
unsigned val;
};
union l2_cache {
struct {
unsigned line_size:8;
unsigned lines_per_tag:4;
unsigned assoc:4;
unsigned size_in_kb:16;
};
unsigned val;
};
union l3_cache {
struct {
unsigned line_size:8;
unsigned lines_per_tag:4;
unsigned assoc:4;
unsigned res:2;
unsigned size_encoded:14;
};
unsigned val;
};
static const unsigned short assocs[] = {
[1] = 1,
[2] = 2,
[4] = 4,
[6] = 8,
[8] = 16,
[0xa] = 32,
[0xb] = 48,
[0xc] = 64,
[0xd] = 96,
[0xe] = 128,
[0xf] = 0xffff /* fully associative - no way to show this currently */
};
static const unsigned char levels[] = { 1, 1, 2, 3 };
static const unsigned char types[] = { 1, 2, 3, 3 };
static const enum cache_type cache_type_map[] = {
[CTYPE_NULL] = CACHE_TYPE_NOCACHE,
[CTYPE_DATA] = CACHE_TYPE_DATA,
[CTYPE_INST] = CACHE_TYPE_INST,
[CTYPE_UNIFIED] = CACHE_TYPE_UNIFIED,
};
static void
amd_cpuid4(int leaf, union _cpuid4_leaf_eax *eax,
union _cpuid4_leaf_ebx *ebx,
union _cpuid4_leaf_ecx *ecx)
{
unsigned dummy;
unsigned line_size, lines_per_tag, assoc, size_in_kb;
union l1_cache l1i, l1d;
union l2_cache l2;
union l3_cache l3;
union l1_cache *l1 = &l1d;
eax->full = 0;
ebx->full = 0;
ecx->full = 0;
cpuid(0x80000005, &dummy, &dummy, &l1d.val, &l1i.val);
cpuid(0x80000006, &dummy, &dummy, &l2.val, &l3.val);
switch (leaf) {
case 1:
l1 = &l1i;
case 0:
if (!l1->val)
return;
assoc = assocs[l1->assoc];
line_size = l1->line_size;
lines_per_tag = l1->lines_per_tag;
size_in_kb = l1->size_in_kb;
break;
case 2:
if (!l2.val)
return;
assoc = assocs[l2.assoc];
line_size = l2.line_size;
lines_per_tag = l2.lines_per_tag;
/* cpu_data has errata corrections for K7 applied */
size_in_kb = __this_cpu_read(cpu_info.x86_cache_size);
break;
case 3:
if (!l3.val)
return;
assoc = assocs[l3.assoc];
line_size = l3.line_size;
lines_per_tag = l3.lines_per_tag;
size_in_kb = l3.size_encoded * 512;
if (boot_cpu_has(X86_FEATURE_AMD_DCM)) {
size_in_kb = size_in_kb >> 1;
assoc = assoc >> 1;
}
break;
default:
return;
}
eax->split.is_self_initializing = 1;
eax->split.type = types[leaf];
eax->split.level = levels[leaf];
eax->split.num_threads_sharing = 0;
eax->split.num_cores_on_die = __this_cpu_read(cpu_info.x86_max_cores) - 1;
if (assoc == 0xffff)
eax->split.is_fully_associative = 1;
ebx->split.coherency_line_size = line_size - 1;
ebx->split.ways_of_associativity = assoc - 1;
ebx->split.physical_line_partition = lines_per_tag - 1;
ecx->split.number_of_sets = (size_in_kb * 1024) / line_size /
(ebx->split.ways_of_associativity + 1) - 1;
}
#if defined(CONFIG_AMD_NB) && defined(CONFIG_SYSFS)
/*
* L3 cache descriptors
*/
static void amd_calc_l3_indices(struct amd_northbridge *nb)
{
struct amd_l3_cache *l3 = &nb->l3_cache;
unsigned int sc0, sc1, sc2, sc3;
u32 val = 0;
pci_read_config_dword(nb->misc, 0x1C4, &val);
/* calculate subcache sizes */
l3->subcaches[0] = sc0 = !(val & BIT(0));
l3->subcaches[1] = sc1 = !(val & BIT(4));
if (boot_cpu_data.x86 == 0x15) {
l3->subcaches[0] = sc0 += !(val & BIT(1));
l3->subcaches[1] = sc1 += !(val & BIT(5));
}
l3->subcaches[2] = sc2 = !(val & BIT(8)) + !(val & BIT(9));
l3->subcaches[3] = sc3 = !(val & BIT(12)) + !(val & BIT(13));
l3->indices = (max(max3(sc0, sc1, sc2), sc3) << 10) - 1;
}
/*
* check whether a slot used for disabling an L3 index is occupied.
* @l3: L3 cache descriptor
* @slot: slot number (0..1)
*
* @returns: the disabled index if used or negative value if slot free.
*/
static int amd_get_l3_disable_slot(struct amd_northbridge *nb, unsigned slot)
{
unsigned int reg = 0;
pci_read_config_dword(nb->misc, 0x1BC + slot * 4, &reg);
/* check whether this slot is activated already */
if (reg & (3UL << 30))
return reg & 0xfff;
return -1;
}
static ssize_t show_cache_disable(struct cacheinfo *this_leaf, char *buf,
unsigned int slot)
{
int index;
struct amd_northbridge *nb = this_leaf->priv;
index = amd_get_l3_disable_slot(nb, slot);
if (index >= 0)
return sprintf(buf, "%d\n", index);
return sprintf(buf, "FREE\n");
}
#define SHOW_CACHE_DISABLE(slot) \
static ssize_t \
cache_disable_##slot##_show(struct device *dev, \
struct device_attribute *attr, char *buf) \
{ \
struct cacheinfo *this_leaf = dev_get_drvdata(dev); \
return show_cache_disable(this_leaf, buf, slot); \
}
SHOW_CACHE_DISABLE(0)
SHOW_CACHE_DISABLE(1)
static void amd_l3_disable_index(struct amd_northbridge *nb, int cpu,
unsigned slot, unsigned long idx)
{
int i;
idx |= BIT(30);
/*
* disable index in all 4 subcaches
*/
for (i = 0; i < 4; i++) {
u32 reg = idx | (i << 20);
if (!nb->l3_cache.subcaches[i])
continue;
pci_write_config_dword(nb->misc, 0x1BC + slot * 4, reg);
/*
* We need to WBINVD on a core on the node containing the L3
* cache which indices we disable therefore a simple wbinvd()
* is not sufficient.
*/
wbinvd_on_cpu(cpu);
reg |= BIT(31);
pci_write_config_dword(nb->misc, 0x1BC + slot * 4, reg);
}
}
/*
* disable a L3 cache index by using a disable-slot
*
* @l3: L3 cache descriptor
* @cpu: A CPU on the node containing the L3 cache
* @slot: slot number (0..1)
* @index: index to disable
*
* @return: 0 on success, error status on failure
*/
static int amd_set_l3_disable_slot(struct amd_northbridge *nb, int cpu,
unsigned slot, unsigned long index)
{
int ret = 0;
/* check if @slot is already used or the index is already disabled */
ret = amd_get_l3_disable_slot(nb, slot);
if (ret >= 0)
return -EEXIST;
if (index > nb->l3_cache.indices)
return -EINVAL;
/* check whether the other slot has disabled the same index already */
if (index == amd_get_l3_disable_slot(nb, !slot))
return -EEXIST;
amd_l3_disable_index(nb, cpu, slot, index);
return 0;
}
static ssize_t store_cache_disable(struct cacheinfo *this_leaf,
const char *buf, size_t count,
unsigned int slot)
{
unsigned long val = 0;
int cpu, err = 0;
struct amd_northbridge *nb = this_leaf->priv;
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
cpu = cpumask_first(&this_leaf->shared_cpu_map);
if (kstrtoul(buf, 10, &val) < 0)
return -EINVAL;
err = amd_set_l3_disable_slot(nb, cpu, slot, val);
if (err) {
if (err == -EEXIST)
pr_warn("L3 slot %d in use/index already disabled!\n",
slot);
return err;
}
return count;
}
#define STORE_CACHE_DISABLE(slot) \
static ssize_t \
cache_disable_##slot##_store(struct device *dev, \
struct device_attribute *attr, \
const char *buf, size_t count) \
{ \
struct cacheinfo *this_leaf = dev_get_drvdata(dev); \
return store_cache_disable(this_leaf, buf, count, slot); \
}
STORE_CACHE_DISABLE(0)
STORE_CACHE_DISABLE(1)
static ssize_t subcaches_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct cacheinfo *this_leaf = dev_get_drvdata(dev);
int cpu = cpumask_first(&this_leaf->shared_cpu_map);
return sprintf(buf, "%x\n", amd_get_subcaches(cpu));
}
static ssize_t subcaches_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct cacheinfo *this_leaf = dev_get_drvdata(dev);
int cpu = cpumask_first(&this_leaf->shared_cpu_map);
unsigned long val;
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
if (kstrtoul(buf, 16, &val) < 0)
return -EINVAL;
if (amd_set_subcaches(cpu, val))
return -EINVAL;
return count;
}
static DEVICE_ATTR_RW(cache_disable_0);
static DEVICE_ATTR_RW(cache_disable_1);
static DEVICE_ATTR_RW(subcaches);
static umode_t
cache_private_attrs_is_visible(struct kobject *kobj,
struct attribute *attr, int unused)
{
struct device *dev = kobj_to_dev(kobj);
struct cacheinfo *this_leaf = dev_get_drvdata(dev);
umode_t mode = attr->mode;
if (!this_leaf->priv)
return 0;
if ((attr == &dev_attr_subcaches.attr) &&
amd_nb_has_feature(AMD_NB_L3_PARTITIONING))
return mode;
if ((attr == &dev_attr_cache_disable_0.attr ||
attr == &dev_attr_cache_disable_1.attr) &&
amd_nb_has_feature(AMD_NB_L3_INDEX_DISABLE))
return mode;
return 0;
}
static struct attribute_group cache_private_group = {
.is_visible = cache_private_attrs_is_visible,
};
static void init_amd_l3_attrs(void)
{
int n = 1;
static struct attribute **amd_l3_attrs;
if (amd_l3_attrs) /* already initialized */
return;
if (amd_nb_has_feature(AMD_NB_L3_INDEX_DISABLE))
n += 2;
if (amd_nb_has_feature(AMD_NB_L3_PARTITIONING))
n += 1;
amd_l3_attrs = kcalloc(n, sizeof(*amd_l3_attrs), GFP_KERNEL);
if (!amd_l3_attrs)
return;
n = 0;
if (amd_nb_has_feature(AMD_NB_L3_INDEX_DISABLE)) {
amd_l3_attrs[n++] = &dev_attr_cache_disable_0.attr;
amd_l3_attrs[n++] = &dev_attr_cache_disable_1.attr;
}
if (amd_nb_has_feature(AMD_NB_L3_PARTITIONING))
amd_l3_attrs[n++] = &dev_attr_subcaches.attr;
cache_private_group.attrs = amd_l3_attrs;
}
const struct attribute_group *
cache_get_priv_group(struct cacheinfo *this_leaf)
{
struct amd_northbridge *nb = this_leaf->priv;
if (this_leaf->level < 3 || !nb)
return NULL;
if (nb && nb->l3_cache.indices)
init_amd_l3_attrs();
return &cache_private_group;
}
static void amd_init_l3_cache(struct _cpuid4_info_regs *this_leaf, int index)
{
int node;
/* only for L3, and not in virtualized environments */
if (index < 3)
return;
node = amd_get_nb_id(smp_processor_id());
this_leaf->nb = node_to_amd_nb(node);
if (this_leaf->nb && !this_leaf->nb->l3_cache.indices)
amd_calc_l3_indices(this_leaf->nb);
}
#else
#define amd_init_l3_cache(x, y)
#endif /* CONFIG_AMD_NB && CONFIG_SYSFS */
static int
cpuid4_cache_lookup_regs(int index, struct _cpuid4_info_regs *this_leaf)
{
union _cpuid4_leaf_eax eax;
union _cpuid4_leaf_ebx ebx;
union _cpuid4_leaf_ecx ecx;
unsigned edx;
if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD) {
if (boot_cpu_has(X86_FEATURE_TOPOEXT))
cpuid_count(0x8000001d, index, &eax.full,
&ebx.full, &ecx.full, &edx);
else
amd_cpuid4(index, &eax, &ebx, &ecx);
amd_init_l3_cache(this_leaf, index);
} else {
cpuid_count(4, index, &eax.full, &ebx.full, &ecx.full, &edx);
}
if (eax.split.type == CTYPE_NULL)
return -EIO; /* better error ? */
this_leaf->eax = eax;
this_leaf->ebx = ebx;
this_leaf->ecx = ecx;
this_leaf->size = (ecx.split.number_of_sets + 1) *
(ebx.split.coherency_line_size + 1) *
(ebx.split.physical_line_partition + 1) *
(ebx.split.ways_of_associativity + 1);
return 0;
}
static int find_num_cache_leaves(struct cpuinfo_x86 *c)
{
unsigned int eax, ebx, ecx, edx, op;
union _cpuid4_leaf_eax cache_eax;
int i = -1;
if (c->x86_vendor == X86_VENDOR_AMD)
op = 0x8000001d;
else
op = 4;
do {
++i;
/* Do cpuid(op) loop to find out num_cache_leaves */
cpuid_count(op, i, &eax, &ebx, &ecx, &edx);
cache_eax.full = eax;
} while (cache_eax.split.type != CTYPE_NULL);
return i;
}
void init_amd_cacheinfo(struct cpuinfo_x86 *c)
{
if (boot_cpu_has(X86_FEATURE_TOPOEXT)) {
num_cache_leaves = find_num_cache_leaves(c);
} else if (c->extended_cpuid_level >= 0x80000006) {
if (cpuid_edx(0x80000006) & 0xf000)
num_cache_leaves = 4;
else
num_cache_leaves = 3;
}
}
unsigned int init_intel_cacheinfo(struct cpuinfo_x86 *c)
{
/* Cache sizes */
unsigned int trace = 0, l1i = 0, l1d = 0, l2 = 0, l3 = 0;
unsigned int new_l1d = 0, new_l1i = 0; /* Cache sizes from cpuid(4) */
unsigned int new_l2 = 0, new_l3 = 0, i; /* Cache sizes from cpuid(4) */
unsigned int l2_id = 0, l3_id = 0, num_threads_sharing, index_msb;
#ifdef CONFIG_SMP
unsigned int cpu = c->cpu_index;
#endif
if (c->cpuid_level > 3) {
static int is_initialized;
if (is_initialized == 0) {
/* Init num_cache_leaves from boot CPU */
num_cache_leaves = find_num_cache_leaves(c);
is_initialized++;
}
/*
* Whenever possible use cpuid(4), deterministic cache
* parameters cpuid leaf to find the cache details
*/
for (i = 0; i < num_cache_leaves; i++) {
struct _cpuid4_info_regs this_leaf = {};
int retval;
retval = cpuid4_cache_lookup_regs(i, &this_leaf);
if (retval < 0)
continue;
switch (this_leaf.eax.split.level) {
case 1:
if (this_leaf.eax.split.type == CTYPE_DATA)
new_l1d = this_leaf.size/1024;
else if (this_leaf.eax.split.type == CTYPE_INST)
new_l1i = this_leaf.size/1024;
break;
case 2:
new_l2 = this_leaf.size/1024;
num_threads_sharing = 1 + this_leaf.eax.split.num_threads_sharing;
index_msb = get_count_order(num_threads_sharing);
l2_id = c->apicid & ~((1 << index_msb) - 1);
break;
case 3:
new_l3 = this_leaf.size/1024;
num_threads_sharing = 1 + this_leaf.eax.split.num_threads_sharing;
index_msb = get_count_order(num_threads_sharing);
l3_id = c->apicid & ~((1 << index_msb) - 1);
break;
default:
break;
}
}
}
/*
* Don't use cpuid2 if cpuid4 is supported. For P4, we use cpuid2 for
* trace cache
*/
if ((num_cache_leaves == 0 || c->x86 == 15) && c->cpuid_level > 1) {
/* supports eax=2 call */
int j, n;
unsigned int regs[4];
unsigned char *dp = (unsigned char *)regs;
int only_trace = 0;
if (num_cache_leaves != 0 && c->x86 == 15)
only_trace = 1;
/* Number of times to iterate */
n = cpuid_eax(2) & 0xFF;
for (i = 0 ; i < n ; i++) {
cpuid(2, &regs[0], &regs[1], &regs[2], &regs[3]);
/* If bit 31 is set, this is an unknown format */
for (j = 0 ; j < 3 ; j++)
if (regs[j] & (1 << 31))
regs[j] = 0;
/* Byte 0 is level count, not a descriptor */
for (j = 1 ; j < 16 ; j++) {
unsigned char des = dp[j];
unsigned char k = 0;
/* look up this descriptor in the table */
while (cache_table[k].descriptor != 0) {
if (cache_table[k].descriptor == des) {
if (only_trace && cache_table[k].cache_type != LVL_TRACE)
break;
switch (cache_table[k].cache_type) {
case LVL_1_INST:
l1i += cache_table[k].size;
break;
case LVL_1_DATA:
l1d += cache_table[k].size;
break;
case LVL_2:
l2 += cache_table[k].size;
break;
case LVL_3:
l3 += cache_table[k].size;
break;
case LVL_TRACE:
trace += cache_table[k].size;
break;
}
break;
}
k++;
}
}
}
}
if (new_l1d)
l1d = new_l1d;
if (new_l1i)
l1i = new_l1i;
if (new_l2) {
l2 = new_l2;
#ifdef CONFIG_SMP
per_cpu(cpu_llc_id, cpu) = l2_id;
#endif
}
if (new_l3) {
l3 = new_l3;
#ifdef CONFIG_SMP
per_cpu(cpu_llc_id, cpu) = l3_id;
#endif
}
#ifdef CONFIG_SMP
/*
* If cpu_llc_id is not yet set, this means cpuid_level < 4 which in
* turns means that the only possibility is SMT (as indicated in
* cpuid1). Since cpuid2 doesn't specify shared caches, and we know
* that SMT shares all caches, we can unconditionally set cpu_llc_id to
* c->phys_proc_id.
*/
if (per_cpu(cpu_llc_id, cpu) == BAD_APICID)
per_cpu(cpu_llc_id, cpu) = c->phys_proc_id;
#endif
c->x86_cache_size = l3 ? l3 : (l2 ? l2 : (l1i+l1d));
return l2;
}
static int __cache_amd_cpumap_setup(unsigned int cpu, int index,
struct _cpuid4_info_regs *base)
{
struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu);
struct cacheinfo *this_leaf;
int i, sibling;
if (boot_cpu_has(X86_FEATURE_TOPOEXT)) {
unsigned int apicid, nshared, first, last;
this_leaf = this_cpu_ci->info_list + index;
nshared = base->eax.split.num_threads_sharing + 1;
apicid = cpu_data(cpu).apicid;
first = apicid - (apicid % nshared);
last = first + nshared - 1;
for_each_online_cpu(i) {
this_cpu_ci = get_cpu_cacheinfo(i);
if (!this_cpu_ci->info_list)
continue;
apicid = cpu_data(i).apicid;
if ((apicid < first) || (apicid > last))
continue;
this_leaf = this_cpu_ci->info_list + index;
for_each_online_cpu(sibling) {
apicid = cpu_data(sibling).apicid;
if ((apicid < first) || (apicid > last))
continue;
cpumask_set_cpu(sibling,
&this_leaf->shared_cpu_map);
}
}
} else if (index == 3) {
for_each_cpu(i, cpu_llc_shared_mask(cpu)) {
this_cpu_ci = get_cpu_cacheinfo(i);
if (!this_cpu_ci->info_list)
continue;
this_leaf = this_cpu_ci->info_list + index;
for_each_cpu(sibling, cpu_llc_shared_mask(cpu)) {
if (!cpu_online(sibling))
continue;
cpumask_set_cpu(sibling,
&this_leaf->shared_cpu_map);
}
}
} else
return 0;
return 1;
}
static void __cache_cpumap_setup(unsigned int cpu, int index,
struct _cpuid4_info_regs *base)
{
struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu);
struct cacheinfo *this_leaf, *sibling_leaf;
unsigned long num_threads_sharing;
int index_msb, i;
struct cpuinfo_x86 *c = &cpu_data(cpu);
if (c->x86_vendor == X86_VENDOR_AMD) {
if (__cache_amd_cpumap_setup(cpu, index, base))
return;
}
this_leaf = this_cpu_ci->info_list + index;
num_threads_sharing = 1 + base->eax.split.num_threads_sharing;
cpumask_set_cpu(cpu, &this_leaf->shared_cpu_map);
if (num_threads_sharing == 1)
return;
index_msb = get_count_order(num_threads_sharing);
for_each_online_cpu(i)
if (cpu_data(i).apicid >> index_msb == c->apicid >> index_msb) {
struct cpu_cacheinfo *sib_cpu_ci = get_cpu_cacheinfo(i);
if (i == cpu || !sib_cpu_ci->info_list)
continue;/* skip if itself or no cacheinfo */
sibling_leaf = sib_cpu_ci->info_list + index;
cpumask_set_cpu(i, &this_leaf->shared_cpu_map);
cpumask_set_cpu(cpu, &sibling_leaf->shared_cpu_map);
}
}
static void ci_leaf_init(struct cacheinfo *this_leaf,
struct _cpuid4_info_regs *base)
{
this_leaf->id = base->id;
this_leaf->attributes = CACHE_ID;
this_leaf->level = base->eax.split.level;
this_leaf->type = cache_type_map[base->eax.split.type];
this_leaf->coherency_line_size =
base->ebx.split.coherency_line_size + 1;
this_leaf->ways_of_associativity =
base->ebx.split.ways_of_associativity + 1;
this_leaf->size = base->size;
this_leaf->number_of_sets = base->ecx.split.number_of_sets + 1;
this_leaf->physical_line_partition =
base->ebx.split.physical_line_partition + 1;
this_leaf->priv = base->nb;
}
static int __init_cache_level(unsigned int cpu)
{
struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu);
if (!num_cache_leaves)
return -ENOENT;
if (!this_cpu_ci)
return -EINVAL;
this_cpu_ci->num_levels = 3;
this_cpu_ci->num_leaves = num_cache_leaves;
return 0;
}
/*
* The max shared threads number comes from CPUID.4:EAX[25-14] with input
* ECX as cache index. Then right shift apicid by the number's order to get
* cache id for this cache node.
*/
static void get_cache_id(int cpu, struct _cpuid4_info_regs *id4_regs)
{
struct cpuinfo_x86 *c = &cpu_data(cpu);
unsigned long num_threads_sharing;
int index_msb;
num_threads_sharing = 1 + id4_regs->eax.split.num_threads_sharing;
index_msb = get_count_order(num_threads_sharing);
id4_regs->id = c->apicid >> index_msb;
}
static int __populate_cache_leaves(unsigned int cpu)
{
unsigned int idx, ret;
struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu);
struct cacheinfo *this_leaf = this_cpu_ci->info_list;
struct _cpuid4_info_regs id4_regs = {};
for (idx = 0; idx < this_cpu_ci->num_leaves; idx++) {
ret = cpuid4_cache_lookup_regs(idx, &id4_regs);
if (ret)
return ret;
get_cache_id(cpu, &id4_regs);
ci_leaf_init(this_leaf++, &id4_regs);
__cache_cpumap_setup(cpu, idx, &id4_regs);
}
return 0;
}
DEFINE_SMP_CALL_CACHE_FUNCTION(init_cache_level)
DEFINE_SMP_CALL_CACHE_FUNCTION(populate_cache_leaves)