linux/arch/arm/common/edma.c
Arnd Bergmann 5305e4d674 dma: edma: move device registration to platform code
The horrible split between the low-level part of the edma support
and the dmaengine front-end driver causes problems on multiplatform
kernels. This is an attempt to improve the situation slightly
by only registering the dmaengine devices that are actually
present.

Signed-off-by: Arnd Bergmann <arnd@arndb.de>
[olof: add missing include of linux/dma-mapping.h]
Signed-off-by: Olof Johansson <olof@lixom.net>

Signed-off-by: Olof Johansson <olof@lixom.net>
2014-11-05 18:26:10 -08:00

1824 lines
50 KiB
C

/*
* EDMA3 support for DaVinci
*
* Copyright (C) 2006-2009 Texas Instruments.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include <linux/err.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/platform_device.h>
#include <linux/io.h>
#include <linux/slab.h>
#include <linux/edma.h>
#include <linux/dma-mapping.h>
#include <linux/of_address.h>
#include <linux/of_device.h>
#include <linux/of_dma.h>
#include <linux/of_irq.h>
#include <linux/pm_runtime.h>
#include <linux/platform_data/edma.h>
/* Offsets matching "struct edmacc_param" */
#define PARM_OPT 0x00
#define PARM_SRC 0x04
#define PARM_A_B_CNT 0x08
#define PARM_DST 0x0c
#define PARM_SRC_DST_BIDX 0x10
#define PARM_LINK_BCNTRLD 0x14
#define PARM_SRC_DST_CIDX 0x18
#define PARM_CCNT 0x1c
#define PARM_SIZE 0x20
/* Offsets for EDMA CC global channel registers and their shadows */
#define SH_ER 0x00 /* 64 bits */
#define SH_ECR 0x08 /* 64 bits */
#define SH_ESR 0x10 /* 64 bits */
#define SH_CER 0x18 /* 64 bits */
#define SH_EER 0x20 /* 64 bits */
#define SH_EECR 0x28 /* 64 bits */
#define SH_EESR 0x30 /* 64 bits */
#define SH_SER 0x38 /* 64 bits */
#define SH_SECR 0x40 /* 64 bits */
#define SH_IER 0x50 /* 64 bits */
#define SH_IECR 0x58 /* 64 bits */
#define SH_IESR 0x60 /* 64 bits */
#define SH_IPR 0x68 /* 64 bits */
#define SH_ICR 0x70 /* 64 bits */
#define SH_IEVAL 0x78
#define SH_QER 0x80
#define SH_QEER 0x84
#define SH_QEECR 0x88
#define SH_QEESR 0x8c
#define SH_QSER 0x90
#define SH_QSECR 0x94
#define SH_SIZE 0x200
/* Offsets for EDMA CC global registers */
#define EDMA_REV 0x0000
#define EDMA_CCCFG 0x0004
#define EDMA_QCHMAP 0x0200 /* 8 registers */
#define EDMA_DMAQNUM 0x0240 /* 8 registers (4 on OMAP-L1xx) */
#define EDMA_QDMAQNUM 0x0260
#define EDMA_QUETCMAP 0x0280
#define EDMA_QUEPRI 0x0284
#define EDMA_EMR 0x0300 /* 64 bits */
#define EDMA_EMCR 0x0308 /* 64 bits */
#define EDMA_QEMR 0x0310
#define EDMA_QEMCR 0x0314
#define EDMA_CCERR 0x0318
#define EDMA_CCERRCLR 0x031c
#define EDMA_EEVAL 0x0320
#define EDMA_DRAE 0x0340 /* 4 x 64 bits*/
#define EDMA_QRAE 0x0380 /* 4 registers */
#define EDMA_QUEEVTENTRY 0x0400 /* 2 x 16 registers */
#define EDMA_QSTAT 0x0600 /* 2 registers */
#define EDMA_QWMTHRA 0x0620
#define EDMA_QWMTHRB 0x0624
#define EDMA_CCSTAT 0x0640
#define EDMA_M 0x1000 /* global channel registers */
#define EDMA_ECR 0x1008
#define EDMA_ECRH 0x100C
#define EDMA_SHADOW0 0x2000 /* 4 regions shadowing global channels */
#define EDMA_PARM 0x4000 /* 128 param entries */
#define PARM_OFFSET(param_no) (EDMA_PARM + ((param_no) << 5))
#define EDMA_DCHMAP 0x0100 /* 64 registers */
/* CCCFG register */
#define GET_NUM_DMACH(x) (x & 0x7) /* bits 0-2 */
#define GET_NUM_PAENTRY(x) ((x & 0x7000) >> 12) /* bits 12-14 */
#define GET_NUM_EVQUE(x) ((x & 0x70000) >> 16) /* bits 16-18 */
#define GET_NUM_REGN(x) ((x & 0x300000) >> 20) /* bits 20-21 */
#define CHMAP_EXIST BIT(24)
#define EDMA_MAX_DMACH 64
#define EDMA_MAX_PARAMENTRY 512
/*****************************************************************************/
static void __iomem *edmacc_regs_base[EDMA_MAX_CC];
static inline unsigned int edma_read(unsigned ctlr, int offset)
{
return (unsigned int)__raw_readl(edmacc_regs_base[ctlr] + offset);
}
static inline void edma_write(unsigned ctlr, int offset, int val)
{
__raw_writel(val, edmacc_regs_base[ctlr] + offset);
}
static inline void edma_modify(unsigned ctlr, int offset, unsigned and,
unsigned or)
{
unsigned val = edma_read(ctlr, offset);
val &= and;
val |= or;
edma_write(ctlr, offset, val);
}
static inline void edma_and(unsigned ctlr, int offset, unsigned and)
{
unsigned val = edma_read(ctlr, offset);
val &= and;
edma_write(ctlr, offset, val);
}
static inline void edma_or(unsigned ctlr, int offset, unsigned or)
{
unsigned val = edma_read(ctlr, offset);
val |= or;
edma_write(ctlr, offset, val);
}
static inline unsigned int edma_read_array(unsigned ctlr, int offset, int i)
{
return edma_read(ctlr, offset + (i << 2));
}
static inline void edma_write_array(unsigned ctlr, int offset, int i,
unsigned val)
{
edma_write(ctlr, offset + (i << 2), val);
}
static inline void edma_modify_array(unsigned ctlr, int offset, int i,
unsigned and, unsigned or)
{
edma_modify(ctlr, offset + (i << 2), and, or);
}
static inline void edma_or_array(unsigned ctlr, int offset, int i, unsigned or)
{
edma_or(ctlr, offset + (i << 2), or);
}
static inline void edma_or_array2(unsigned ctlr, int offset, int i, int j,
unsigned or)
{
edma_or(ctlr, offset + ((i*2 + j) << 2), or);
}
static inline void edma_write_array2(unsigned ctlr, int offset, int i, int j,
unsigned val)
{
edma_write(ctlr, offset + ((i*2 + j) << 2), val);
}
static inline unsigned int edma_shadow0_read(unsigned ctlr, int offset)
{
return edma_read(ctlr, EDMA_SHADOW0 + offset);
}
static inline unsigned int edma_shadow0_read_array(unsigned ctlr, int offset,
int i)
{
return edma_read(ctlr, EDMA_SHADOW0 + offset + (i << 2));
}
static inline void edma_shadow0_write(unsigned ctlr, int offset, unsigned val)
{
edma_write(ctlr, EDMA_SHADOW0 + offset, val);
}
static inline void edma_shadow0_write_array(unsigned ctlr, int offset, int i,
unsigned val)
{
edma_write(ctlr, EDMA_SHADOW0 + offset + (i << 2), val);
}
static inline unsigned int edma_parm_read(unsigned ctlr, int offset,
int param_no)
{
return edma_read(ctlr, EDMA_PARM + offset + (param_no << 5));
}
static inline void edma_parm_write(unsigned ctlr, int offset, int param_no,
unsigned val)
{
edma_write(ctlr, EDMA_PARM + offset + (param_no << 5), val);
}
static inline void edma_parm_modify(unsigned ctlr, int offset, int param_no,
unsigned and, unsigned or)
{
edma_modify(ctlr, EDMA_PARM + offset + (param_no << 5), and, or);
}
static inline void edma_parm_and(unsigned ctlr, int offset, int param_no,
unsigned and)
{
edma_and(ctlr, EDMA_PARM + offset + (param_no << 5), and);
}
static inline void edma_parm_or(unsigned ctlr, int offset, int param_no,
unsigned or)
{
edma_or(ctlr, EDMA_PARM + offset + (param_no << 5), or);
}
static inline void set_bits(int offset, int len, unsigned long *p)
{
for (; len > 0; len--)
set_bit(offset + (len - 1), p);
}
static inline void clear_bits(int offset, int len, unsigned long *p)
{
for (; len > 0; len--)
clear_bit(offset + (len - 1), p);
}
/*****************************************************************************/
/* actual number of DMA channels and slots on this silicon */
struct edma {
/* how many dma resources of each type */
unsigned num_channels;
unsigned num_region;
unsigned num_slots;
unsigned num_tc;
enum dma_event_q default_queue;
/* list of channels with no even trigger; terminated by "-1" */
const s8 *noevent;
/* The edma_inuse bit for each PaRAM slot is clear unless the
* channel is in use ... by ARM or DSP, for QDMA, or whatever.
*/
DECLARE_BITMAP(edma_inuse, EDMA_MAX_PARAMENTRY);
/* The edma_unused bit for each channel is clear unless
* it is not being used on this platform. It uses a bit
* of SOC-specific initialization code.
*/
DECLARE_BITMAP(edma_unused, EDMA_MAX_DMACH);
unsigned irq_res_start;
unsigned irq_res_end;
struct dma_interrupt_data {
void (*callback)(unsigned channel, unsigned short ch_status,
void *data);
void *data;
} intr_data[EDMA_MAX_DMACH];
};
static struct edma *edma_cc[EDMA_MAX_CC];
static int arch_num_cc;
/* dummy param set used to (re)initialize parameter RAM slots */
static const struct edmacc_param dummy_paramset = {
.link_bcntrld = 0xffff,
.ccnt = 1,
};
static const struct of_device_id edma_of_ids[] = {
{ .compatible = "ti,edma3", },
{}
};
/*****************************************************************************/
static void map_dmach_queue(unsigned ctlr, unsigned ch_no,
enum dma_event_q queue_no)
{
int bit = (ch_no & 0x7) * 4;
/* default to low priority queue */
if (queue_no == EVENTQ_DEFAULT)
queue_no = edma_cc[ctlr]->default_queue;
queue_no &= 7;
edma_modify_array(ctlr, EDMA_DMAQNUM, (ch_no >> 3),
~(0x7 << bit), queue_no << bit);
}
static void __init assign_priority_to_queue(unsigned ctlr, int queue_no,
int priority)
{
int bit = queue_no * 4;
edma_modify(ctlr, EDMA_QUEPRI, ~(0x7 << bit),
((priority & 0x7) << bit));
}
/**
* map_dmach_param - Maps channel number to param entry number
*
* This maps the dma channel number to param entry numberter. In
* other words using the DMA channel mapping registers a param entry
* can be mapped to any channel
*
* Callers are responsible for ensuring the channel mapping logic is
* included in that particular EDMA variant (Eg : dm646x)
*
*/
static void __init map_dmach_param(unsigned ctlr)
{
int i;
for (i = 0; i < EDMA_MAX_DMACH; i++)
edma_write_array(ctlr, EDMA_DCHMAP , i , (i << 5));
}
static inline void
setup_dma_interrupt(unsigned lch,
void (*callback)(unsigned channel, u16 ch_status, void *data),
void *data)
{
unsigned ctlr;
ctlr = EDMA_CTLR(lch);
lch = EDMA_CHAN_SLOT(lch);
if (!callback)
edma_shadow0_write_array(ctlr, SH_IECR, lch >> 5,
BIT(lch & 0x1f));
edma_cc[ctlr]->intr_data[lch].callback = callback;
edma_cc[ctlr]->intr_data[lch].data = data;
if (callback) {
edma_shadow0_write_array(ctlr, SH_ICR, lch >> 5,
BIT(lch & 0x1f));
edma_shadow0_write_array(ctlr, SH_IESR, lch >> 5,
BIT(lch & 0x1f));
}
}
static int irq2ctlr(int irq)
{
if (irq >= edma_cc[0]->irq_res_start && irq <= edma_cc[0]->irq_res_end)
return 0;
else if (irq >= edma_cc[1]->irq_res_start &&
irq <= edma_cc[1]->irq_res_end)
return 1;
return -1;
}
/******************************************************************************
*
* DMA interrupt handler
*
*****************************************************************************/
static irqreturn_t dma_irq_handler(int irq, void *data)
{
int ctlr;
u32 sh_ier;
u32 sh_ipr;
u32 bank;
ctlr = irq2ctlr(irq);
if (ctlr < 0)
return IRQ_NONE;
dev_dbg(data, "dma_irq_handler\n");
sh_ipr = edma_shadow0_read_array(ctlr, SH_IPR, 0);
if (!sh_ipr) {
sh_ipr = edma_shadow0_read_array(ctlr, SH_IPR, 1);
if (!sh_ipr)
return IRQ_NONE;
sh_ier = edma_shadow0_read_array(ctlr, SH_IER, 1);
bank = 1;
} else {
sh_ier = edma_shadow0_read_array(ctlr, SH_IER, 0);
bank = 0;
}
do {
u32 slot;
u32 channel;
dev_dbg(data, "IPR%d %08x\n", bank, sh_ipr);
slot = __ffs(sh_ipr);
sh_ipr &= ~(BIT(slot));
if (sh_ier & BIT(slot)) {
channel = (bank << 5) | slot;
/* Clear the corresponding IPR bits */
edma_shadow0_write_array(ctlr, SH_ICR, bank,
BIT(slot));
if (edma_cc[ctlr]->intr_data[channel].callback)
edma_cc[ctlr]->intr_data[channel].callback(
channel, EDMA_DMA_COMPLETE,
edma_cc[ctlr]->intr_data[channel].data);
}
} while (sh_ipr);
edma_shadow0_write(ctlr, SH_IEVAL, 1);
return IRQ_HANDLED;
}
/******************************************************************************
*
* DMA error interrupt handler
*
*****************************************************************************/
static irqreturn_t dma_ccerr_handler(int irq, void *data)
{
int i;
int ctlr;
unsigned int cnt = 0;
ctlr = irq2ctlr(irq);
if (ctlr < 0)
return IRQ_NONE;
dev_dbg(data, "dma_ccerr_handler\n");
if ((edma_read_array(ctlr, EDMA_EMR, 0) == 0) &&
(edma_read_array(ctlr, EDMA_EMR, 1) == 0) &&
(edma_read(ctlr, EDMA_QEMR) == 0) &&
(edma_read(ctlr, EDMA_CCERR) == 0))
return IRQ_NONE;
while (1) {
int j = -1;
if (edma_read_array(ctlr, EDMA_EMR, 0))
j = 0;
else if (edma_read_array(ctlr, EDMA_EMR, 1))
j = 1;
if (j >= 0) {
dev_dbg(data, "EMR%d %08x\n", j,
edma_read_array(ctlr, EDMA_EMR, j));
for (i = 0; i < 32; i++) {
int k = (j << 5) + i;
if (edma_read_array(ctlr, EDMA_EMR, j) &
BIT(i)) {
/* Clear the corresponding EMR bits */
edma_write_array(ctlr, EDMA_EMCR, j,
BIT(i));
/* Clear any SER */
edma_shadow0_write_array(ctlr, SH_SECR,
j, BIT(i));
if (edma_cc[ctlr]->intr_data[k].
callback) {
edma_cc[ctlr]->intr_data[k].
callback(k,
EDMA_DMA_CC_ERROR,
edma_cc[ctlr]->intr_data
[k].data);
}
}
}
} else if (edma_read(ctlr, EDMA_QEMR)) {
dev_dbg(data, "QEMR %02x\n",
edma_read(ctlr, EDMA_QEMR));
for (i = 0; i < 8; i++) {
if (edma_read(ctlr, EDMA_QEMR) & BIT(i)) {
/* Clear the corresponding IPR bits */
edma_write(ctlr, EDMA_QEMCR, BIT(i));
edma_shadow0_write(ctlr, SH_QSECR,
BIT(i));
/* NOTE: not reported!! */
}
}
} else if (edma_read(ctlr, EDMA_CCERR)) {
dev_dbg(data, "CCERR %08x\n",
edma_read(ctlr, EDMA_CCERR));
/* FIXME: CCERR.BIT(16) ignored! much better
* to just write CCERRCLR with CCERR value...
*/
for (i = 0; i < 8; i++) {
if (edma_read(ctlr, EDMA_CCERR) & BIT(i)) {
/* Clear the corresponding IPR bits */
edma_write(ctlr, EDMA_CCERRCLR, BIT(i));
/* NOTE: not reported!! */
}
}
}
if ((edma_read_array(ctlr, EDMA_EMR, 0) == 0) &&
(edma_read_array(ctlr, EDMA_EMR, 1) == 0) &&
(edma_read(ctlr, EDMA_QEMR) == 0) &&
(edma_read(ctlr, EDMA_CCERR) == 0))
break;
cnt++;
if (cnt > 10)
break;
}
edma_write(ctlr, EDMA_EEVAL, 1);
return IRQ_HANDLED;
}
static int reserve_contiguous_slots(int ctlr, unsigned int id,
unsigned int num_slots,
unsigned int start_slot)
{
int i, j;
unsigned int count = num_slots;
int stop_slot = start_slot;
DECLARE_BITMAP(tmp_inuse, EDMA_MAX_PARAMENTRY);
for (i = start_slot; i < edma_cc[ctlr]->num_slots; ++i) {
j = EDMA_CHAN_SLOT(i);
if (!test_and_set_bit(j, edma_cc[ctlr]->edma_inuse)) {
/* Record our current beginning slot */
if (count == num_slots)
stop_slot = i;
count--;
set_bit(j, tmp_inuse);
if (count == 0)
break;
} else {
clear_bit(j, tmp_inuse);
if (id == EDMA_CONT_PARAMS_FIXED_EXACT) {
stop_slot = i;
break;
} else {
count = num_slots;
}
}
}
/*
* We have to clear any bits that we set
* if we run out parameter RAM slots, i.e we do find a set
* of contiguous parameter RAM slots but do not find the exact number
* requested as we may reach the total number of parameter RAM slots
*/
if (i == edma_cc[ctlr]->num_slots)
stop_slot = i;
j = start_slot;
for_each_set_bit_from(j, tmp_inuse, stop_slot)
clear_bit(j, edma_cc[ctlr]->edma_inuse);
if (count)
return -EBUSY;
for (j = i - num_slots + 1; j <= i; ++j)
memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(j),
&dummy_paramset, PARM_SIZE);
return EDMA_CTLR_CHAN(ctlr, i - num_slots + 1);
}
static int prepare_unused_channel_list(struct device *dev, void *data)
{
struct platform_device *pdev = to_platform_device(dev);
int i, count, ctlr;
struct of_phandle_args dma_spec;
if (dev->of_node) {
count = of_property_count_strings(dev->of_node, "dma-names");
if (count < 0)
return 0;
for (i = 0; i < count; i++) {
if (of_parse_phandle_with_args(dev->of_node, "dmas",
"#dma-cells", i,
&dma_spec))
continue;
if (!of_match_node(edma_of_ids, dma_spec.np)) {
of_node_put(dma_spec.np);
continue;
}
clear_bit(EDMA_CHAN_SLOT(dma_spec.args[0]),
edma_cc[0]->edma_unused);
of_node_put(dma_spec.np);
}
return 0;
}
/* For non-OF case */
for (i = 0; i < pdev->num_resources; i++) {
if ((pdev->resource[i].flags & IORESOURCE_DMA) &&
(int)pdev->resource[i].start >= 0) {
ctlr = EDMA_CTLR(pdev->resource[i].start);
clear_bit(EDMA_CHAN_SLOT(pdev->resource[i].start),
edma_cc[ctlr]->edma_unused);
}
}
return 0;
}
/*-----------------------------------------------------------------------*/
static bool unused_chan_list_done;
/* Resource alloc/free: dma channels, parameter RAM slots */
/**
* edma_alloc_channel - allocate DMA channel and paired parameter RAM
* @channel: specific channel to allocate; negative for "any unmapped channel"
* @callback: optional; to be issued on DMA completion or errors
* @data: passed to callback
* @eventq_no: an EVENTQ_* constant, used to choose which Transfer
* Controller (TC) executes requests using this channel. Use
* EVENTQ_DEFAULT unless you really need a high priority queue.
*
* This allocates a DMA channel and its associated parameter RAM slot.
* The parameter RAM is initialized to hold a dummy transfer.
*
* Normal use is to pass a specific channel number as @channel, to make
* use of hardware events mapped to that channel. When the channel will
* be used only for software triggering or event chaining, channels not
* mapped to hardware events (or mapped to unused events) are preferable.
*
* DMA transfers start from a channel using edma_start(), or by
* chaining. When the transfer described in that channel's parameter RAM
* slot completes, that slot's data may be reloaded through a link.
*
* DMA errors are only reported to the @callback associated with the
* channel driving that transfer, but transfer completion callbacks can
* be sent to another channel under control of the TCC field in
* the option word of the transfer's parameter RAM set. Drivers must not
* use DMA transfer completion callbacks for channels they did not allocate.
* (The same applies to TCC codes used in transfer chaining.)
*
* Returns the number of the channel, else negative errno.
*/
int edma_alloc_channel(int channel,
void (*callback)(unsigned channel, u16 ch_status, void *data),
void *data,
enum dma_event_q eventq_no)
{
unsigned i, done = 0, ctlr = 0;
int ret = 0;
if (!unused_chan_list_done) {
/*
* Scan all the platform devices to find out the EDMA channels
* used and clear them in the unused list, making the rest
* available for ARM usage.
*/
ret = bus_for_each_dev(&platform_bus_type, NULL, NULL,
prepare_unused_channel_list);
if (ret < 0)
return ret;
unused_chan_list_done = true;
}
if (channel >= 0) {
ctlr = EDMA_CTLR(channel);
channel = EDMA_CHAN_SLOT(channel);
}
if (channel < 0) {
for (i = 0; i < arch_num_cc; i++) {
channel = 0;
for (;;) {
channel = find_next_bit(edma_cc[i]->edma_unused,
edma_cc[i]->num_channels,
channel);
if (channel == edma_cc[i]->num_channels)
break;
if (!test_and_set_bit(channel,
edma_cc[i]->edma_inuse)) {
done = 1;
ctlr = i;
break;
}
channel++;
}
if (done)
break;
}
if (!done)
return -ENOMEM;
} else if (channel >= edma_cc[ctlr]->num_channels) {
return -EINVAL;
} else if (test_and_set_bit(channel, edma_cc[ctlr]->edma_inuse)) {
return -EBUSY;
}
/* ensure access through shadow region 0 */
edma_or_array2(ctlr, EDMA_DRAE, 0, channel >> 5, BIT(channel & 0x1f));
/* ensure no events are pending */
edma_stop(EDMA_CTLR_CHAN(ctlr, channel));
memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(channel),
&dummy_paramset, PARM_SIZE);
if (callback)
setup_dma_interrupt(EDMA_CTLR_CHAN(ctlr, channel),
callback, data);
map_dmach_queue(ctlr, channel, eventq_no);
return EDMA_CTLR_CHAN(ctlr, channel);
}
EXPORT_SYMBOL(edma_alloc_channel);
/**
* edma_free_channel - deallocate DMA channel
* @channel: dma channel returned from edma_alloc_channel()
*
* This deallocates the DMA channel and associated parameter RAM slot
* allocated by edma_alloc_channel().
*
* Callers are responsible for ensuring the channel is inactive, and
* will not be reactivated by linking, chaining, or software calls to
* edma_start().
*/
void edma_free_channel(unsigned channel)
{
unsigned ctlr;
ctlr = EDMA_CTLR(channel);
channel = EDMA_CHAN_SLOT(channel);
if (channel >= edma_cc[ctlr]->num_channels)
return;
setup_dma_interrupt(channel, NULL, NULL);
/* REVISIT should probably take out of shadow region 0 */
memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(channel),
&dummy_paramset, PARM_SIZE);
clear_bit(channel, edma_cc[ctlr]->edma_inuse);
}
EXPORT_SYMBOL(edma_free_channel);
/**
* edma_alloc_slot - allocate DMA parameter RAM
* @slot: specific slot to allocate; negative for "any unused slot"
*
* This allocates a parameter RAM slot, initializing it to hold a
* dummy transfer. Slots allocated using this routine have not been
* mapped to a hardware DMA channel, and will normally be used by
* linking to them from a slot associated with a DMA channel.
*
* Normal use is to pass EDMA_SLOT_ANY as the @slot, but specific
* slots may be allocated on behalf of DSP firmware.
*
* Returns the number of the slot, else negative errno.
*/
int edma_alloc_slot(unsigned ctlr, int slot)
{
if (!edma_cc[ctlr])
return -EINVAL;
if (slot >= 0)
slot = EDMA_CHAN_SLOT(slot);
if (slot < 0) {
slot = edma_cc[ctlr]->num_channels;
for (;;) {
slot = find_next_zero_bit(edma_cc[ctlr]->edma_inuse,
edma_cc[ctlr]->num_slots, slot);
if (slot == edma_cc[ctlr]->num_slots)
return -ENOMEM;
if (!test_and_set_bit(slot, edma_cc[ctlr]->edma_inuse))
break;
}
} else if (slot < edma_cc[ctlr]->num_channels ||
slot >= edma_cc[ctlr]->num_slots) {
return -EINVAL;
} else if (test_and_set_bit(slot, edma_cc[ctlr]->edma_inuse)) {
return -EBUSY;
}
memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(slot),
&dummy_paramset, PARM_SIZE);
return EDMA_CTLR_CHAN(ctlr, slot);
}
EXPORT_SYMBOL(edma_alloc_slot);
/**
* edma_free_slot - deallocate DMA parameter RAM
* @slot: parameter RAM slot returned from edma_alloc_slot()
*
* This deallocates the parameter RAM slot allocated by edma_alloc_slot().
* Callers are responsible for ensuring the slot is inactive, and will
* not be activated.
*/
void edma_free_slot(unsigned slot)
{
unsigned ctlr;
ctlr = EDMA_CTLR(slot);
slot = EDMA_CHAN_SLOT(slot);
if (slot < edma_cc[ctlr]->num_channels ||
slot >= edma_cc[ctlr]->num_slots)
return;
memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(slot),
&dummy_paramset, PARM_SIZE);
clear_bit(slot, edma_cc[ctlr]->edma_inuse);
}
EXPORT_SYMBOL(edma_free_slot);
/**
* edma_alloc_cont_slots- alloc contiguous parameter RAM slots
* The API will return the starting point of a set of
* contiguous parameter RAM slots that have been requested
*
* @id: can only be EDMA_CONT_PARAMS_ANY or EDMA_CONT_PARAMS_FIXED_EXACT
* or EDMA_CONT_PARAMS_FIXED_NOT_EXACT
* @count: number of contiguous Paramter RAM slots
* @slot - the start value of Parameter RAM slot that should be passed if id
* is EDMA_CONT_PARAMS_FIXED_EXACT or EDMA_CONT_PARAMS_FIXED_NOT_EXACT
*
* If id is EDMA_CONT_PARAMS_ANY then the API starts looking for a set of
* contiguous Parameter RAM slots from parameter RAM 64 in the case of
* DaVinci SOCs and 32 in the case of DA8xx SOCs.
*
* If id is EDMA_CONT_PARAMS_FIXED_EXACT then the API starts looking for a
* set of contiguous parameter RAM slots from the "slot" that is passed as an
* argument to the API.
*
* If id is EDMA_CONT_PARAMS_FIXED_NOT_EXACT then the API initially tries
* starts looking for a set of contiguous parameter RAMs from the "slot"
* that is passed as an argument to the API. On failure the API will try to
* find a set of contiguous Parameter RAM slots from the remaining Parameter
* RAM slots
*/
int edma_alloc_cont_slots(unsigned ctlr, unsigned int id, int slot, int count)
{
/*
* The start slot requested should be greater than
* the number of channels and lesser than the total number
* of slots
*/
if ((id != EDMA_CONT_PARAMS_ANY) &&
(slot < edma_cc[ctlr]->num_channels ||
slot >= edma_cc[ctlr]->num_slots))
return -EINVAL;
/*
* The number of parameter RAM slots requested cannot be less than 1
* and cannot be more than the number of slots minus the number of
* channels
*/
if (count < 1 || count >
(edma_cc[ctlr]->num_slots - edma_cc[ctlr]->num_channels))
return -EINVAL;
switch (id) {
case EDMA_CONT_PARAMS_ANY:
return reserve_contiguous_slots(ctlr, id, count,
edma_cc[ctlr]->num_channels);
case EDMA_CONT_PARAMS_FIXED_EXACT:
case EDMA_CONT_PARAMS_FIXED_NOT_EXACT:
return reserve_contiguous_slots(ctlr, id, count, slot);
default:
return -EINVAL;
}
}
EXPORT_SYMBOL(edma_alloc_cont_slots);
/**
* edma_free_cont_slots - deallocate DMA parameter RAM slots
* @slot: first parameter RAM of a set of parameter RAM slots to be freed
* @count: the number of contiguous parameter RAM slots to be freed
*
* This deallocates the parameter RAM slots allocated by
* edma_alloc_cont_slots.
* Callers/applications need to keep track of sets of contiguous
* parameter RAM slots that have been allocated using the edma_alloc_cont_slots
* API.
* Callers are responsible for ensuring the slots are inactive, and will
* not be activated.
*/
int edma_free_cont_slots(unsigned slot, int count)
{
unsigned ctlr, slot_to_free;
int i;
ctlr = EDMA_CTLR(slot);
slot = EDMA_CHAN_SLOT(slot);
if (slot < edma_cc[ctlr]->num_channels ||
slot >= edma_cc[ctlr]->num_slots ||
count < 1)
return -EINVAL;
for (i = slot; i < slot + count; ++i) {
ctlr = EDMA_CTLR(i);
slot_to_free = EDMA_CHAN_SLOT(i);
memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(slot_to_free),
&dummy_paramset, PARM_SIZE);
clear_bit(slot_to_free, edma_cc[ctlr]->edma_inuse);
}
return 0;
}
EXPORT_SYMBOL(edma_free_cont_slots);
/*-----------------------------------------------------------------------*/
/* Parameter RAM operations (i) -- read/write partial slots */
/**
* edma_set_src - set initial DMA source address in parameter RAM slot
* @slot: parameter RAM slot being configured
* @src_port: physical address of source (memory, controller FIFO, etc)
* @addressMode: INCR, except in very rare cases
* @fifoWidth: ignored unless @addressMode is FIFO, else specifies the
* width to use when addressing the fifo (e.g. W8BIT, W32BIT)
*
* Note that the source address is modified during the DMA transfer
* according to edma_set_src_index().
*/
void edma_set_src(unsigned slot, dma_addr_t src_port,
enum address_mode mode, enum fifo_width width)
{
unsigned ctlr;
ctlr = EDMA_CTLR(slot);
slot = EDMA_CHAN_SLOT(slot);
if (slot < edma_cc[ctlr]->num_slots) {
unsigned int i = edma_parm_read(ctlr, PARM_OPT, slot);
if (mode) {
/* set SAM and program FWID */
i = (i & ~(EDMA_FWID)) | (SAM | ((width & 0x7) << 8));
} else {
/* clear SAM */
i &= ~SAM;
}
edma_parm_write(ctlr, PARM_OPT, slot, i);
/* set the source port address
in source register of param structure */
edma_parm_write(ctlr, PARM_SRC, slot, src_port);
}
}
EXPORT_SYMBOL(edma_set_src);
/**
* edma_set_dest - set initial DMA destination address in parameter RAM slot
* @slot: parameter RAM slot being configured
* @dest_port: physical address of destination (memory, controller FIFO, etc)
* @addressMode: INCR, except in very rare cases
* @fifoWidth: ignored unless @addressMode is FIFO, else specifies the
* width to use when addressing the fifo (e.g. W8BIT, W32BIT)
*
* Note that the destination address is modified during the DMA transfer
* according to edma_set_dest_index().
*/
void edma_set_dest(unsigned slot, dma_addr_t dest_port,
enum address_mode mode, enum fifo_width width)
{
unsigned ctlr;
ctlr = EDMA_CTLR(slot);
slot = EDMA_CHAN_SLOT(slot);
if (slot < edma_cc[ctlr]->num_slots) {
unsigned int i = edma_parm_read(ctlr, PARM_OPT, slot);
if (mode) {
/* set DAM and program FWID */
i = (i & ~(EDMA_FWID)) | (DAM | ((width & 0x7) << 8));
} else {
/* clear DAM */
i &= ~DAM;
}
edma_parm_write(ctlr, PARM_OPT, slot, i);
/* set the destination port address
in dest register of param structure */
edma_parm_write(ctlr, PARM_DST, slot, dest_port);
}
}
EXPORT_SYMBOL(edma_set_dest);
/**
* edma_get_position - returns the current transfer point
* @slot: parameter RAM slot being examined
* @dst: true selects the dest position, false the source
*
* Returns the position of the current active slot
*/
dma_addr_t edma_get_position(unsigned slot, bool dst)
{
u32 offs, ctlr = EDMA_CTLR(slot);
slot = EDMA_CHAN_SLOT(slot);
offs = PARM_OFFSET(slot);
offs += dst ? PARM_DST : PARM_SRC;
return edma_read(ctlr, offs);
}
/**
* edma_set_src_index - configure DMA source address indexing
* @slot: parameter RAM slot being configured
* @src_bidx: byte offset between source arrays in a frame
* @src_cidx: byte offset between source frames in a block
*
* Offsets are specified to support either contiguous or discontiguous
* memory transfers, or repeated access to a hardware register, as needed.
* When accessing hardware registers, both offsets are normally zero.
*/
void edma_set_src_index(unsigned slot, s16 src_bidx, s16 src_cidx)
{
unsigned ctlr;
ctlr = EDMA_CTLR(slot);
slot = EDMA_CHAN_SLOT(slot);
if (slot < edma_cc[ctlr]->num_slots) {
edma_parm_modify(ctlr, PARM_SRC_DST_BIDX, slot,
0xffff0000, src_bidx);
edma_parm_modify(ctlr, PARM_SRC_DST_CIDX, slot,
0xffff0000, src_cidx);
}
}
EXPORT_SYMBOL(edma_set_src_index);
/**
* edma_set_dest_index - configure DMA destination address indexing
* @slot: parameter RAM slot being configured
* @dest_bidx: byte offset between destination arrays in a frame
* @dest_cidx: byte offset between destination frames in a block
*
* Offsets are specified to support either contiguous or discontiguous
* memory transfers, or repeated access to a hardware register, as needed.
* When accessing hardware registers, both offsets are normally zero.
*/
void edma_set_dest_index(unsigned slot, s16 dest_bidx, s16 dest_cidx)
{
unsigned ctlr;
ctlr = EDMA_CTLR(slot);
slot = EDMA_CHAN_SLOT(slot);
if (slot < edma_cc[ctlr]->num_slots) {
edma_parm_modify(ctlr, PARM_SRC_DST_BIDX, slot,
0x0000ffff, dest_bidx << 16);
edma_parm_modify(ctlr, PARM_SRC_DST_CIDX, slot,
0x0000ffff, dest_cidx << 16);
}
}
EXPORT_SYMBOL(edma_set_dest_index);
/**
* edma_set_transfer_params - configure DMA transfer parameters
* @slot: parameter RAM slot being configured
* @acnt: how many bytes per array (at least one)
* @bcnt: how many arrays per frame (at least one)
* @ccnt: how many frames per block (at least one)
* @bcnt_rld: used only for A-Synchronized transfers; this specifies
* the value to reload into bcnt when it decrements to zero
* @sync_mode: ASYNC or ABSYNC
*
* See the EDMA3 documentation to understand how to configure and link
* transfers using the fields in PaRAM slots. If you are not doing it
* all at once with edma_write_slot(), you will use this routine
* plus two calls each for source and destination, setting the initial
* address and saying how to index that address.
*
* An example of an A-Synchronized transfer is a serial link using a
* single word shift register. In that case, @acnt would be equal to
* that word size; the serial controller issues a DMA synchronization
* event to transfer each word, and memory access by the DMA transfer
* controller will be word-at-a-time.
*
* An example of an AB-Synchronized transfer is a device using a FIFO.
* In that case, @acnt equals the FIFO width and @bcnt equals its depth.
* The controller with the FIFO issues DMA synchronization events when
* the FIFO threshold is reached, and the DMA transfer controller will
* transfer one frame to (or from) the FIFO. It will probably use
* efficient burst modes to access memory.
*/
void edma_set_transfer_params(unsigned slot,
u16 acnt, u16 bcnt, u16 ccnt,
u16 bcnt_rld, enum sync_dimension sync_mode)
{
unsigned ctlr;
ctlr = EDMA_CTLR(slot);
slot = EDMA_CHAN_SLOT(slot);
if (slot < edma_cc[ctlr]->num_slots) {
edma_parm_modify(ctlr, PARM_LINK_BCNTRLD, slot,
0x0000ffff, bcnt_rld << 16);
if (sync_mode == ASYNC)
edma_parm_and(ctlr, PARM_OPT, slot, ~SYNCDIM);
else
edma_parm_or(ctlr, PARM_OPT, slot, SYNCDIM);
/* Set the acount, bcount, ccount registers */
edma_parm_write(ctlr, PARM_A_B_CNT, slot, (bcnt << 16) | acnt);
edma_parm_write(ctlr, PARM_CCNT, slot, ccnt);
}
}
EXPORT_SYMBOL(edma_set_transfer_params);
/**
* edma_link - link one parameter RAM slot to another
* @from: parameter RAM slot originating the link
* @to: parameter RAM slot which is the link target
*
* The originating slot should not be part of any active DMA transfer.
*/
void edma_link(unsigned from, unsigned to)
{
unsigned ctlr_from, ctlr_to;
ctlr_from = EDMA_CTLR(from);
from = EDMA_CHAN_SLOT(from);
ctlr_to = EDMA_CTLR(to);
to = EDMA_CHAN_SLOT(to);
if (from >= edma_cc[ctlr_from]->num_slots)
return;
if (to >= edma_cc[ctlr_to]->num_slots)
return;
edma_parm_modify(ctlr_from, PARM_LINK_BCNTRLD, from, 0xffff0000,
PARM_OFFSET(to));
}
EXPORT_SYMBOL(edma_link);
/**
* edma_unlink - cut link from one parameter RAM slot
* @from: parameter RAM slot originating the link
*
* The originating slot should not be part of any active DMA transfer.
* Its link is set to 0xffff.
*/
void edma_unlink(unsigned from)
{
unsigned ctlr;
ctlr = EDMA_CTLR(from);
from = EDMA_CHAN_SLOT(from);
if (from >= edma_cc[ctlr]->num_slots)
return;
edma_parm_or(ctlr, PARM_LINK_BCNTRLD, from, 0xffff);
}
EXPORT_SYMBOL(edma_unlink);
/*-----------------------------------------------------------------------*/
/* Parameter RAM operations (ii) -- read/write whole parameter sets */
/**
* edma_write_slot - write parameter RAM data for slot
* @slot: number of parameter RAM slot being modified
* @param: data to be written into parameter RAM slot
*
* Use this to assign all parameters of a transfer at once. This
* allows more efficient setup of transfers than issuing multiple
* calls to set up those parameters in small pieces, and provides
* complete control over all transfer options.
*/
void edma_write_slot(unsigned slot, const struct edmacc_param *param)
{
unsigned ctlr;
ctlr = EDMA_CTLR(slot);
slot = EDMA_CHAN_SLOT(slot);
if (slot >= edma_cc[ctlr]->num_slots)
return;
memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(slot), param,
PARM_SIZE);
}
EXPORT_SYMBOL(edma_write_slot);
/**
* edma_read_slot - read parameter RAM data from slot
* @slot: number of parameter RAM slot being copied
* @param: where to store copy of parameter RAM data
*
* Use this to read data from a parameter RAM slot, perhaps to
* save them as a template for later reuse.
*/
void edma_read_slot(unsigned slot, struct edmacc_param *param)
{
unsigned ctlr;
ctlr = EDMA_CTLR(slot);
slot = EDMA_CHAN_SLOT(slot);
if (slot >= edma_cc[ctlr]->num_slots)
return;
memcpy_fromio(param, edmacc_regs_base[ctlr] + PARM_OFFSET(slot),
PARM_SIZE);
}
EXPORT_SYMBOL(edma_read_slot);
/*-----------------------------------------------------------------------*/
/* Various EDMA channel control operations */
/**
* edma_pause - pause dma on a channel
* @channel: on which edma_start() has been called
*
* This temporarily disables EDMA hardware events on the specified channel,
* preventing them from triggering new transfers on its behalf
*/
void edma_pause(unsigned channel)
{
unsigned ctlr;
ctlr = EDMA_CTLR(channel);
channel = EDMA_CHAN_SLOT(channel);
if (channel < edma_cc[ctlr]->num_channels) {
unsigned int mask = BIT(channel & 0x1f);
edma_shadow0_write_array(ctlr, SH_EECR, channel >> 5, mask);
}
}
EXPORT_SYMBOL(edma_pause);
/**
* edma_resume - resumes dma on a paused channel
* @channel: on which edma_pause() has been called
*
* This re-enables EDMA hardware events on the specified channel.
*/
void edma_resume(unsigned channel)
{
unsigned ctlr;
ctlr = EDMA_CTLR(channel);
channel = EDMA_CHAN_SLOT(channel);
if (channel < edma_cc[ctlr]->num_channels) {
unsigned int mask = BIT(channel & 0x1f);
edma_shadow0_write_array(ctlr, SH_EESR, channel >> 5, mask);
}
}
EXPORT_SYMBOL(edma_resume);
int edma_trigger_channel(unsigned channel)
{
unsigned ctlr;
unsigned int mask;
ctlr = EDMA_CTLR(channel);
channel = EDMA_CHAN_SLOT(channel);
mask = BIT(channel & 0x1f);
edma_shadow0_write_array(ctlr, SH_ESR, (channel >> 5), mask);
pr_debug("EDMA: ESR%d %08x\n", (channel >> 5),
edma_shadow0_read_array(ctlr, SH_ESR, (channel >> 5)));
return 0;
}
EXPORT_SYMBOL(edma_trigger_channel);
/**
* edma_start - start dma on a channel
* @channel: channel being activated
*
* Channels with event associations will be triggered by their hardware
* events, and channels without such associations will be triggered by
* software. (At this writing there is no interface for using software
* triggers except with channels that don't support hardware triggers.)
*
* Returns zero on success, else negative errno.
*/
int edma_start(unsigned channel)
{
unsigned ctlr;
ctlr = EDMA_CTLR(channel);
channel = EDMA_CHAN_SLOT(channel);
if (channel < edma_cc[ctlr]->num_channels) {
int j = channel >> 5;
unsigned int mask = BIT(channel & 0x1f);
/* EDMA channels without event association */
if (test_bit(channel, edma_cc[ctlr]->edma_unused)) {
pr_debug("EDMA: ESR%d %08x\n", j,
edma_shadow0_read_array(ctlr, SH_ESR, j));
edma_shadow0_write_array(ctlr, SH_ESR, j, mask);
return 0;
}
/* EDMA channel with event association */
pr_debug("EDMA: ER%d %08x\n", j,
edma_shadow0_read_array(ctlr, SH_ER, j));
/* Clear any pending event or error */
edma_write_array(ctlr, EDMA_ECR, j, mask);
edma_write_array(ctlr, EDMA_EMCR, j, mask);
/* Clear any SER */
edma_shadow0_write_array(ctlr, SH_SECR, j, mask);
edma_shadow0_write_array(ctlr, SH_EESR, j, mask);
pr_debug("EDMA: EER%d %08x\n", j,
edma_shadow0_read_array(ctlr, SH_EER, j));
return 0;
}
return -EINVAL;
}
EXPORT_SYMBOL(edma_start);
/**
* edma_stop - stops dma on the channel passed
* @channel: channel being deactivated
*
* When @lch is a channel, any active transfer is paused and
* all pending hardware events are cleared. The current transfer
* may not be resumed, and the channel's Parameter RAM should be
* reinitialized before being reused.
*/
void edma_stop(unsigned channel)
{
unsigned ctlr;
ctlr = EDMA_CTLR(channel);
channel = EDMA_CHAN_SLOT(channel);
if (channel < edma_cc[ctlr]->num_channels) {
int j = channel >> 5;
unsigned int mask = BIT(channel & 0x1f);
edma_shadow0_write_array(ctlr, SH_EECR, j, mask);
edma_shadow0_write_array(ctlr, SH_ECR, j, mask);
edma_shadow0_write_array(ctlr, SH_SECR, j, mask);
edma_write_array(ctlr, EDMA_EMCR, j, mask);
pr_debug("EDMA: EER%d %08x\n", j,
edma_shadow0_read_array(ctlr, SH_EER, j));
/* REVISIT: consider guarding against inappropriate event
* chaining by overwriting with dummy_paramset.
*/
}
}
EXPORT_SYMBOL(edma_stop);
/******************************************************************************
*
* It cleans ParamEntry qand bring back EDMA to initial state if media has
* been removed before EDMA has finished.It is usedful for removable media.
* Arguments:
* ch_no - channel no
*
* Return: zero on success, or corresponding error no on failure
*
* FIXME this should not be needed ... edma_stop() should suffice.
*
*****************************************************************************/
void edma_clean_channel(unsigned channel)
{
unsigned ctlr;
ctlr = EDMA_CTLR(channel);
channel = EDMA_CHAN_SLOT(channel);
if (channel < edma_cc[ctlr]->num_channels) {
int j = (channel >> 5);
unsigned int mask = BIT(channel & 0x1f);
pr_debug("EDMA: EMR%d %08x\n", j,
edma_read_array(ctlr, EDMA_EMR, j));
edma_shadow0_write_array(ctlr, SH_ECR, j, mask);
/* Clear the corresponding EMR bits */
edma_write_array(ctlr, EDMA_EMCR, j, mask);
/* Clear any SER */
edma_shadow0_write_array(ctlr, SH_SECR, j, mask);
edma_write(ctlr, EDMA_CCERRCLR, BIT(16) | BIT(1) | BIT(0));
}
}
EXPORT_SYMBOL(edma_clean_channel);
/*
* edma_clear_event - clear an outstanding event on the DMA channel
* Arguments:
* channel - channel number
*/
void edma_clear_event(unsigned channel)
{
unsigned ctlr;
ctlr = EDMA_CTLR(channel);
channel = EDMA_CHAN_SLOT(channel);
if (channel >= edma_cc[ctlr]->num_channels)
return;
if (channel < 32)
edma_write(ctlr, EDMA_ECR, BIT(channel));
else
edma_write(ctlr, EDMA_ECRH, BIT(channel - 32));
}
EXPORT_SYMBOL(edma_clear_event);
/*
* edma_assign_channel_eventq - move given channel to desired eventq
* Arguments:
* channel - channel number
* eventq_no - queue to move the channel
*
* Can be used to move a channel to a selected event queue.
*/
void edma_assign_channel_eventq(unsigned channel, enum dma_event_q eventq_no)
{
unsigned ctlr;
ctlr = EDMA_CTLR(channel);
channel = EDMA_CHAN_SLOT(channel);
if (channel >= edma_cc[ctlr]->num_channels)
return;
/* default to low priority queue */
if (eventq_no == EVENTQ_DEFAULT)
eventq_no = edma_cc[ctlr]->default_queue;
if (eventq_no >= edma_cc[ctlr]->num_tc)
return;
map_dmach_queue(ctlr, channel, eventq_no);
}
EXPORT_SYMBOL(edma_assign_channel_eventq);
static int edma_setup_from_hw(struct device *dev, struct edma_soc_info *pdata,
struct edma *edma_cc, int cc_id)
{
int i;
u32 value, cccfg;
s8 (*queue_priority_map)[2];
/* Decode the eDMA3 configuration from CCCFG register */
cccfg = edma_read(cc_id, EDMA_CCCFG);
value = GET_NUM_REGN(cccfg);
edma_cc->num_region = BIT(value);
value = GET_NUM_DMACH(cccfg);
edma_cc->num_channels = BIT(value + 1);
value = GET_NUM_PAENTRY(cccfg);
edma_cc->num_slots = BIT(value + 4);
value = GET_NUM_EVQUE(cccfg);
edma_cc->num_tc = value + 1;
dev_dbg(dev, "eDMA3 CC%d HW configuration (cccfg: 0x%08x):\n", cc_id,
cccfg);
dev_dbg(dev, "num_region: %u\n", edma_cc->num_region);
dev_dbg(dev, "num_channel: %u\n", edma_cc->num_channels);
dev_dbg(dev, "num_slot: %u\n", edma_cc->num_slots);
dev_dbg(dev, "num_tc: %u\n", edma_cc->num_tc);
/* Nothing need to be done if queue priority is provided */
if (pdata->queue_priority_mapping)
return 0;
/*
* Configure TC/queue priority as follows:
* Q0 - priority 0
* Q1 - priority 1
* Q2 - priority 2
* ...
* The meaning of priority numbers: 0 highest priority, 7 lowest
* priority. So Q0 is the highest priority queue and the last queue has
* the lowest priority.
*/
queue_priority_map = devm_kzalloc(dev,
(edma_cc->num_tc + 1) * sizeof(s8),
GFP_KERNEL);
if (!queue_priority_map)
return -ENOMEM;
for (i = 0; i < edma_cc->num_tc; i++) {
queue_priority_map[i][0] = i;
queue_priority_map[i][1] = i;
}
queue_priority_map[i][0] = -1;
queue_priority_map[i][1] = -1;
pdata->queue_priority_mapping = queue_priority_map;
/* Default queue has the lowest priority */
pdata->default_queue = i - 1;
return 0;
}
#if IS_ENABLED(CONFIG_OF) && IS_ENABLED(CONFIG_DMADEVICES)
static int edma_xbar_event_map(struct device *dev, struct device_node *node,
struct edma_soc_info *pdata, size_t sz)
{
const char pname[] = "ti,edma-xbar-event-map";
struct resource res;
void __iomem *xbar;
s16 (*xbar_chans)[2];
size_t nelm = sz / sizeof(s16);
u32 shift, offset, mux;
int ret, i;
xbar_chans = devm_kzalloc(dev, (nelm + 2) * sizeof(s16), GFP_KERNEL);
if (!xbar_chans)
return -ENOMEM;
ret = of_address_to_resource(node, 1, &res);
if (ret)
return -ENOMEM;
xbar = devm_ioremap(dev, res.start, resource_size(&res));
if (!xbar)
return -ENOMEM;
ret = of_property_read_u16_array(node, pname, (u16 *)xbar_chans, nelm);
if (ret)
return -EIO;
/* Invalidate last entry for the other user of this mess */
nelm >>= 1;
xbar_chans[nelm][0] = xbar_chans[nelm][1] = -1;
for (i = 0; i < nelm; i++) {
shift = (xbar_chans[i][1] & 0x03) << 3;
offset = xbar_chans[i][1] & 0xfffffffc;
mux = readl(xbar + offset);
mux &= ~(0xff << shift);
mux |= xbar_chans[i][0] << shift;
writel(mux, (xbar + offset));
}
pdata->xbar_chans = (const s16 (*)[2]) xbar_chans;
return 0;
}
static int edma_of_parse_dt(struct device *dev,
struct device_node *node,
struct edma_soc_info *pdata)
{
int ret = 0;
struct property *prop;
size_t sz;
struct edma_rsv_info *rsv_info;
rsv_info = devm_kzalloc(dev, sizeof(struct edma_rsv_info), GFP_KERNEL);
if (!rsv_info)
return -ENOMEM;
pdata->rsv = rsv_info;
prop = of_find_property(node, "ti,edma-xbar-event-map", &sz);
if (prop)
ret = edma_xbar_event_map(dev, node, pdata, sz);
return ret;
}
static struct of_dma_filter_info edma_filter_info = {
.filter_fn = edma_filter_fn,
};
static struct edma_soc_info *edma_setup_info_from_dt(struct device *dev,
struct device_node *node)
{
struct edma_soc_info *info;
int ret;
info = devm_kzalloc(dev, sizeof(struct edma_soc_info), GFP_KERNEL);
if (!info)
return ERR_PTR(-ENOMEM);
ret = edma_of_parse_dt(dev, node, info);
if (ret)
return ERR_PTR(ret);
dma_cap_set(DMA_SLAVE, edma_filter_info.dma_cap);
dma_cap_set(DMA_CYCLIC, edma_filter_info.dma_cap);
of_dma_controller_register(dev->of_node, of_dma_simple_xlate,
&edma_filter_info);
return info;
}
#else
static struct edma_soc_info *edma_setup_info_from_dt(struct device *dev,
struct device_node *node)
{
return ERR_PTR(-ENOSYS);
}
#endif
static int edma_probe(struct platform_device *pdev)
{
struct edma_soc_info **info = pdev->dev.platform_data;
struct edma_soc_info *ninfo[EDMA_MAX_CC] = {NULL};
s8 (*queue_priority_mapping)[2];
int i, j, off, ln, found = 0;
int status = -1;
const s16 (*rsv_chans)[2];
const s16 (*rsv_slots)[2];
const s16 (*xbar_chans)[2];
int irq[EDMA_MAX_CC] = {0, 0};
int err_irq[EDMA_MAX_CC] = {0, 0};
struct resource *r[EDMA_MAX_CC] = {NULL};
struct resource res[EDMA_MAX_CC];
char res_name[10];
struct device_node *node = pdev->dev.of_node;
struct device *dev = &pdev->dev;
int ret;
struct platform_device_info edma_dev_info = {
.name = "edma-dma-engine",
.dma_mask = DMA_BIT_MASK(32),
.parent = &pdev->dev,
};
if (node) {
/* Check if this is a second instance registered */
if (arch_num_cc) {
dev_err(dev, "only one EDMA instance is supported via DT\n");
return -ENODEV;
}
ninfo[0] = edma_setup_info_from_dt(dev, node);
if (IS_ERR(ninfo[0])) {
dev_err(dev, "failed to get DT data\n");
return PTR_ERR(ninfo[0]);
}
info = ninfo;
}
if (!info)
return -ENODEV;
pm_runtime_enable(dev);
ret = pm_runtime_get_sync(dev);
if (ret < 0) {
dev_err(dev, "pm_runtime_get_sync() failed\n");
return ret;
}
for (j = 0; j < EDMA_MAX_CC; j++) {
if (!info[j]) {
if (!found)
return -ENODEV;
break;
}
if (node) {
ret = of_address_to_resource(node, j, &res[j]);
if (!ret)
r[j] = &res[j];
} else {
sprintf(res_name, "edma_cc%d", j);
r[j] = platform_get_resource_byname(pdev,
IORESOURCE_MEM,
res_name);
}
if (!r[j]) {
if (found)
break;
else
return -ENODEV;
} else {
found = 1;
}
edmacc_regs_base[j] = devm_ioremap_resource(&pdev->dev, r[j]);
if (IS_ERR(edmacc_regs_base[j]))
return PTR_ERR(edmacc_regs_base[j]);
edma_cc[j] = devm_kzalloc(&pdev->dev, sizeof(struct edma),
GFP_KERNEL);
if (!edma_cc[j])
return -ENOMEM;
/* Get eDMA3 configuration from IP */
ret = edma_setup_from_hw(dev, info[j], edma_cc[j], j);
if (ret)
return ret;
edma_cc[j]->default_queue = info[j]->default_queue;
dev_dbg(&pdev->dev, "DMA REG BASE ADDR=%p\n",
edmacc_regs_base[j]);
for (i = 0; i < edma_cc[j]->num_slots; i++)
memcpy_toio(edmacc_regs_base[j] + PARM_OFFSET(i),
&dummy_paramset, PARM_SIZE);
/* Mark all channels as unused */
memset(edma_cc[j]->edma_unused, 0xff,
sizeof(edma_cc[j]->edma_unused));
if (info[j]->rsv) {
/* Clear the reserved channels in unused list */
rsv_chans = info[j]->rsv->rsv_chans;
if (rsv_chans) {
for (i = 0; rsv_chans[i][0] != -1; i++) {
off = rsv_chans[i][0];
ln = rsv_chans[i][1];
clear_bits(off, ln,
edma_cc[j]->edma_unused);
}
}
/* Set the reserved slots in inuse list */
rsv_slots = info[j]->rsv->rsv_slots;
if (rsv_slots) {
for (i = 0; rsv_slots[i][0] != -1; i++) {
off = rsv_slots[i][0];
ln = rsv_slots[i][1];
set_bits(off, ln,
edma_cc[j]->edma_inuse);
}
}
}
/* Clear the xbar mapped channels in unused list */
xbar_chans = info[j]->xbar_chans;
if (xbar_chans) {
for (i = 0; xbar_chans[i][1] != -1; i++) {
off = xbar_chans[i][1];
clear_bits(off, 1,
edma_cc[j]->edma_unused);
}
}
if (node) {
irq[j] = irq_of_parse_and_map(node, 0);
err_irq[j] = irq_of_parse_and_map(node, 2);
} else {
char irq_name[10];
sprintf(irq_name, "edma%d", j);
irq[j] = platform_get_irq_byname(pdev, irq_name);
sprintf(irq_name, "edma%d_err", j);
err_irq[j] = platform_get_irq_byname(pdev, irq_name);
}
edma_cc[j]->irq_res_start = irq[j];
edma_cc[j]->irq_res_end = err_irq[j];
status = devm_request_irq(dev, irq[j], dma_irq_handler, 0,
"edma", dev);
if (status < 0) {
dev_dbg(&pdev->dev,
"devm_request_irq %d failed --> %d\n",
irq[j], status);
return status;
}
status = devm_request_irq(dev, err_irq[j], dma_ccerr_handler, 0,
"edma_error", dev);
if (status < 0) {
dev_dbg(&pdev->dev,
"devm_request_irq %d failed --> %d\n",
err_irq[j], status);
return status;
}
for (i = 0; i < edma_cc[j]->num_channels; i++)
map_dmach_queue(j, i, info[j]->default_queue);
queue_priority_mapping = info[j]->queue_priority_mapping;
/* Event queue priority mapping */
for (i = 0; queue_priority_mapping[i][0] != -1; i++)
assign_priority_to_queue(j,
queue_priority_mapping[i][0],
queue_priority_mapping[i][1]);
/* Map the channel to param entry if channel mapping logic
* exist
*/
if (edma_read(j, EDMA_CCCFG) & CHMAP_EXIST)
map_dmach_param(j);
for (i = 0; i < edma_cc[j]->num_region; i++) {
edma_write_array2(j, EDMA_DRAE, i, 0, 0x0);
edma_write_array2(j, EDMA_DRAE, i, 1, 0x0);
edma_write_array(j, EDMA_QRAE, i, 0x0);
}
arch_num_cc++;
edma_dev_info.id = j;
platform_device_register_full(&edma_dev_info);
}
return 0;
}
static struct platform_driver edma_driver = {
.driver = {
.name = "edma",
.of_match_table = edma_of_ids,
},
.probe = edma_probe,
};
static int __init edma_init(void)
{
return platform_driver_probe(&edma_driver, edma_probe);
}
arch_initcall(edma_init);