linux/arch/ppc64/kernel/eeh.c
David Gibson 20cee16ced [PATCH] ppc64: Abolish ioremap_mm
Currently ppc64 has two mm_structs for the kernel, init_mm and also
ioremap_mm.  The latter really isn't necessary: this patch abolishes it,
instead restricting vmallocs to the lower 1TB of the init_mm's range and
placing io mappings in the upper 1TB.  This simplifies the code in a number
of places and eliminates an unecessary set of pagetables.  It also tweaks
the unmap/free path a little, allowing us to remove the unmap_im_area() set
of page table walkers, replacing them with unmap_vm_area().

Signed-off-by: David Gibson <dwg@au1.ibm.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-21 18:46:26 -07:00

938 lines
28 KiB
C

/*
* eeh.c
* Copyright (C) 2001 Dave Engebretsen & Todd Inglett IBM Corporation
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include <linux/bootmem.h>
#include <linux/init.h>
#include <linux/list.h>
#include <linux/mm.h>
#include <linux/notifier.h>
#include <linux/pci.h>
#include <linux/proc_fs.h>
#include <linux/rbtree.h>
#include <linux/seq_file.h>
#include <linux/spinlock.h>
#include <asm/eeh.h>
#include <asm/io.h>
#include <asm/machdep.h>
#include <asm/rtas.h>
#include <asm/atomic.h>
#include <asm/systemcfg.h>
#include "pci.h"
#undef DEBUG
/** Overview:
* EEH, or "Extended Error Handling" is a PCI bridge technology for
* dealing with PCI bus errors that can't be dealt with within the
* usual PCI framework, except by check-stopping the CPU. Systems
* that are designed for high-availability/reliability cannot afford
* to crash due to a "mere" PCI error, thus the need for EEH.
* An EEH-capable bridge operates by converting a detected error
* into a "slot freeze", taking the PCI adapter off-line, making
* the slot behave, from the OS'es point of view, as if the slot
* were "empty": all reads return 0xff's and all writes are silently
* ignored. EEH slot isolation events can be triggered by parity
* errors on the address or data busses (e.g. during posted writes),
* which in turn might be caused by dust, vibration, humidity,
* radioactivity or plain-old failed hardware.
*
* Note, however, that one of the leading causes of EEH slot
* freeze events are buggy device drivers, buggy device microcode,
* or buggy device hardware. This is because any attempt by the
* device to bus-master data to a memory address that is not
* assigned to the device will trigger a slot freeze. (The idea
* is to prevent devices-gone-wild from corrupting system memory).
* Buggy hardware/drivers will have a miserable time co-existing
* with EEH.
*
* Ideally, a PCI device driver, when suspecting that an isolation
* event has occured (e.g. by reading 0xff's), will then ask EEH
* whether this is the case, and then take appropriate steps to
* reset the PCI slot, the PCI device, and then resume operations.
* However, until that day, the checking is done here, with the
* eeh_check_failure() routine embedded in the MMIO macros. If
* the slot is found to be isolated, an "EEH Event" is synthesized
* and sent out for processing.
*/
/** Bus Unit ID macros; get low and hi 32-bits of the 64-bit BUID */
#define BUID_HI(buid) ((buid) >> 32)
#define BUID_LO(buid) ((buid) & 0xffffffff)
/* EEH event workqueue setup. */
static DEFINE_SPINLOCK(eeh_eventlist_lock);
LIST_HEAD(eeh_eventlist);
static void eeh_event_handler(void *);
DECLARE_WORK(eeh_event_wq, eeh_event_handler, NULL);
static struct notifier_block *eeh_notifier_chain;
/*
* If a device driver keeps reading an MMIO register in an interrupt
* handler after a slot isolation event has occurred, we assume it
* is broken and panic. This sets the threshold for how many read
* attempts we allow before panicking.
*/
#define EEH_MAX_FAILS 1000
static atomic_t eeh_fail_count;
/* RTAS tokens */
static int ibm_set_eeh_option;
static int ibm_set_slot_reset;
static int ibm_read_slot_reset_state;
static int ibm_read_slot_reset_state2;
static int ibm_slot_error_detail;
static int eeh_subsystem_enabled;
/* Buffer for reporting slot-error-detail rtas calls */
static unsigned char slot_errbuf[RTAS_ERROR_LOG_MAX];
static DEFINE_SPINLOCK(slot_errbuf_lock);
static int eeh_error_buf_size;
/* System monitoring statistics */
static DEFINE_PER_CPU(unsigned long, total_mmio_ffs);
static DEFINE_PER_CPU(unsigned long, false_positives);
static DEFINE_PER_CPU(unsigned long, ignored_failures);
static DEFINE_PER_CPU(unsigned long, slot_resets);
/**
* The pci address cache subsystem. This subsystem places
* PCI device address resources into a red-black tree, sorted
* according to the address range, so that given only an i/o
* address, the corresponding PCI device can be **quickly**
* found. It is safe to perform an address lookup in an interrupt
* context; this ability is an important feature.
*
* Currently, the only customer of this code is the EEH subsystem;
* thus, this code has been somewhat tailored to suit EEH better.
* In particular, the cache does *not* hold the addresses of devices
* for which EEH is not enabled.
*
* (Implementation Note: The RB tree seems to be better/faster
* than any hash algo I could think of for this problem, even
* with the penalty of slow pointer chases for d-cache misses).
*/
struct pci_io_addr_range
{
struct rb_node rb_node;
unsigned long addr_lo;
unsigned long addr_hi;
struct pci_dev *pcidev;
unsigned int flags;
};
static struct pci_io_addr_cache
{
struct rb_root rb_root;
spinlock_t piar_lock;
} pci_io_addr_cache_root;
static inline struct pci_dev *__pci_get_device_by_addr(unsigned long addr)
{
struct rb_node *n = pci_io_addr_cache_root.rb_root.rb_node;
while (n) {
struct pci_io_addr_range *piar;
piar = rb_entry(n, struct pci_io_addr_range, rb_node);
if (addr < piar->addr_lo) {
n = n->rb_left;
} else {
if (addr > piar->addr_hi) {
n = n->rb_right;
} else {
pci_dev_get(piar->pcidev);
return piar->pcidev;
}
}
}
return NULL;
}
/**
* pci_get_device_by_addr - Get device, given only address
* @addr: mmio (PIO) phys address or i/o port number
*
* Given an mmio phys address, or a port number, find a pci device
* that implements this address. Be sure to pci_dev_put the device
* when finished. I/O port numbers are assumed to be offset
* from zero (that is, they do *not* have pci_io_addr added in).
* It is safe to call this function within an interrupt.
*/
static struct pci_dev *pci_get_device_by_addr(unsigned long addr)
{
struct pci_dev *dev;
unsigned long flags;
spin_lock_irqsave(&pci_io_addr_cache_root.piar_lock, flags);
dev = __pci_get_device_by_addr(addr);
spin_unlock_irqrestore(&pci_io_addr_cache_root.piar_lock, flags);
return dev;
}
#ifdef DEBUG
/*
* Handy-dandy debug print routine, does nothing more
* than print out the contents of our addr cache.
*/
static void pci_addr_cache_print(struct pci_io_addr_cache *cache)
{
struct rb_node *n;
int cnt = 0;
n = rb_first(&cache->rb_root);
while (n) {
struct pci_io_addr_range *piar;
piar = rb_entry(n, struct pci_io_addr_range, rb_node);
printk(KERN_DEBUG "PCI: %s addr range %d [%lx-%lx]: %s %s\n",
(piar->flags & IORESOURCE_IO) ? "i/o" : "mem", cnt,
piar->addr_lo, piar->addr_hi, pci_name(piar->pcidev),
pci_pretty_name(piar->pcidev));
cnt++;
n = rb_next(n);
}
}
#endif
/* Insert address range into the rb tree. */
static struct pci_io_addr_range *
pci_addr_cache_insert(struct pci_dev *dev, unsigned long alo,
unsigned long ahi, unsigned int flags)
{
struct rb_node **p = &pci_io_addr_cache_root.rb_root.rb_node;
struct rb_node *parent = NULL;
struct pci_io_addr_range *piar;
/* Walk tree, find a place to insert into tree */
while (*p) {
parent = *p;
piar = rb_entry(parent, struct pci_io_addr_range, rb_node);
if (alo < piar->addr_lo) {
p = &parent->rb_left;
} else if (ahi > piar->addr_hi) {
p = &parent->rb_right;
} else {
if (dev != piar->pcidev ||
alo != piar->addr_lo || ahi != piar->addr_hi) {
printk(KERN_WARNING "PIAR: overlapping address range\n");
}
return piar;
}
}
piar = (struct pci_io_addr_range *)kmalloc(sizeof(struct pci_io_addr_range), GFP_ATOMIC);
if (!piar)
return NULL;
piar->addr_lo = alo;
piar->addr_hi = ahi;
piar->pcidev = dev;
piar->flags = flags;
rb_link_node(&piar->rb_node, parent, p);
rb_insert_color(&piar->rb_node, &pci_io_addr_cache_root.rb_root);
return piar;
}
static void __pci_addr_cache_insert_device(struct pci_dev *dev)
{
struct device_node *dn;
int i;
int inserted = 0;
dn = pci_device_to_OF_node(dev);
if (!dn) {
printk(KERN_WARNING "PCI: no pci dn found for dev=%s %s\n",
pci_name(dev), pci_pretty_name(dev));
return;
}
/* Skip any devices for which EEH is not enabled. */
if (!(dn->eeh_mode & EEH_MODE_SUPPORTED) ||
dn->eeh_mode & EEH_MODE_NOCHECK) {
#ifdef DEBUG
printk(KERN_INFO "PCI: skip building address cache for=%s %s\n",
pci_name(dev), pci_pretty_name(dev));
#endif
return;
}
/* The cache holds a reference to the device... */
pci_dev_get(dev);
/* Walk resources on this device, poke them into the tree */
for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
unsigned long start = pci_resource_start(dev,i);
unsigned long end = pci_resource_end(dev,i);
unsigned int flags = pci_resource_flags(dev,i);
/* We are interested only bus addresses, not dma or other stuff */
if (0 == (flags & (IORESOURCE_IO | IORESOURCE_MEM)))
continue;
if (start == 0 || ~start == 0 || end == 0 || ~end == 0)
continue;
pci_addr_cache_insert(dev, start, end, flags);
inserted = 1;
}
/* If there was nothing to add, the cache has no reference... */
if (!inserted)
pci_dev_put(dev);
}
/**
* pci_addr_cache_insert_device - Add a device to the address cache
* @dev: PCI device whose I/O addresses we are interested in.
*
* In order to support the fast lookup of devices based on addresses,
* we maintain a cache of devices that can be quickly searched.
* This routine adds a device to that cache.
*/
void pci_addr_cache_insert_device(struct pci_dev *dev)
{
unsigned long flags;
spin_lock_irqsave(&pci_io_addr_cache_root.piar_lock, flags);
__pci_addr_cache_insert_device(dev);
spin_unlock_irqrestore(&pci_io_addr_cache_root.piar_lock, flags);
}
static inline void __pci_addr_cache_remove_device(struct pci_dev *dev)
{
struct rb_node *n;
int removed = 0;
restart:
n = rb_first(&pci_io_addr_cache_root.rb_root);
while (n) {
struct pci_io_addr_range *piar;
piar = rb_entry(n, struct pci_io_addr_range, rb_node);
if (piar->pcidev == dev) {
rb_erase(n, &pci_io_addr_cache_root.rb_root);
removed = 1;
kfree(piar);
goto restart;
}
n = rb_next(n);
}
/* The cache no longer holds its reference to this device... */
if (removed)
pci_dev_put(dev);
}
/**
* pci_addr_cache_remove_device - remove pci device from addr cache
* @dev: device to remove
*
* Remove a device from the addr-cache tree.
* This is potentially expensive, since it will walk
* the tree multiple times (once per resource).
* But so what; device removal doesn't need to be that fast.
*/
void pci_addr_cache_remove_device(struct pci_dev *dev)
{
unsigned long flags;
spin_lock_irqsave(&pci_io_addr_cache_root.piar_lock, flags);
__pci_addr_cache_remove_device(dev);
spin_unlock_irqrestore(&pci_io_addr_cache_root.piar_lock, flags);
}
/**
* pci_addr_cache_build - Build a cache of I/O addresses
*
* Build a cache of pci i/o addresses. This cache will be used to
* find the pci device that corresponds to a given address.
* This routine scans all pci busses to build the cache.
* Must be run late in boot process, after the pci controllers
* have been scaned for devices (after all device resources are known).
*/
void __init pci_addr_cache_build(void)
{
struct pci_dev *dev = NULL;
spin_lock_init(&pci_io_addr_cache_root.piar_lock);
while ((dev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, dev)) != NULL) {
/* Ignore PCI bridges ( XXX why ??) */
if ((dev->class >> 16) == PCI_BASE_CLASS_BRIDGE) {
continue;
}
pci_addr_cache_insert_device(dev);
}
#ifdef DEBUG
/* Verify tree built up above, echo back the list of addrs. */
pci_addr_cache_print(&pci_io_addr_cache_root);
#endif
}
/* --------------------------------------------------------------- */
/* Above lies the PCI Address Cache. Below lies the EEH event infrastructure */
/**
* eeh_register_notifier - Register to find out about EEH events.
* @nb: notifier block to callback on events
*/
int eeh_register_notifier(struct notifier_block *nb)
{
return notifier_chain_register(&eeh_notifier_chain, nb);
}
/**
* eeh_unregister_notifier - Unregister to an EEH event notifier.
* @nb: notifier block to callback on events
*/
int eeh_unregister_notifier(struct notifier_block *nb)
{
return notifier_chain_unregister(&eeh_notifier_chain, nb);
}
/**
* read_slot_reset_state - Read the reset state of a device node's slot
* @dn: device node to read
* @rets: array to return results in
*/
static int read_slot_reset_state(struct device_node *dn, int rets[])
{
int token, outputs;
if (ibm_read_slot_reset_state2 != RTAS_UNKNOWN_SERVICE) {
token = ibm_read_slot_reset_state2;
outputs = 4;
} else {
token = ibm_read_slot_reset_state;
outputs = 3;
}
return rtas_call(token, 3, outputs, rets, dn->eeh_config_addr,
BUID_HI(dn->phb->buid), BUID_LO(dn->phb->buid));
}
/**
* eeh_panic - call panic() for an eeh event that cannot be handled.
* The philosophy of this routine is that it is better to panic and
* halt the OS than it is to risk possible data corruption by
* oblivious device drivers that don't know better.
*
* @dev pci device that had an eeh event
* @reset_state current reset state of the device slot
*/
static void eeh_panic(struct pci_dev *dev, int reset_state)
{
/*
* XXX We should create a separate sysctl for this.
*
* Since the panic_on_oops sysctl is used to halt the system
* in light of potential corruption, we can use it here.
*/
if (panic_on_oops)
panic("EEH: MMIO failure (%d) on device:%s %s\n", reset_state,
pci_name(dev), pci_pretty_name(dev));
else {
__get_cpu_var(ignored_failures)++;
printk(KERN_INFO "EEH: Ignored MMIO failure (%d) on device:%s %s\n",
reset_state, pci_name(dev), pci_pretty_name(dev));
}
}
/**
* eeh_event_handler - dispatch EEH events. The detection of a frozen
* slot can occur inside an interrupt, where it can be hard to do
* anything about it. The goal of this routine is to pull these
* detection events out of the context of the interrupt handler, and
* re-dispatch them for processing at a later time in a normal context.
*
* @dummy - unused
*/
static void eeh_event_handler(void *dummy)
{
unsigned long flags;
struct eeh_event *event;
while (1) {
spin_lock_irqsave(&eeh_eventlist_lock, flags);
event = NULL;
if (!list_empty(&eeh_eventlist)) {
event = list_entry(eeh_eventlist.next, struct eeh_event, list);
list_del(&event->list);
}
spin_unlock_irqrestore(&eeh_eventlist_lock, flags);
if (event == NULL)
break;
printk(KERN_INFO "EEH: MMIO failure (%d), notifiying device "
"%s %s\n", event->reset_state,
pci_name(event->dev), pci_pretty_name(event->dev));
atomic_set(&eeh_fail_count, 0);
notifier_call_chain (&eeh_notifier_chain,
EEH_NOTIFY_FREEZE, event);
__get_cpu_var(slot_resets)++;
pci_dev_put(event->dev);
kfree(event);
}
}
/**
* eeh_token_to_phys - convert EEH address token to phys address
* @token i/o token, should be address in the form 0xE....
*/
static inline unsigned long eeh_token_to_phys(unsigned long token)
{
pte_t *ptep;
unsigned long pa;
ptep = find_linux_pte(init_mm.pgd, token);
if (!ptep)
return token;
pa = pte_pfn(*ptep) << PAGE_SHIFT;
return pa | (token & (PAGE_SIZE-1));
}
/**
* eeh_dn_check_failure - check if all 1's data is due to EEH slot freeze
* @dn device node
* @dev pci device, if known
*
* Check for an EEH failure for the given device node. Call this
* routine if the result of a read was all 0xff's and you want to
* find out if this is due to an EEH slot freeze. This routine
* will query firmware for the EEH status.
*
* Returns 0 if there has not been an EEH error; otherwise returns
* a non-zero value and queues up a solt isolation event notification.
*
* It is safe to call this routine in an interrupt context.
*/
int eeh_dn_check_failure(struct device_node *dn, struct pci_dev *dev)
{
int ret;
int rets[3];
unsigned long flags;
int rc, reset_state;
struct eeh_event *event;
__get_cpu_var(total_mmio_ffs)++;
if (!eeh_subsystem_enabled)
return 0;
if (!dn)
return 0;
/* Access to IO BARs might get this far and still not want checking. */
if (!(dn->eeh_mode & EEH_MODE_SUPPORTED) ||
dn->eeh_mode & EEH_MODE_NOCHECK) {
return 0;
}
if (!dn->eeh_config_addr) {
return 0;
}
/*
* If we already have a pending isolation event for this
* slot, we know it's bad already, we don't need to check...
*/
if (dn->eeh_mode & EEH_MODE_ISOLATED) {
atomic_inc(&eeh_fail_count);
if (atomic_read(&eeh_fail_count) >= EEH_MAX_FAILS) {
/* re-read the slot reset state */
if (read_slot_reset_state(dn, rets) != 0)
rets[0] = -1; /* reset state unknown */
eeh_panic(dev, rets[0]);
}
return 0;
}
/*
* Now test for an EEH failure. This is VERY expensive.
* Note that the eeh_config_addr may be a parent device
* in the case of a device behind a bridge, or it may be
* function zero of a multi-function device.
* In any case they must share a common PHB.
*/
ret = read_slot_reset_state(dn, rets);
if (!(ret == 0 && rets[1] == 1 && (rets[0] == 2 || rets[0] == 4))) {
__get_cpu_var(false_positives)++;
return 0;
}
/* prevent repeated reports of this failure */
dn->eeh_mode |= EEH_MODE_ISOLATED;
reset_state = rets[0];
spin_lock_irqsave(&slot_errbuf_lock, flags);
memset(slot_errbuf, 0, eeh_error_buf_size);
rc = rtas_call(ibm_slot_error_detail,
8, 1, NULL, dn->eeh_config_addr,
BUID_HI(dn->phb->buid),
BUID_LO(dn->phb->buid), NULL, 0,
virt_to_phys(slot_errbuf),
eeh_error_buf_size,
1 /* Temporary Error */);
if (rc == 0)
log_error(slot_errbuf, ERR_TYPE_RTAS_LOG, 0);
spin_unlock_irqrestore(&slot_errbuf_lock, flags);
printk(KERN_INFO "EEH: MMIO failure (%d) on device: %s %s\n",
rets[0], dn->name, dn->full_name);
event = kmalloc(sizeof(*event), GFP_ATOMIC);
if (event == NULL) {
eeh_panic(dev, reset_state);
return 1;
}
event->dev = dev;
event->dn = dn;
event->reset_state = reset_state;
/* We may or may not be called in an interrupt context */
spin_lock_irqsave(&eeh_eventlist_lock, flags);
list_add(&event->list, &eeh_eventlist);
spin_unlock_irqrestore(&eeh_eventlist_lock, flags);
/* Most EEH events are due to device driver bugs. Having
* a stack trace will help the device-driver authors figure
* out what happened. So print that out. */
dump_stack();
schedule_work(&eeh_event_wq);
return 0;
}
EXPORT_SYMBOL(eeh_dn_check_failure);
/**
* eeh_check_failure - check if all 1's data is due to EEH slot freeze
* @token i/o token, should be address in the form 0xA....
* @val value, should be all 1's (XXX why do we need this arg??)
*
* Check for an eeh failure at the given token address.
* Check for an EEH failure at the given token address. Call this
* routine if the result of a read was all 0xff's and you want to
* find out if this is due to an EEH slot freeze event. This routine
* will query firmware for the EEH status.
*
* Note this routine is safe to call in an interrupt context.
*/
unsigned long eeh_check_failure(const volatile void __iomem *token, unsigned long val)
{
unsigned long addr;
struct pci_dev *dev;
struct device_node *dn;
/* Finding the phys addr + pci device; this is pretty quick. */
addr = eeh_token_to_phys((unsigned long __force) token);
dev = pci_get_device_by_addr(addr);
if (!dev)
return val;
dn = pci_device_to_OF_node(dev);
eeh_dn_check_failure (dn, dev);
pci_dev_put(dev);
return val;
}
EXPORT_SYMBOL(eeh_check_failure);
struct eeh_early_enable_info {
unsigned int buid_hi;
unsigned int buid_lo;
};
/* Enable eeh for the given device node. */
static void *early_enable_eeh(struct device_node *dn, void *data)
{
struct eeh_early_enable_info *info = data;
int ret;
char *status = get_property(dn, "status", NULL);
u32 *class_code = (u32 *)get_property(dn, "class-code", NULL);
u32 *vendor_id = (u32 *)get_property(dn, "vendor-id", NULL);
u32 *device_id = (u32 *)get_property(dn, "device-id", NULL);
u32 *regs;
int enable;
dn->eeh_mode = 0;
if (status && strcmp(status, "ok") != 0)
return NULL; /* ignore devices with bad status */
/* Ignore bad nodes. */
if (!class_code || !vendor_id || !device_id)
return NULL;
/* There is nothing to check on PCI to ISA bridges */
if (dn->type && !strcmp(dn->type, "isa")) {
dn->eeh_mode |= EEH_MODE_NOCHECK;
return NULL;
}
/*
* Now decide if we are going to "Disable" EEH checking
* for this device. We still run with the EEH hardware active,
* but we won't be checking for ff's. This means a driver
* could return bad data (very bad!), an interrupt handler could
* hang waiting on status bits that won't change, etc.
* But there are a few cases like display devices that make sense.
*/
enable = 1; /* i.e. we will do checking */
if ((*class_code >> 16) == PCI_BASE_CLASS_DISPLAY)
enable = 0;
if (!enable)
dn->eeh_mode |= EEH_MODE_NOCHECK;
/* Ok... see if this device supports EEH. Some do, some don't,
* and the only way to find out is to check each and every one. */
regs = (u32 *)get_property(dn, "reg", NULL);
if (regs) {
/* First register entry is addr (00BBSS00) */
/* Try to enable eeh */
ret = rtas_call(ibm_set_eeh_option, 4, 1, NULL,
regs[0], info->buid_hi, info->buid_lo,
EEH_ENABLE);
if (ret == 0) {
eeh_subsystem_enabled = 1;
dn->eeh_mode |= EEH_MODE_SUPPORTED;
dn->eeh_config_addr = regs[0];
#ifdef DEBUG
printk(KERN_DEBUG "EEH: %s: eeh enabled\n", dn->full_name);
#endif
} else {
/* This device doesn't support EEH, but it may have an
* EEH parent, in which case we mark it as supported. */
if (dn->parent && (dn->parent->eeh_mode & EEH_MODE_SUPPORTED)) {
/* Parent supports EEH. */
dn->eeh_mode |= EEH_MODE_SUPPORTED;
dn->eeh_config_addr = dn->parent->eeh_config_addr;
return NULL;
}
}
} else {
printk(KERN_WARNING "EEH: %s: unable to get reg property.\n",
dn->full_name);
}
return NULL;
}
/*
* Initialize EEH by trying to enable it for all of the adapters in the system.
* As a side effect we can determine here if eeh is supported at all.
* Note that we leave EEH on so failed config cycles won't cause a machine
* check. If a user turns off EEH for a particular adapter they are really
* telling Linux to ignore errors. Some hardware (e.g. POWER5) won't
* grant access to a slot if EEH isn't enabled, and so we always enable
* EEH for all slots/all devices.
*
* The eeh-force-off option disables EEH checking globally, for all slots.
* Even if force-off is set, the EEH hardware is still enabled, so that
* newer systems can boot.
*/
void __init eeh_init(void)
{
struct device_node *phb, *np;
struct eeh_early_enable_info info;
np = of_find_node_by_path("/rtas");
if (np == NULL)
return;
ibm_set_eeh_option = rtas_token("ibm,set-eeh-option");
ibm_set_slot_reset = rtas_token("ibm,set-slot-reset");
ibm_read_slot_reset_state2 = rtas_token("ibm,read-slot-reset-state2");
ibm_read_slot_reset_state = rtas_token("ibm,read-slot-reset-state");
ibm_slot_error_detail = rtas_token("ibm,slot-error-detail");
if (ibm_set_eeh_option == RTAS_UNKNOWN_SERVICE)
return;
eeh_error_buf_size = rtas_token("rtas-error-log-max");
if (eeh_error_buf_size == RTAS_UNKNOWN_SERVICE) {
eeh_error_buf_size = 1024;
}
if (eeh_error_buf_size > RTAS_ERROR_LOG_MAX) {
printk(KERN_WARNING "EEH: rtas-error-log-max is bigger than allocated "
"buffer ! (%d vs %d)", eeh_error_buf_size, RTAS_ERROR_LOG_MAX);
eeh_error_buf_size = RTAS_ERROR_LOG_MAX;
}
/* Enable EEH for all adapters. Note that eeh requires buid's */
for (phb = of_find_node_by_name(NULL, "pci"); phb;
phb = of_find_node_by_name(phb, "pci")) {
unsigned long buid;
buid = get_phb_buid(phb);
if (buid == 0)
continue;
info.buid_lo = BUID_LO(buid);
info.buid_hi = BUID_HI(buid);
traverse_pci_devices(phb, early_enable_eeh, &info);
}
if (eeh_subsystem_enabled)
printk(KERN_INFO "EEH: PCI Enhanced I/O Error Handling Enabled\n");
else
printk(KERN_WARNING "EEH: No capable adapters found\n");
}
/**
* eeh_add_device_early - enable EEH for the indicated device_node
* @dn: device node for which to set up EEH
*
* This routine must be used to perform EEH initialization for PCI
* devices that were added after system boot (e.g. hotplug, dlpar).
* This routine must be called before any i/o is performed to the
* adapter (inluding any config-space i/o).
* Whether this actually enables EEH or not for this device depends
* on the CEC architecture, type of the device, on earlier boot
* command-line arguments & etc.
*/
void eeh_add_device_early(struct device_node *dn)
{
struct pci_controller *phb;
struct eeh_early_enable_info info;
if (!dn)
return;
phb = dn->phb;
if (NULL == phb || 0 == phb->buid) {
printk(KERN_WARNING "EEH: Expected buid but found none\n");
return;
}
info.buid_hi = BUID_HI(phb->buid);
info.buid_lo = BUID_LO(phb->buid);
early_enable_eeh(dn, &info);
}
EXPORT_SYMBOL(eeh_add_device_early);
/**
* eeh_add_device_late - perform EEH initialization for the indicated pci device
* @dev: pci device for which to set up EEH
*
* This routine must be used to complete EEH initialization for PCI
* devices that were added after system boot (e.g. hotplug, dlpar).
*/
void eeh_add_device_late(struct pci_dev *dev)
{
if (!dev || !eeh_subsystem_enabled)
return;
#ifdef DEBUG
printk(KERN_DEBUG "EEH: adding device %s %s\n", pci_name(dev),
pci_pretty_name(dev));
#endif
pci_addr_cache_insert_device (dev);
}
EXPORT_SYMBOL(eeh_add_device_late);
/**
* eeh_remove_device - undo EEH setup for the indicated pci device
* @dev: pci device to be removed
*
* This routine should be when a device is removed from a running
* system (e.g. by hotplug or dlpar).
*/
void eeh_remove_device(struct pci_dev *dev)
{
if (!dev || !eeh_subsystem_enabled)
return;
/* Unregister the device with the EEH/PCI address search system */
#ifdef DEBUG
printk(KERN_DEBUG "EEH: remove device %s %s\n", pci_name(dev),
pci_pretty_name(dev));
#endif
pci_addr_cache_remove_device(dev);
}
EXPORT_SYMBOL(eeh_remove_device);
static int proc_eeh_show(struct seq_file *m, void *v)
{
unsigned int cpu;
unsigned long ffs = 0, positives = 0, failures = 0;
unsigned long resets = 0;
for_each_cpu(cpu) {
ffs += per_cpu(total_mmio_ffs, cpu);
positives += per_cpu(false_positives, cpu);
failures += per_cpu(ignored_failures, cpu);
resets += per_cpu(slot_resets, cpu);
}
if (0 == eeh_subsystem_enabled) {
seq_printf(m, "EEH Subsystem is globally disabled\n");
seq_printf(m, "eeh_total_mmio_ffs=%ld\n", ffs);
} else {
seq_printf(m, "EEH Subsystem is enabled\n");
seq_printf(m, "eeh_total_mmio_ffs=%ld\n"
"eeh_false_positives=%ld\n"
"eeh_ignored_failures=%ld\n"
"eeh_slot_resets=%ld\n"
"eeh_fail_count=%d\n",
ffs, positives, failures, resets,
eeh_fail_count.counter);
}
return 0;
}
static int proc_eeh_open(struct inode *inode, struct file *file)
{
return single_open(file, proc_eeh_show, NULL);
}
static struct file_operations proc_eeh_operations = {
.open = proc_eeh_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
};
static int __init eeh_init_proc(void)
{
struct proc_dir_entry *e;
if (systemcfg->platform & PLATFORM_PSERIES) {
e = create_proc_entry("ppc64/eeh", 0, NULL);
if (e)
e->proc_fops = &proc_eeh_operations;
}
return 0;
}
__initcall(eeh_init_proc);