forked from Minki/linux
512b7931ad
Merge misc updates from Andrew Morton: "257 patches. Subsystems affected by this patch series: scripts, ocfs2, vfs, and mm (slab-generic, slab, slub, kconfig, dax, kasan, debug, pagecache, gup, swap, memcg, pagemap, mprotect, mremap, iomap, tracing, vmalloc, pagealloc, memory-failure, hugetlb, userfaultfd, vmscan, tools, memblock, oom-kill, hugetlbfs, migration, thp, readahead, nommu, ksm, vmstat, madvise, memory-hotplug, rmap, zsmalloc, highmem, zram, cleanups, kfence, and damon)" * emailed patches from Andrew Morton <akpm@linux-foundation.org>: (257 commits) mm/damon: remove return value from before_terminate callback mm/damon: fix a few spelling mistakes in comments and a pr_debug message mm/damon: simplify stop mechanism Docs/admin-guide/mm/pagemap: wordsmith page flags descriptions Docs/admin-guide/mm/damon/start: simplify the content Docs/admin-guide/mm/damon/start: fix a wrong link Docs/admin-guide/mm/damon/start: fix wrong example commands mm/damon/dbgfs: add adaptive_targets list check before enable monitor_on mm/damon: remove unnecessary variable initialization Documentation/admin-guide/mm/damon: add a document for DAMON_RECLAIM mm/damon: introduce DAMON-based Reclamation (DAMON_RECLAIM) selftests/damon: support watermarks mm/damon/dbgfs: support watermarks mm/damon/schemes: activate schemes based on a watermarks mechanism tools/selftests/damon: update for regions prioritization of schemes mm/damon/dbgfs: support prioritization weights mm/damon/vaddr,paddr: support pageout prioritization mm/damon/schemes: prioritize regions within the quotas mm/damon/selftests: support schemes quotas mm/damon/dbgfs: support quotas of schemes ...
1644 lines
43 KiB
C
1644 lines
43 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* Based on arch/arm/mm/mmu.c
|
|
*
|
|
* Copyright (C) 1995-2005 Russell King
|
|
* Copyright (C) 2012 ARM Ltd.
|
|
*/
|
|
|
|
#include <linux/cache.h>
|
|
#include <linux/export.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/init.h>
|
|
#include <linux/ioport.h>
|
|
#include <linux/kexec.h>
|
|
#include <linux/libfdt.h>
|
|
#include <linux/mman.h>
|
|
#include <linux/nodemask.h>
|
|
#include <linux/memblock.h>
|
|
#include <linux/memory.h>
|
|
#include <linux/fs.h>
|
|
#include <linux/io.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/vmalloc.h>
|
|
#include <linux/set_memory.h>
|
|
|
|
#include <asm/barrier.h>
|
|
#include <asm/cputype.h>
|
|
#include <asm/fixmap.h>
|
|
#include <asm/kasan.h>
|
|
#include <asm/kernel-pgtable.h>
|
|
#include <asm/sections.h>
|
|
#include <asm/setup.h>
|
|
#include <linux/sizes.h>
|
|
#include <asm/tlb.h>
|
|
#include <asm/mmu_context.h>
|
|
#include <asm/ptdump.h>
|
|
#include <asm/tlbflush.h>
|
|
#include <asm/pgalloc.h>
|
|
|
|
#define NO_BLOCK_MAPPINGS BIT(0)
|
|
#define NO_CONT_MAPPINGS BIT(1)
|
|
#define NO_EXEC_MAPPINGS BIT(2) /* assumes FEAT_HPDS is not used */
|
|
|
|
u64 idmap_t0sz = TCR_T0SZ(VA_BITS_MIN);
|
|
u64 idmap_ptrs_per_pgd = PTRS_PER_PGD;
|
|
|
|
u64 __section(".mmuoff.data.write") vabits_actual;
|
|
EXPORT_SYMBOL(vabits_actual);
|
|
|
|
u64 kimage_voffset __ro_after_init;
|
|
EXPORT_SYMBOL(kimage_voffset);
|
|
|
|
/*
|
|
* Empty_zero_page is a special page that is used for zero-initialized data
|
|
* and COW.
|
|
*/
|
|
unsigned long empty_zero_page[PAGE_SIZE / sizeof(unsigned long)] __page_aligned_bss;
|
|
EXPORT_SYMBOL(empty_zero_page);
|
|
|
|
static pte_t bm_pte[PTRS_PER_PTE] __page_aligned_bss;
|
|
static pmd_t bm_pmd[PTRS_PER_PMD] __page_aligned_bss __maybe_unused;
|
|
static pud_t bm_pud[PTRS_PER_PUD] __page_aligned_bss __maybe_unused;
|
|
|
|
static DEFINE_SPINLOCK(swapper_pgdir_lock);
|
|
|
|
void set_swapper_pgd(pgd_t *pgdp, pgd_t pgd)
|
|
{
|
|
pgd_t *fixmap_pgdp;
|
|
|
|
spin_lock(&swapper_pgdir_lock);
|
|
fixmap_pgdp = pgd_set_fixmap(__pa_symbol(pgdp));
|
|
WRITE_ONCE(*fixmap_pgdp, pgd);
|
|
/*
|
|
* We need dsb(ishst) here to ensure the page-table-walker sees
|
|
* our new entry before set_p?d() returns. The fixmap's
|
|
* flush_tlb_kernel_range() via clear_fixmap() does this for us.
|
|
*/
|
|
pgd_clear_fixmap();
|
|
spin_unlock(&swapper_pgdir_lock);
|
|
}
|
|
|
|
pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
|
|
unsigned long size, pgprot_t vma_prot)
|
|
{
|
|
if (!pfn_is_map_memory(pfn))
|
|
return pgprot_noncached(vma_prot);
|
|
else if (file->f_flags & O_SYNC)
|
|
return pgprot_writecombine(vma_prot);
|
|
return vma_prot;
|
|
}
|
|
EXPORT_SYMBOL(phys_mem_access_prot);
|
|
|
|
static phys_addr_t __init early_pgtable_alloc(int shift)
|
|
{
|
|
phys_addr_t phys;
|
|
void *ptr;
|
|
|
|
phys = memblock_phys_alloc(PAGE_SIZE, PAGE_SIZE);
|
|
if (!phys)
|
|
panic("Failed to allocate page table page\n");
|
|
|
|
/*
|
|
* The FIX_{PGD,PUD,PMD} slots may be in active use, but the FIX_PTE
|
|
* slot will be free, so we can (ab)use the FIX_PTE slot to initialise
|
|
* any level of table.
|
|
*/
|
|
ptr = pte_set_fixmap(phys);
|
|
|
|
memset(ptr, 0, PAGE_SIZE);
|
|
|
|
/*
|
|
* Implicit barriers also ensure the zeroed page is visible to the page
|
|
* table walker
|
|
*/
|
|
pte_clear_fixmap();
|
|
|
|
return phys;
|
|
}
|
|
|
|
static bool pgattr_change_is_safe(u64 old, u64 new)
|
|
{
|
|
/*
|
|
* The following mapping attributes may be updated in live
|
|
* kernel mappings without the need for break-before-make.
|
|
*/
|
|
pteval_t mask = PTE_PXN | PTE_RDONLY | PTE_WRITE | PTE_NG;
|
|
|
|
/* creating or taking down mappings is always safe */
|
|
if (old == 0 || new == 0)
|
|
return true;
|
|
|
|
/* live contiguous mappings may not be manipulated at all */
|
|
if ((old | new) & PTE_CONT)
|
|
return false;
|
|
|
|
/* Transitioning from Non-Global to Global is unsafe */
|
|
if (old & ~new & PTE_NG)
|
|
return false;
|
|
|
|
/*
|
|
* Changing the memory type between Normal and Normal-Tagged is safe
|
|
* since Tagged is considered a permission attribute from the
|
|
* mismatched attribute aliases perspective.
|
|
*/
|
|
if (((old & PTE_ATTRINDX_MASK) == PTE_ATTRINDX(MT_NORMAL) ||
|
|
(old & PTE_ATTRINDX_MASK) == PTE_ATTRINDX(MT_NORMAL_TAGGED)) &&
|
|
((new & PTE_ATTRINDX_MASK) == PTE_ATTRINDX(MT_NORMAL) ||
|
|
(new & PTE_ATTRINDX_MASK) == PTE_ATTRINDX(MT_NORMAL_TAGGED)))
|
|
mask |= PTE_ATTRINDX_MASK;
|
|
|
|
return ((old ^ new) & ~mask) == 0;
|
|
}
|
|
|
|
static void init_pte(pmd_t *pmdp, unsigned long addr, unsigned long end,
|
|
phys_addr_t phys, pgprot_t prot)
|
|
{
|
|
pte_t *ptep;
|
|
|
|
ptep = pte_set_fixmap_offset(pmdp, addr);
|
|
do {
|
|
pte_t old_pte = READ_ONCE(*ptep);
|
|
|
|
set_pte(ptep, pfn_pte(__phys_to_pfn(phys), prot));
|
|
|
|
/*
|
|
* After the PTE entry has been populated once, we
|
|
* only allow updates to the permission attributes.
|
|
*/
|
|
BUG_ON(!pgattr_change_is_safe(pte_val(old_pte),
|
|
READ_ONCE(pte_val(*ptep))));
|
|
|
|
phys += PAGE_SIZE;
|
|
} while (ptep++, addr += PAGE_SIZE, addr != end);
|
|
|
|
pte_clear_fixmap();
|
|
}
|
|
|
|
static void alloc_init_cont_pte(pmd_t *pmdp, unsigned long addr,
|
|
unsigned long end, phys_addr_t phys,
|
|
pgprot_t prot,
|
|
phys_addr_t (*pgtable_alloc)(int),
|
|
int flags)
|
|
{
|
|
unsigned long next;
|
|
pmd_t pmd = READ_ONCE(*pmdp);
|
|
|
|
BUG_ON(pmd_sect(pmd));
|
|
if (pmd_none(pmd)) {
|
|
pmdval_t pmdval = PMD_TYPE_TABLE | PMD_TABLE_UXN;
|
|
phys_addr_t pte_phys;
|
|
|
|
if (flags & NO_EXEC_MAPPINGS)
|
|
pmdval |= PMD_TABLE_PXN;
|
|
BUG_ON(!pgtable_alloc);
|
|
pte_phys = pgtable_alloc(PAGE_SHIFT);
|
|
__pmd_populate(pmdp, pte_phys, pmdval);
|
|
pmd = READ_ONCE(*pmdp);
|
|
}
|
|
BUG_ON(pmd_bad(pmd));
|
|
|
|
do {
|
|
pgprot_t __prot = prot;
|
|
|
|
next = pte_cont_addr_end(addr, end);
|
|
|
|
/* use a contiguous mapping if the range is suitably aligned */
|
|
if ((((addr | next | phys) & ~CONT_PTE_MASK) == 0) &&
|
|
(flags & NO_CONT_MAPPINGS) == 0)
|
|
__prot = __pgprot(pgprot_val(prot) | PTE_CONT);
|
|
|
|
init_pte(pmdp, addr, next, phys, __prot);
|
|
|
|
phys += next - addr;
|
|
} while (addr = next, addr != end);
|
|
}
|
|
|
|
static void init_pmd(pud_t *pudp, unsigned long addr, unsigned long end,
|
|
phys_addr_t phys, pgprot_t prot,
|
|
phys_addr_t (*pgtable_alloc)(int), int flags)
|
|
{
|
|
unsigned long next;
|
|
pmd_t *pmdp;
|
|
|
|
pmdp = pmd_set_fixmap_offset(pudp, addr);
|
|
do {
|
|
pmd_t old_pmd = READ_ONCE(*pmdp);
|
|
|
|
next = pmd_addr_end(addr, end);
|
|
|
|
/* try section mapping first */
|
|
if (((addr | next | phys) & ~PMD_MASK) == 0 &&
|
|
(flags & NO_BLOCK_MAPPINGS) == 0) {
|
|
pmd_set_huge(pmdp, phys, prot);
|
|
|
|
/*
|
|
* After the PMD entry has been populated once, we
|
|
* only allow updates to the permission attributes.
|
|
*/
|
|
BUG_ON(!pgattr_change_is_safe(pmd_val(old_pmd),
|
|
READ_ONCE(pmd_val(*pmdp))));
|
|
} else {
|
|
alloc_init_cont_pte(pmdp, addr, next, phys, prot,
|
|
pgtable_alloc, flags);
|
|
|
|
BUG_ON(pmd_val(old_pmd) != 0 &&
|
|
pmd_val(old_pmd) != READ_ONCE(pmd_val(*pmdp)));
|
|
}
|
|
phys += next - addr;
|
|
} while (pmdp++, addr = next, addr != end);
|
|
|
|
pmd_clear_fixmap();
|
|
}
|
|
|
|
static void alloc_init_cont_pmd(pud_t *pudp, unsigned long addr,
|
|
unsigned long end, phys_addr_t phys,
|
|
pgprot_t prot,
|
|
phys_addr_t (*pgtable_alloc)(int), int flags)
|
|
{
|
|
unsigned long next;
|
|
pud_t pud = READ_ONCE(*pudp);
|
|
|
|
/*
|
|
* Check for initial section mappings in the pgd/pud.
|
|
*/
|
|
BUG_ON(pud_sect(pud));
|
|
if (pud_none(pud)) {
|
|
pudval_t pudval = PUD_TYPE_TABLE | PUD_TABLE_UXN;
|
|
phys_addr_t pmd_phys;
|
|
|
|
if (flags & NO_EXEC_MAPPINGS)
|
|
pudval |= PUD_TABLE_PXN;
|
|
BUG_ON(!pgtable_alloc);
|
|
pmd_phys = pgtable_alloc(PMD_SHIFT);
|
|
__pud_populate(pudp, pmd_phys, pudval);
|
|
pud = READ_ONCE(*pudp);
|
|
}
|
|
BUG_ON(pud_bad(pud));
|
|
|
|
do {
|
|
pgprot_t __prot = prot;
|
|
|
|
next = pmd_cont_addr_end(addr, end);
|
|
|
|
/* use a contiguous mapping if the range is suitably aligned */
|
|
if ((((addr | next | phys) & ~CONT_PMD_MASK) == 0) &&
|
|
(flags & NO_CONT_MAPPINGS) == 0)
|
|
__prot = __pgprot(pgprot_val(prot) | PTE_CONT);
|
|
|
|
init_pmd(pudp, addr, next, phys, __prot, pgtable_alloc, flags);
|
|
|
|
phys += next - addr;
|
|
} while (addr = next, addr != end);
|
|
}
|
|
|
|
static inline bool use_1G_block(unsigned long addr, unsigned long next,
|
|
unsigned long phys)
|
|
{
|
|
if (PAGE_SHIFT != 12)
|
|
return false;
|
|
|
|
if (((addr | next | phys) & ~PUD_MASK) != 0)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
static void alloc_init_pud(pgd_t *pgdp, unsigned long addr, unsigned long end,
|
|
phys_addr_t phys, pgprot_t prot,
|
|
phys_addr_t (*pgtable_alloc)(int),
|
|
int flags)
|
|
{
|
|
unsigned long next;
|
|
pud_t *pudp;
|
|
p4d_t *p4dp = p4d_offset(pgdp, addr);
|
|
p4d_t p4d = READ_ONCE(*p4dp);
|
|
|
|
if (p4d_none(p4d)) {
|
|
p4dval_t p4dval = P4D_TYPE_TABLE | P4D_TABLE_UXN;
|
|
phys_addr_t pud_phys;
|
|
|
|
if (flags & NO_EXEC_MAPPINGS)
|
|
p4dval |= P4D_TABLE_PXN;
|
|
BUG_ON(!pgtable_alloc);
|
|
pud_phys = pgtable_alloc(PUD_SHIFT);
|
|
__p4d_populate(p4dp, pud_phys, p4dval);
|
|
p4d = READ_ONCE(*p4dp);
|
|
}
|
|
BUG_ON(p4d_bad(p4d));
|
|
|
|
pudp = pud_set_fixmap_offset(p4dp, addr);
|
|
do {
|
|
pud_t old_pud = READ_ONCE(*pudp);
|
|
|
|
next = pud_addr_end(addr, end);
|
|
|
|
/*
|
|
* For 4K granule only, attempt to put down a 1GB block
|
|
*/
|
|
if (use_1G_block(addr, next, phys) &&
|
|
(flags & NO_BLOCK_MAPPINGS) == 0) {
|
|
pud_set_huge(pudp, phys, prot);
|
|
|
|
/*
|
|
* After the PUD entry has been populated once, we
|
|
* only allow updates to the permission attributes.
|
|
*/
|
|
BUG_ON(!pgattr_change_is_safe(pud_val(old_pud),
|
|
READ_ONCE(pud_val(*pudp))));
|
|
} else {
|
|
alloc_init_cont_pmd(pudp, addr, next, phys, prot,
|
|
pgtable_alloc, flags);
|
|
|
|
BUG_ON(pud_val(old_pud) != 0 &&
|
|
pud_val(old_pud) != READ_ONCE(pud_val(*pudp)));
|
|
}
|
|
phys += next - addr;
|
|
} while (pudp++, addr = next, addr != end);
|
|
|
|
pud_clear_fixmap();
|
|
}
|
|
|
|
static void __create_pgd_mapping(pgd_t *pgdir, phys_addr_t phys,
|
|
unsigned long virt, phys_addr_t size,
|
|
pgprot_t prot,
|
|
phys_addr_t (*pgtable_alloc)(int),
|
|
int flags)
|
|
{
|
|
unsigned long addr, end, next;
|
|
pgd_t *pgdp = pgd_offset_pgd(pgdir, virt);
|
|
|
|
/*
|
|
* If the virtual and physical address don't have the same offset
|
|
* within a page, we cannot map the region as the caller expects.
|
|
*/
|
|
if (WARN_ON((phys ^ virt) & ~PAGE_MASK))
|
|
return;
|
|
|
|
phys &= PAGE_MASK;
|
|
addr = virt & PAGE_MASK;
|
|
end = PAGE_ALIGN(virt + size);
|
|
|
|
do {
|
|
next = pgd_addr_end(addr, end);
|
|
alloc_init_pud(pgdp, addr, next, phys, prot, pgtable_alloc,
|
|
flags);
|
|
phys += next - addr;
|
|
} while (pgdp++, addr = next, addr != end);
|
|
}
|
|
|
|
static phys_addr_t __pgd_pgtable_alloc(int shift)
|
|
{
|
|
void *ptr = (void *)__get_free_page(GFP_PGTABLE_KERNEL);
|
|
BUG_ON(!ptr);
|
|
|
|
/* Ensure the zeroed page is visible to the page table walker */
|
|
dsb(ishst);
|
|
return __pa(ptr);
|
|
}
|
|
|
|
static phys_addr_t pgd_pgtable_alloc(int shift)
|
|
{
|
|
phys_addr_t pa = __pgd_pgtable_alloc(shift);
|
|
|
|
/*
|
|
* Call proper page table ctor in case later we need to
|
|
* call core mm functions like apply_to_page_range() on
|
|
* this pre-allocated page table.
|
|
*
|
|
* We don't select ARCH_ENABLE_SPLIT_PMD_PTLOCK if pmd is
|
|
* folded, and if so pgtable_pmd_page_ctor() becomes nop.
|
|
*/
|
|
if (shift == PAGE_SHIFT)
|
|
BUG_ON(!pgtable_pte_page_ctor(phys_to_page(pa)));
|
|
else if (shift == PMD_SHIFT)
|
|
BUG_ON(!pgtable_pmd_page_ctor(phys_to_page(pa)));
|
|
|
|
return pa;
|
|
}
|
|
|
|
/*
|
|
* This function can only be used to modify existing table entries,
|
|
* without allocating new levels of table. Note that this permits the
|
|
* creation of new section or page entries.
|
|
*/
|
|
static void __init create_mapping_noalloc(phys_addr_t phys, unsigned long virt,
|
|
phys_addr_t size, pgprot_t prot)
|
|
{
|
|
if ((virt >= PAGE_END) && (virt < VMALLOC_START)) {
|
|
pr_warn("BUG: not creating mapping for %pa at 0x%016lx - outside kernel range\n",
|
|
&phys, virt);
|
|
return;
|
|
}
|
|
__create_pgd_mapping(init_mm.pgd, phys, virt, size, prot, NULL,
|
|
NO_CONT_MAPPINGS);
|
|
}
|
|
|
|
void __init create_pgd_mapping(struct mm_struct *mm, phys_addr_t phys,
|
|
unsigned long virt, phys_addr_t size,
|
|
pgprot_t prot, bool page_mappings_only)
|
|
{
|
|
int flags = 0;
|
|
|
|
BUG_ON(mm == &init_mm);
|
|
|
|
if (page_mappings_only)
|
|
flags = NO_BLOCK_MAPPINGS | NO_CONT_MAPPINGS;
|
|
|
|
__create_pgd_mapping(mm->pgd, phys, virt, size, prot,
|
|
pgd_pgtable_alloc, flags);
|
|
}
|
|
|
|
static void update_mapping_prot(phys_addr_t phys, unsigned long virt,
|
|
phys_addr_t size, pgprot_t prot)
|
|
{
|
|
if ((virt >= PAGE_END) && (virt < VMALLOC_START)) {
|
|
pr_warn("BUG: not updating mapping for %pa at 0x%016lx - outside kernel range\n",
|
|
&phys, virt);
|
|
return;
|
|
}
|
|
|
|
__create_pgd_mapping(init_mm.pgd, phys, virt, size, prot, NULL,
|
|
NO_CONT_MAPPINGS);
|
|
|
|
/* flush the TLBs after updating live kernel mappings */
|
|
flush_tlb_kernel_range(virt, virt + size);
|
|
}
|
|
|
|
static void __init __map_memblock(pgd_t *pgdp, phys_addr_t start,
|
|
phys_addr_t end, pgprot_t prot, int flags)
|
|
{
|
|
__create_pgd_mapping(pgdp, start, __phys_to_virt(start), end - start,
|
|
prot, early_pgtable_alloc, flags);
|
|
}
|
|
|
|
void __init mark_linear_text_alias_ro(void)
|
|
{
|
|
/*
|
|
* Remove the write permissions from the linear alias of .text/.rodata
|
|
*/
|
|
update_mapping_prot(__pa_symbol(_stext), (unsigned long)lm_alias(_stext),
|
|
(unsigned long)__init_begin - (unsigned long)_stext,
|
|
PAGE_KERNEL_RO);
|
|
}
|
|
|
|
static bool crash_mem_map __initdata;
|
|
|
|
static int __init enable_crash_mem_map(char *arg)
|
|
{
|
|
/*
|
|
* Proper parameter parsing is done by reserve_crashkernel(). We only
|
|
* need to know if the linear map has to avoid block mappings so that
|
|
* the crashkernel reservations can be unmapped later.
|
|
*/
|
|
crash_mem_map = true;
|
|
|
|
return 0;
|
|
}
|
|
early_param("crashkernel", enable_crash_mem_map);
|
|
|
|
static void __init map_mem(pgd_t *pgdp)
|
|
{
|
|
static const u64 direct_map_end = _PAGE_END(VA_BITS_MIN);
|
|
phys_addr_t kernel_start = __pa_symbol(_stext);
|
|
phys_addr_t kernel_end = __pa_symbol(__init_begin);
|
|
phys_addr_t start, end;
|
|
int flags = NO_EXEC_MAPPINGS;
|
|
u64 i;
|
|
|
|
/*
|
|
* Setting hierarchical PXNTable attributes on table entries covering
|
|
* the linear region is only possible if it is guaranteed that no table
|
|
* entries at any level are being shared between the linear region and
|
|
* the vmalloc region. Check whether this is true for the PGD level, in
|
|
* which case it is guaranteed to be true for all other levels as well.
|
|
*/
|
|
BUILD_BUG_ON(pgd_index(direct_map_end - 1) == pgd_index(direct_map_end));
|
|
|
|
if (can_set_direct_map() || crash_mem_map || IS_ENABLED(CONFIG_KFENCE))
|
|
flags |= NO_BLOCK_MAPPINGS | NO_CONT_MAPPINGS;
|
|
|
|
/*
|
|
* Take care not to create a writable alias for the
|
|
* read-only text and rodata sections of the kernel image.
|
|
* So temporarily mark them as NOMAP to skip mappings in
|
|
* the following for-loop
|
|
*/
|
|
memblock_mark_nomap(kernel_start, kernel_end - kernel_start);
|
|
|
|
/* map all the memory banks */
|
|
for_each_mem_range(i, &start, &end) {
|
|
if (start >= end)
|
|
break;
|
|
/*
|
|
* The linear map must allow allocation tags reading/writing
|
|
* if MTE is present. Otherwise, it has the same attributes as
|
|
* PAGE_KERNEL.
|
|
*/
|
|
__map_memblock(pgdp, start, end, pgprot_tagged(PAGE_KERNEL),
|
|
flags);
|
|
}
|
|
|
|
/*
|
|
* Map the linear alias of the [_stext, __init_begin) interval
|
|
* as non-executable now, and remove the write permission in
|
|
* mark_linear_text_alias_ro() below (which will be called after
|
|
* alternative patching has completed). This makes the contents
|
|
* of the region accessible to subsystems such as hibernate,
|
|
* but protects it from inadvertent modification or execution.
|
|
* Note that contiguous mappings cannot be remapped in this way,
|
|
* so we should avoid them here.
|
|
*/
|
|
__map_memblock(pgdp, kernel_start, kernel_end,
|
|
PAGE_KERNEL, NO_CONT_MAPPINGS);
|
|
memblock_clear_nomap(kernel_start, kernel_end - kernel_start);
|
|
}
|
|
|
|
void mark_rodata_ro(void)
|
|
{
|
|
unsigned long section_size;
|
|
|
|
/*
|
|
* mark .rodata as read only. Use __init_begin rather than __end_rodata
|
|
* to cover NOTES and EXCEPTION_TABLE.
|
|
*/
|
|
section_size = (unsigned long)__init_begin - (unsigned long)__start_rodata;
|
|
update_mapping_prot(__pa_symbol(__start_rodata), (unsigned long)__start_rodata,
|
|
section_size, PAGE_KERNEL_RO);
|
|
|
|
debug_checkwx();
|
|
}
|
|
|
|
static void __init map_kernel_segment(pgd_t *pgdp, void *va_start, void *va_end,
|
|
pgprot_t prot, struct vm_struct *vma,
|
|
int flags, unsigned long vm_flags)
|
|
{
|
|
phys_addr_t pa_start = __pa_symbol(va_start);
|
|
unsigned long size = va_end - va_start;
|
|
|
|
BUG_ON(!PAGE_ALIGNED(pa_start));
|
|
BUG_ON(!PAGE_ALIGNED(size));
|
|
|
|
__create_pgd_mapping(pgdp, pa_start, (unsigned long)va_start, size, prot,
|
|
early_pgtable_alloc, flags);
|
|
|
|
if (!(vm_flags & VM_NO_GUARD))
|
|
size += PAGE_SIZE;
|
|
|
|
vma->addr = va_start;
|
|
vma->phys_addr = pa_start;
|
|
vma->size = size;
|
|
vma->flags = VM_MAP | vm_flags;
|
|
vma->caller = __builtin_return_address(0);
|
|
|
|
vm_area_add_early(vma);
|
|
}
|
|
|
|
static int __init parse_rodata(char *arg)
|
|
{
|
|
int ret = strtobool(arg, &rodata_enabled);
|
|
if (!ret) {
|
|
rodata_full = false;
|
|
return 0;
|
|
}
|
|
|
|
/* permit 'full' in addition to boolean options */
|
|
if (strcmp(arg, "full"))
|
|
return -EINVAL;
|
|
|
|
rodata_enabled = true;
|
|
rodata_full = true;
|
|
return 0;
|
|
}
|
|
early_param("rodata", parse_rodata);
|
|
|
|
#ifdef CONFIG_UNMAP_KERNEL_AT_EL0
|
|
static int __init map_entry_trampoline(void)
|
|
{
|
|
pgprot_t prot = rodata_enabled ? PAGE_KERNEL_ROX : PAGE_KERNEL_EXEC;
|
|
phys_addr_t pa_start = __pa_symbol(__entry_tramp_text_start);
|
|
|
|
/* The trampoline is always mapped and can therefore be global */
|
|
pgprot_val(prot) &= ~PTE_NG;
|
|
|
|
/* Map only the text into the trampoline page table */
|
|
memset(tramp_pg_dir, 0, PGD_SIZE);
|
|
__create_pgd_mapping(tramp_pg_dir, pa_start, TRAMP_VALIAS, PAGE_SIZE,
|
|
prot, __pgd_pgtable_alloc, 0);
|
|
|
|
/* Map both the text and data into the kernel page table */
|
|
__set_fixmap(FIX_ENTRY_TRAMP_TEXT, pa_start, prot);
|
|
if (IS_ENABLED(CONFIG_RANDOMIZE_BASE)) {
|
|
extern char __entry_tramp_data_start[];
|
|
|
|
__set_fixmap(FIX_ENTRY_TRAMP_DATA,
|
|
__pa_symbol(__entry_tramp_data_start),
|
|
PAGE_KERNEL_RO);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
core_initcall(map_entry_trampoline);
|
|
#endif
|
|
|
|
/*
|
|
* Open coded check for BTI, only for use to determine configuration
|
|
* for early mappings for before the cpufeature code has run.
|
|
*/
|
|
static bool arm64_early_this_cpu_has_bti(void)
|
|
{
|
|
u64 pfr1;
|
|
|
|
if (!IS_ENABLED(CONFIG_ARM64_BTI_KERNEL))
|
|
return false;
|
|
|
|
pfr1 = __read_sysreg_by_encoding(SYS_ID_AA64PFR1_EL1);
|
|
return cpuid_feature_extract_unsigned_field(pfr1,
|
|
ID_AA64PFR1_BT_SHIFT);
|
|
}
|
|
|
|
/*
|
|
* Create fine-grained mappings for the kernel.
|
|
*/
|
|
static void __init map_kernel(pgd_t *pgdp)
|
|
{
|
|
static struct vm_struct vmlinux_text, vmlinux_rodata, vmlinux_inittext,
|
|
vmlinux_initdata, vmlinux_data;
|
|
|
|
/*
|
|
* External debuggers may need to write directly to the text
|
|
* mapping to install SW breakpoints. Allow this (only) when
|
|
* explicitly requested with rodata=off.
|
|
*/
|
|
pgprot_t text_prot = rodata_enabled ? PAGE_KERNEL_ROX : PAGE_KERNEL_EXEC;
|
|
|
|
/*
|
|
* If we have a CPU that supports BTI and a kernel built for
|
|
* BTI then mark the kernel executable text as guarded pages
|
|
* now so we don't have to rewrite the page tables later.
|
|
*/
|
|
if (arm64_early_this_cpu_has_bti())
|
|
text_prot = __pgprot_modify(text_prot, PTE_GP, PTE_GP);
|
|
|
|
/*
|
|
* Only rodata will be remapped with different permissions later on,
|
|
* all other segments are allowed to use contiguous mappings.
|
|
*/
|
|
map_kernel_segment(pgdp, _stext, _etext, text_prot, &vmlinux_text, 0,
|
|
VM_NO_GUARD);
|
|
map_kernel_segment(pgdp, __start_rodata, __inittext_begin, PAGE_KERNEL,
|
|
&vmlinux_rodata, NO_CONT_MAPPINGS, VM_NO_GUARD);
|
|
map_kernel_segment(pgdp, __inittext_begin, __inittext_end, text_prot,
|
|
&vmlinux_inittext, 0, VM_NO_GUARD);
|
|
map_kernel_segment(pgdp, __initdata_begin, __initdata_end, PAGE_KERNEL,
|
|
&vmlinux_initdata, 0, VM_NO_GUARD);
|
|
map_kernel_segment(pgdp, _data, _end, PAGE_KERNEL, &vmlinux_data, 0, 0);
|
|
|
|
if (!READ_ONCE(pgd_val(*pgd_offset_pgd(pgdp, FIXADDR_START)))) {
|
|
/*
|
|
* The fixmap falls in a separate pgd to the kernel, and doesn't
|
|
* live in the carveout for the swapper_pg_dir. We can simply
|
|
* re-use the existing dir for the fixmap.
|
|
*/
|
|
set_pgd(pgd_offset_pgd(pgdp, FIXADDR_START),
|
|
READ_ONCE(*pgd_offset_k(FIXADDR_START)));
|
|
} else if (CONFIG_PGTABLE_LEVELS > 3) {
|
|
pgd_t *bm_pgdp;
|
|
p4d_t *bm_p4dp;
|
|
pud_t *bm_pudp;
|
|
/*
|
|
* The fixmap shares its top level pgd entry with the kernel
|
|
* mapping. This can really only occur when we are running
|
|
* with 16k/4 levels, so we can simply reuse the pud level
|
|
* entry instead.
|
|
*/
|
|
BUG_ON(!IS_ENABLED(CONFIG_ARM64_16K_PAGES));
|
|
bm_pgdp = pgd_offset_pgd(pgdp, FIXADDR_START);
|
|
bm_p4dp = p4d_offset(bm_pgdp, FIXADDR_START);
|
|
bm_pudp = pud_set_fixmap_offset(bm_p4dp, FIXADDR_START);
|
|
pud_populate(&init_mm, bm_pudp, lm_alias(bm_pmd));
|
|
pud_clear_fixmap();
|
|
} else {
|
|
BUG();
|
|
}
|
|
|
|
kasan_copy_shadow(pgdp);
|
|
}
|
|
|
|
void __init paging_init(void)
|
|
{
|
|
pgd_t *pgdp = pgd_set_fixmap(__pa_symbol(swapper_pg_dir));
|
|
|
|
map_kernel(pgdp);
|
|
map_mem(pgdp);
|
|
|
|
pgd_clear_fixmap();
|
|
|
|
cpu_replace_ttbr1(lm_alias(swapper_pg_dir));
|
|
init_mm.pgd = swapper_pg_dir;
|
|
|
|
memblock_phys_free(__pa_symbol(init_pg_dir),
|
|
__pa_symbol(init_pg_end) - __pa_symbol(init_pg_dir));
|
|
|
|
memblock_allow_resize();
|
|
}
|
|
|
|
/*
|
|
* Check whether a kernel address is valid (derived from arch/x86/).
|
|
*/
|
|
int kern_addr_valid(unsigned long addr)
|
|
{
|
|
pgd_t *pgdp;
|
|
p4d_t *p4dp;
|
|
pud_t *pudp, pud;
|
|
pmd_t *pmdp, pmd;
|
|
pte_t *ptep, pte;
|
|
|
|
addr = arch_kasan_reset_tag(addr);
|
|
if ((((long)addr) >> VA_BITS) != -1UL)
|
|
return 0;
|
|
|
|
pgdp = pgd_offset_k(addr);
|
|
if (pgd_none(READ_ONCE(*pgdp)))
|
|
return 0;
|
|
|
|
p4dp = p4d_offset(pgdp, addr);
|
|
if (p4d_none(READ_ONCE(*p4dp)))
|
|
return 0;
|
|
|
|
pudp = pud_offset(p4dp, addr);
|
|
pud = READ_ONCE(*pudp);
|
|
if (pud_none(pud))
|
|
return 0;
|
|
|
|
if (pud_sect(pud))
|
|
return pfn_valid(pud_pfn(pud));
|
|
|
|
pmdp = pmd_offset(pudp, addr);
|
|
pmd = READ_ONCE(*pmdp);
|
|
if (pmd_none(pmd))
|
|
return 0;
|
|
|
|
if (pmd_sect(pmd))
|
|
return pfn_valid(pmd_pfn(pmd));
|
|
|
|
ptep = pte_offset_kernel(pmdp, addr);
|
|
pte = READ_ONCE(*ptep);
|
|
if (pte_none(pte))
|
|
return 0;
|
|
|
|
return pfn_valid(pte_pfn(pte));
|
|
}
|
|
|
|
#ifdef CONFIG_MEMORY_HOTPLUG
|
|
static void free_hotplug_page_range(struct page *page, size_t size,
|
|
struct vmem_altmap *altmap)
|
|
{
|
|
if (altmap) {
|
|
vmem_altmap_free(altmap, size >> PAGE_SHIFT);
|
|
} else {
|
|
WARN_ON(PageReserved(page));
|
|
free_pages((unsigned long)page_address(page), get_order(size));
|
|
}
|
|
}
|
|
|
|
static void free_hotplug_pgtable_page(struct page *page)
|
|
{
|
|
free_hotplug_page_range(page, PAGE_SIZE, NULL);
|
|
}
|
|
|
|
static bool pgtable_range_aligned(unsigned long start, unsigned long end,
|
|
unsigned long floor, unsigned long ceiling,
|
|
unsigned long mask)
|
|
{
|
|
start &= mask;
|
|
if (start < floor)
|
|
return false;
|
|
|
|
if (ceiling) {
|
|
ceiling &= mask;
|
|
if (!ceiling)
|
|
return false;
|
|
}
|
|
|
|
if (end - 1 > ceiling - 1)
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
static void unmap_hotplug_pte_range(pmd_t *pmdp, unsigned long addr,
|
|
unsigned long end, bool free_mapped,
|
|
struct vmem_altmap *altmap)
|
|
{
|
|
pte_t *ptep, pte;
|
|
|
|
do {
|
|
ptep = pte_offset_kernel(pmdp, addr);
|
|
pte = READ_ONCE(*ptep);
|
|
if (pte_none(pte))
|
|
continue;
|
|
|
|
WARN_ON(!pte_present(pte));
|
|
pte_clear(&init_mm, addr, ptep);
|
|
flush_tlb_kernel_range(addr, addr + PAGE_SIZE);
|
|
if (free_mapped)
|
|
free_hotplug_page_range(pte_page(pte),
|
|
PAGE_SIZE, altmap);
|
|
} while (addr += PAGE_SIZE, addr < end);
|
|
}
|
|
|
|
static void unmap_hotplug_pmd_range(pud_t *pudp, unsigned long addr,
|
|
unsigned long end, bool free_mapped,
|
|
struct vmem_altmap *altmap)
|
|
{
|
|
unsigned long next;
|
|
pmd_t *pmdp, pmd;
|
|
|
|
do {
|
|
next = pmd_addr_end(addr, end);
|
|
pmdp = pmd_offset(pudp, addr);
|
|
pmd = READ_ONCE(*pmdp);
|
|
if (pmd_none(pmd))
|
|
continue;
|
|
|
|
WARN_ON(!pmd_present(pmd));
|
|
if (pmd_sect(pmd)) {
|
|
pmd_clear(pmdp);
|
|
|
|
/*
|
|
* One TLBI should be sufficient here as the PMD_SIZE
|
|
* range is mapped with a single block entry.
|
|
*/
|
|
flush_tlb_kernel_range(addr, addr + PAGE_SIZE);
|
|
if (free_mapped)
|
|
free_hotplug_page_range(pmd_page(pmd),
|
|
PMD_SIZE, altmap);
|
|
continue;
|
|
}
|
|
WARN_ON(!pmd_table(pmd));
|
|
unmap_hotplug_pte_range(pmdp, addr, next, free_mapped, altmap);
|
|
} while (addr = next, addr < end);
|
|
}
|
|
|
|
static void unmap_hotplug_pud_range(p4d_t *p4dp, unsigned long addr,
|
|
unsigned long end, bool free_mapped,
|
|
struct vmem_altmap *altmap)
|
|
{
|
|
unsigned long next;
|
|
pud_t *pudp, pud;
|
|
|
|
do {
|
|
next = pud_addr_end(addr, end);
|
|
pudp = pud_offset(p4dp, addr);
|
|
pud = READ_ONCE(*pudp);
|
|
if (pud_none(pud))
|
|
continue;
|
|
|
|
WARN_ON(!pud_present(pud));
|
|
if (pud_sect(pud)) {
|
|
pud_clear(pudp);
|
|
|
|
/*
|
|
* One TLBI should be sufficient here as the PUD_SIZE
|
|
* range is mapped with a single block entry.
|
|
*/
|
|
flush_tlb_kernel_range(addr, addr + PAGE_SIZE);
|
|
if (free_mapped)
|
|
free_hotplug_page_range(pud_page(pud),
|
|
PUD_SIZE, altmap);
|
|
continue;
|
|
}
|
|
WARN_ON(!pud_table(pud));
|
|
unmap_hotplug_pmd_range(pudp, addr, next, free_mapped, altmap);
|
|
} while (addr = next, addr < end);
|
|
}
|
|
|
|
static void unmap_hotplug_p4d_range(pgd_t *pgdp, unsigned long addr,
|
|
unsigned long end, bool free_mapped,
|
|
struct vmem_altmap *altmap)
|
|
{
|
|
unsigned long next;
|
|
p4d_t *p4dp, p4d;
|
|
|
|
do {
|
|
next = p4d_addr_end(addr, end);
|
|
p4dp = p4d_offset(pgdp, addr);
|
|
p4d = READ_ONCE(*p4dp);
|
|
if (p4d_none(p4d))
|
|
continue;
|
|
|
|
WARN_ON(!p4d_present(p4d));
|
|
unmap_hotplug_pud_range(p4dp, addr, next, free_mapped, altmap);
|
|
} while (addr = next, addr < end);
|
|
}
|
|
|
|
static void unmap_hotplug_range(unsigned long addr, unsigned long end,
|
|
bool free_mapped, struct vmem_altmap *altmap)
|
|
{
|
|
unsigned long next;
|
|
pgd_t *pgdp, pgd;
|
|
|
|
/*
|
|
* altmap can only be used as vmemmap mapping backing memory.
|
|
* In case the backing memory itself is not being freed, then
|
|
* altmap is irrelevant. Warn about this inconsistency when
|
|
* encountered.
|
|
*/
|
|
WARN_ON(!free_mapped && altmap);
|
|
|
|
do {
|
|
next = pgd_addr_end(addr, end);
|
|
pgdp = pgd_offset_k(addr);
|
|
pgd = READ_ONCE(*pgdp);
|
|
if (pgd_none(pgd))
|
|
continue;
|
|
|
|
WARN_ON(!pgd_present(pgd));
|
|
unmap_hotplug_p4d_range(pgdp, addr, next, free_mapped, altmap);
|
|
} while (addr = next, addr < end);
|
|
}
|
|
|
|
static void free_empty_pte_table(pmd_t *pmdp, unsigned long addr,
|
|
unsigned long end, unsigned long floor,
|
|
unsigned long ceiling)
|
|
{
|
|
pte_t *ptep, pte;
|
|
unsigned long i, start = addr;
|
|
|
|
do {
|
|
ptep = pte_offset_kernel(pmdp, addr);
|
|
pte = READ_ONCE(*ptep);
|
|
|
|
/*
|
|
* This is just a sanity check here which verifies that
|
|
* pte clearing has been done by earlier unmap loops.
|
|
*/
|
|
WARN_ON(!pte_none(pte));
|
|
} while (addr += PAGE_SIZE, addr < end);
|
|
|
|
if (!pgtable_range_aligned(start, end, floor, ceiling, PMD_MASK))
|
|
return;
|
|
|
|
/*
|
|
* Check whether we can free the pte page if the rest of the
|
|
* entries are empty. Overlap with other regions have been
|
|
* handled by the floor/ceiling check.
|
|
*/
|
|
ptep = pte_offset_kernel(pmdp, 0UL);
|
|
for (i = 0; i < PTRS_PER_PTE; i++) {
|
|
if (!pte_none(READ_ONCE(ptep[i])))
|
|
return;
|
|
}
|
|
|
|
pmd_clear(pmdp);
|
|
__flush_tlb_kernel_pgtable(start);
|
|
free_hotplug_pgtable_page(virt_to_page(ptep));
|
|
}
|
|
|
|
static void free_empty_pmd_table(pud_t *pudp, unsigned long addr,
|
|
unsigned long end, unsigned long floor,
|
|
unsigned long ceiling)
|
|
{
|
|
pmd_t *pmdp, pmd;
|
|
unsigned long i, next, start = addr;
|
|
|
|
do {
|
|
next = pmd_addr_end(addr, end);
|
|
pmdp = pmd_offset(pudp, addr);
|
|
pmd = READ_ONCE(*pmdp);
|
|
if (pmd_none(pmd))
|
|
continue;
|
|
|
|
WARN_ON(!pmd_present(pmd) || !pmd_table(pmd) || pmd_sect(pmd));
|
|
free_empty_pte_table(pmdp, addr, next, floor, ceiling);
|
|
} while (addr = next, addr < end);
|
|
|
|
if (CONFIG_PGTABLE_LEVELS <= 2)
|
|
return;
|
|
|
|
if (!pgtable_range_aligned(start, end, floor, ceiling, PUD_MASK))
|
|
return;
|
|
|
|
/*
|
|
* Check whether we can free the pmd page if the rest of the
|
|
* entries are empty. Overlap with other regions have been
|
|
* handled by the floor/ceiling check.
|
|
*/
|
|
pmdp = pmd_offset(pudp, 0UL);
|
|
for (i = 0; i < PTRS_PER_PMD; i++) {
|
|
if (!pmd_none(READ_ONCE(pmdp[i])))
|
|
return;
|
|
}
|
|
|
|
pud_clear(pudp);
|
|
__flush_tlb_kernel_pgtable(start);
|
|
free_hotplug_pgtable_page(virt_to_page(pmdp));
|
|
}
|
|
|
|
static void free_empty_pud_table(p4d_t *p4dp, unsigned long addr,
|
|
unsigned long end, unsigned long floor,
|
|
unsigned long ceiling)
|
|
{
|
|
pud_t *pudp, pud;
|
|
unsigned long i, next, start = addr;
|
|
|
|
do {
|
|
next = pud_addr_end(addr, end);
|
|
pudp = pud_offset(p4dp, addr);
|
|
pud = READ_ONCE(*pudp);
|
|
if (pud_none(pud))
|
|
continue;
|
|
|
|
WARN_ON(!pud_present(pud) || !pud_table(pud) || pud_sect(pud));
|
|
free_empty_pmd_table(pudp, addr, next, floor, ceiling);
|
|
} while (addr = next, addr < end);
|
|
|
|
if (CONFIG_PGTABLE_LEVELS <= 3)
|
|
return;
|
|
|
|
if (!pgtable_range_aligned(start, end, floor, ceiling, PGDIR_MASK))
|
|
return;
|
|
|
|
/*
|
|
* Check whether we can free the pud page if the rest of the
|
|
* entries are empty. Overlap with other regions have been
|
|
* handled by the floor/ceiling check.
|
|
*/
|
|
pudp = pud_offset(p4dp, 0UL);
|
|
for (i = 0; i < PTRS_PER_PUD; i++) {
|
|
if (!pud_none(READ_ONCE(pudp[i])))
|
|
return;
|
|
}
|
|
|
|
p4d_clear(p4dp);
|
|
__flush_tlb_kernel_pgtable(start);
|
|
free_hotplug_pgtable_page(virt_to_page(pudp));
|
|
}
|
|
|
|
static void free_empty_p4d_table(pgd_t *pgdp, unsigned long addr,
|
|
unsigned long end, unsigned long floor,
|
|
unsigned long ceiling)
|
|
{
|
|
unsigned long next;
|
|
p4d_t *p4dp, p4d;
|
|
|
|
do {
|
|
next = p4d_addr_end(addr, end);
|
|
p4dp = p4d_offset(pgdp, addr);
|
|
p4d = READ_ONCE(*p4dp);
|
|
if (p4d_none(p4d))
|
|
continue;
|
|
|
|
WARN_ON(!p4d_present(p4d));
|
|
free_empty_pud_table(p4dp, addr, next, floor, ceiling);
|
|
} while (addr = next, addr < end);
|
|
}
|
|
|
|
static void free_empty_tables(unsigned long addr, unsigned long end,
|
|
unsigned long floor, unsigned long ceiling)
|
|
{
|
|
unsigned long next;
|
|
pgd_t *pgdp, pgd;
|
|
|
|
do {
|
|
next = pgd_addr_end(addr, end);
|
|
pgdp = pgd_offset_k(addr);
|
|
pgd = READ_ONCE(*pgdp);
|
|
if (pgd_none(pgd))
|
|
continue;
|
|
|
|
WARN_ON(!pgd_present(pgd));
|
|
free_empty_p4d_table(pgdp, addr, next, floor, ceiling);
|
|
} while (addr = next, addr < end);
|
|
}
|
|
#endif
|
|
|
|
#if !ARM64_KERNEL_USES_PMD_MAPS
|
|
int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node,
|
|
struct vmem_altmap *altmap)
|
|
{
|
|
WARN_ON((start < VMEMMAP_START) || (end > VMEMMAP_END));
|
|
return vmemmap_populate_basepages(start, end, node, altmap);
|
|
}
|
|
#else /* !ARM64_KERNEL_USES_PMD_MAPS */
|
|
int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node,
|
|
struct vmem_altmap *altmap)
|
|
{
|
|
unsigned long addr = start;
|
|
unsigned long next;
|
|
pgd_t *pgdp;
|
|
p4d_t *p4dp;
|
|
pud_t *pudp;
|
|
pmd_t *pmdp;
|
|
|
|
WARN_ON((start < VMEMMAP_START) || (end > VMEMMAP_END));
|
|
do {
|
|
next = pmd_addr_end(addr, end);
|
|
|
|
pgdp = vmemmap_pgd_populate(addr, node);
|
|
if (!pgdp)
|
|
return -ENOMEM;
|
|
|
|
p4dp = vmemmap_p4d_populate(pgdp, addr, node);
|
|
if (!p4dp)
|
|
return -ENOMEM;
|
|
|
|
pudp = vmemmap_pud_populate(p4dp, addr, node);
|
|
if (!pudp)
|
|
return -ENOMEM;
|
|
|
|
pmdp = pmd_offset(pudp, addr);
|
|
if (pmd_none(READ_ONCE(*pmdp))) {
|
|
void *p = NULL;
|
|
|
|
p = vmemmap_alloc_block_buf(PMD_SIZE, node, altmap);
|
|
if (!p) {
|
|
if (vmemmap_populate_basepages(addr, next, node, altmap))
|
|
return -ENOMEM;
|
|
continue;
|
|
}
|
|
|
|
pmd_set_huge(pmdp, __pa(p), __pgprot(PROT_SECT_NORMAL));
|
|
} else
|
|
vmemmap_verify((pte_t *)pmdp, node, addr, next);
|
|
} while (addr = next, addr != end);
|
|
|
|
return 0;
|
|
}
|
|
#endif /* !ARM64_KERNEL_USES_PMD_MAPS */
|
|
|
|
#ifdef CONFIG_MEMORY_HOTPLUG
|
|
void vmemmap_free(unsigned long start, unsigned long end,
|
|
struct vmem_altmap *altmap)
|
|
{
|
|
WARN_ON((start < VMEMMAP_START) || (end > VMEMMAP_END));
|
|
|
|
unmap_hotplug_range(start, end, true, altmap);
|
|
free_empty_tables(start, end, VMEMMAP_START, VMEMMAP_END);
|
|
}
|
|
#endif /* CONFIG_MEMORY_HOTPLUG */
|
|
|
|
static inline pud_t *fixmap_pud(unsigned long addr)
|
|
{
|
|
pgd_t *pgdp = pgd_offset_k(addr);
|
|
p4d_t *p4dp = p4d_offset(pgdp, addr);
|
|
p4d_t p4d = READ_ONCE(*p4dp);
|
|
|
|
BUG_ON(p4d_none(p4d) || p4d_bad(p4d));
|
|
|
|
return pud_offset_kimg(p4dp, addr);
|
|
}
|
|
|
|
static inline pmd_t *fixmap_pmd(unsigned long addr)
|
|
{
|
|
pud_t *pudp = fixmap_pud(addr);
|
|
pud_t pud = READ_ONCE(*pudp);
|
|
|
|
BUG_ON(pud_none(pud) || pud_bad(pud));
|
|
|
|
return pmd_offset_kimg(pudp, addr);
|
|
}
|
|
|
|
static inline pte_t *fixmap_pte(unsigned long addr)
|
|
{
|
|
return &bm_pte[pte_index(addr)];
|
|
}
|
|
|
|
/*
|
|
* The p*d_populate functions call virt_to_phys implicitly so they can't be used
|
|
* directly on kernel symbols (bm_p*d). This function is called too early to use
|
|
* lm_alias so __p*d_populate functions must be used to populate with the
|
|
* physical address from __pa_symbol.
|
|
*/
|
|
void __init early_fixmap_init(void)
|
|
{
|
|
pgd_t *pgdp;
|
|
p4d_t *p4dp, p4d;
|
|
pud_t *pudp;
|
|
pmd_t *pmdp;
|
|
unsigned long addr = FIXADDR_START;
|
|
|
|
pgdp = pgd_offset_k(addr);
|
|
p4dp = p4d_offset(pgdp, addr);
|
|
p4d = READ_ONCE(*p4dp);
|
|
if (CONFIG_PGTABLE_LEVELS > 3 &&
|
|
!(p4d_none(p4d) || p4d_page_paddr(p4d) == __pa_symbol(bm_pud))) {
|
|
/*
|
|
* We only end up here if the kernel mapping and the fixmap
|
|
* share the top level pgd entry, which should only happen on
|
|
* 16k/4 levels configurations.
|
|
*/
|
|
BUG_ON(!IS_ENABLED(CONFIG_ARM64_16K_PAGES));
|
|
pudp = pud_offset_kimg(p4dp, addr);
|
|
} else {
|
|
if (p4d_none(p4d))
|
|
__p4d_populate(p4dp, __pa_symbol(bm_pud), P4D_TYPE_TABLE);
|
|
pudp = fixmap_pud(addr);
|
|
}
|
|
if (pud_none(READ_ONCE(*pudp)))
|
|
__pud_populate(pudp, __pa_symbol(bm_pmd), PUD_TYPE_TABLE);
|
|
pmdp = fixmap_pmd(addr);
|
|
__pmd_populate(pmdp, __pa_symbol(bm_pte), PMD_TYPE_TABLE);
|
|
|
|
/*
|
|
* The boot-ioremap range spans multiple pmds, for which
|
|
* we are not prepared:
|
|
*/
|
|
BUILD_BUG_ON((__fix_to_virt(FIX_BTMAP_BEGIN) >> PMD_SHIFT)
|
|
!= (__fix_to_virt(FIX_BTMAP_END) >> PMD_SHIFT));
|
|
|
|
if ((pmdp != fixmap_pmd(fix_to_virt(FIX_BTMAP_BEGIN)))
|
|
|| pmdp != fixmap_pmd(fix_to_virt(FIX_BTMAP_END))) {
|
|
WARN_ON(1);
|
|
pr_warn("pmdp %p != %p, %p\n",
|
|
pmdp, fixmap_pmd(fix_to_virt(FIX_BTMAP_BEGIN)),
|
|
fixmap_pmd(fix_to_virt(FIX_BTMAP_END)));
|
|
pr_warn("fix_to_virt(FIX_BTMAP_BEGIN): %08lx\n",
|
|
fix_to_virt(FIX_BTMAP_BEGIN));
|
|
pr_warn("fix_to_virt(FIX_BTMAP_END): %08lx\n",
|
|
fix_to_virt(FIX_BTMAP_END));
|
|
|
|
pr_warn("FIX_BTMAP_END: %d\n", FIX_BTMAP_END);
|
|
pr_warn("FIX_BTMAP_BEGIN: %d\n", FIX_BTMAP_BEGIN);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Unusually, this is also called in IRQ context (ghes_iounmap_irq) so if we
|
|
* ever need to use IPIs for TLB broadcasting, then we're in trouble here.
|
|
*/
|
|
void __set_fixmap(enum fixed_addresses idx,
|
|
phys_addr_t phys, pgprot_t flags)
|
|
{
|
|
unsigned long addr = __fix_to_virt(idx);
|
|
pte_t *ptep;
|
|
|
|
BUG_ON(idx <= FIX_HOLE || idx >= __end_of_fixed_addresses);
|
|
|
|
ptep = fixmap_pte(addr);
|
|
|
|
if (pgprot_val(flags)) {
|
|
set_pte(ptep, pfn_pte(phys >> PAGE_SHIFT, flags));
|
|
} else {
|
|
pte_clear(&init_mm, addr, ptep);
|
|
flush_tlb_kernel_range(addr, addr+PAGE_SIZE);
|
|
}
|
|
}
|
|
|
|
void *__init fixmap_remap_fdt(phys_addr_t dt_phys, int *size, pgprot_t prot)
|
|
{
|
|
const u64 dt_virt_base = __fix_to_virt(FIX_FDT);
|
|
int offset;
|
|
void *dt_virt;
|
|
|
|
/*
|
|
* Check whether the physical FDT address is set and meets the minimum
|
|
* alignment requirement. Since we are relying on MIN_FDT_ALIGN to be
|
|
* at least 8 bytes so that we can always access the magic and size
|
|
* fields of the FDT header after mapping the first chunk, double check
|
|
* here if that is indeed the case.
|
|
*/
|
|
BUILD_BUG_ON(MIN_FDT_ALIGN < 8);
|
|
if (!dt_phys || dt_phys % MIN_FDT_ALIGN)
|
|
return NULL;
|
|
|
|
/*
|
|
* Make sure that the FDT region can be mapped without the need to
|
|
* allocate additional translation table pages, so that it is safe
|
|
* to call create_mapping_noalloc() this early.
|
|
*
|
|
* On 64k pages, the FDT will be mapped using PTEs, so we need to
|
|
* be in the same PMD as the rest of the fixmap.
|
|
* On 4k pages, we'll use section mappings for the FDT so we only
|
|
* have to be in the same PUD.
|
|
*/
|
|
BUILD_BUG_ON(dt_virt_base % SZ_2M);
|
|
|
|
BUILD_BUG_ON(__fix_to_virt(FIX_FDT_END) >> SWAPPER_TABLE_SHIFT !=
|
|
__fix_to_virt(FIX_BTMAP_BEGIN) >> SWAPPER_TABLE_SHIFT);
|
|
|
|
offset = dt_phys % SWAPPER_BLOCK_SIZE;
|
|
dt_virt = (void *)dt_virt_base + offset;
|
|
|
|
/* map the first chunk so we can read the size from the header */
|
|
create_mapping_noalloc(round_down(dt_phys, SWAPPER_BLOCK_SIZE),
|
|
dt_virt_base, SWAPPER_BLOCK_SIZE, prot);
|
|
|
|
if (fdt_magic(dt_virt) != FDT_MAGIC)
|
|
return NULL;
|
|
|
|
*size = fdt_totalsize(dt_virt);
|
|
if (*size > MAX_FDT_SIZE)
|
|
return NULL;
|
|
|
|
if (offset + *size > SWAPPER_BLOCK_SIZE)
|
|
create_mapping_noalloc(round_down(dt_phys, SWAPPER_BLOCK_SIZE), dt_virt_base,
|
|
round_up(offset + *size, SWAPPER_BLOCK_SIZE), prot);
|
|
|
|
return dt_virt;
|
|
}
|
|
|
|
int pud_set_huge(pud_t *pudp, phys_addr_t phys, pgprot_t prot)
|
|
{
|
|
pud_t new_pud = pfn_pud(__phys_to_pfn(phys), mk_pud_sect_prot(prot));
|
|
|
|
/* Only allow permission changes for now */
|
|
if (!pgattr_change_is_safe(READ_ONCE(pud_val(*pudp)),
|
|
pud_val(new_pud)))
|
|
return 0;
|
|
|
|
VM_BUG_ON(phys & ~PUD_MASK);
|
|
set_pud(pudp, new_pud);
|
|
return 1;
|
|
}
|
|
|
|
int pmd_set_huge(pmd_t *pmdp, phys_addr_t phys, pgprot_t prot)
|
|
{
|
|
pmd_t new_pmd = pfn_pmd(__phys_to_pfn(phys), mk_pmd_sect_prot(prot));
|
|
|
|
/* Only allow permission changes for now */
|
|
if (!pgattr_change_is_safe(READ_ONCE(pmd_val(*pmdp)),
|
|
pmd_val(new_pmd)))
|
|
return 0;
|
|
|
|
VM_BUG_ON(phys & ~PMD_MASK);
|
|
set_pmd(pmdp, new_pmd);
|
|
return 1;
|
|
}
|
|
|
|
int pud_clear_huge(pud_t *pudp)
|
|
{
|
|
if (!pud_sect(READ_ONCE(*pudp)))
|
|
return 0;
|
|
pud_clear(pudp);
|
|
return 1;
|
|
}
|
|
|
|
int pmd_clear_huge(pmd_t *pmdp)
|
|
{
|
|
if (!pmd_sect(READ_ONCE(*pmdp)))
|
|
return 0;
|
|
pmd_clear(pmdp);
|
|
return 1;
|
|
}
|
|
|
|
int pmd_free_pte_page(pmd_t *pmdp, unsigned long addr)
|
|
{
|
|
pte_t *table;
|
|
pmd_t pmd;
|
|
|
|
pmd = READ_ONCE(*pmdp);
|
|
|
|
if (!pmd_table(pmd)) {
|
|
VM_WARN_ON(1);
|
|
return 1;
|
|
}
|
|
|
|
table = pte_offset_kernel(pmdp, addr);
|
|
pmd_clear(pmdp);
|
|
__flush_tlb_kernel_pgtable(addr);
|
|
pte_free_kernel(NULL, table);
|
|
return 1;
|
|
}
|
|
|
|
int pud_free_pmd_page(pud_t *pudp, unsigned long addr)
|
|
{
|
|
pmd_t *table;
|
|
pmd_t *pmdp;
|
|
pud_t pud;
|
|
unsigned long next, end;
|
|
|
|
pud = READ_ONCE(*pudp);
|
|
|
|
if (!pud_table(pud)) {
|
|
VM_WARN_ON(1);
|
|
return 1;
|
|
}
|
|
|
|
table = pmd_offset(pudp, addr);
|
|
pmdp = table;
|
|
next = addr;
|
|
end = addr + PUD_SIZE;
|
|
do {
|
|
pmd_free_pte_page(pmdp, next);
|
|
} while (pmdp++, next += PMD_SIZE, next != end);
|
|
|
|
pud_clear(pudp);
|
|
__flush_tlb_kernel_pgtable(addr);
|
|
pmd_free(NULL, table);
|
|
return 1;
|
|
}
|
|
|
|
#ifdef CONFIG_MEMORY_HOTPLUG
|
|
static void __remove_pgd_mapping(pgd_t *pgdir, unsigned long start, u64 size)
|
|
{
|
|
unsigned long end = start + size;
|
|
|
|
WARN_ON(pgdir != init_mm.pgd);
|
|
WARN_ON((start < PAGE_OFFSET) || (end > PAGE_END));
|
|
|
|
unmap_hotplug_range(start, end, false, NULL);
|
|
free_empty_tables(start, end, PAGE_OFFSET, PAGE_END);
|
|
}
|
|
|
|
struct range arch_get_mappable_range(void)
|
|
{
|
|
struct range mhp_range;
|
|
u64 start_linear_pa = __pa(_PAGE_OFFSET(vabits_actual));
|
|
u64 end_linear_pa = __pa(PAGE_END - 1);
|
|
|
|
if (IS_ENABLED(CONFIG_RANDOMIZE_BASE)) {
|
|
/*
|
|
* Check for a wrap, it is possible because of randomized linear
|
|
* mapping the start physical address is actually bigger than
|
|
* the end physical address. In this case set start to zero
|
|
* because [0, end_linear_pa] range must still be able to cover
|
|
* all addressable physical addresses.
|
|
*/
|
|
if (start_linear_pa > end_linear_pa)
|
|
start_linear_pa = 0;
|
|
}
|
|
|
|
WARN_ON(start_linear_pa > end_linear_pa);
|
|
|
|
/*
|
|
* Linear mapping region is the range [PAGE_OFFSET..(PAGE_END - 1)]
|
|
* accommodating both its ends but excluding PAGE_END. Max physical
|
|
* range which can be mapped inside this linear mapping range, must
|
|
* also be derived from its end points.
|
|
*/
|
|
mhp_range.start = start_linear_pa;
|
|
mhp_range.end = end_linear_pa;
|
|
|
|
return mhp_range;
|
|
}
|
|
|
|
int arch_add_memory(int nid, u64 start, u64 size,
|
|
struct mhp_params *params)
|
|
{
|
|
int ret, flags = NO_EXEC_MAPPINGS;
|
|
|
|
VM_BUG_ON(!mhp_range_allowed(start, size, true));
|
|
|
|
/*
|
|
* KFENCE requires linear map to be mapped at page granularity, so that
|
|
* it is possible to protect/unprotect single pages in the KFENCE pool.
|
|
*/
|
|
if (can_set_direct_map() || IS_ENABLED(CONFIG_KFENCE))
|
|
flags |= NO_BLOCK_MAPPINGS | NO_CONT_MAPPINGS;
|
|
|
|
__create_pgd_mapping(swapper_pg_dir, start, __phys_to_virt(start),
|
|
size, params->pgprot, __pgd_pgtable_alloc,
|
|
flags);
|
|
|
|
memblock_clear_nomap(start, size);
|
|
|
|
ret = __add_pages(nid, start >> PAGE_SHIFT, size >> PAGE_SHIFT,
|
|
params);
|
|
if (ret)
|
|
__remove_pgd_mapping(swapper_pg_dir,
|
|
__phys_to_virt(start), size);
|
|
else {
|
|
max_pfn = PFN_UP(start + size);
|
|
max_low_pfn = max_pfn;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
void arch_remove_memory(u64 start, u64 size, struct vmem_altmap *altmap)
|
|
{
|
|
unsigned long start_pfn = start >> PAGE_SHIFT;
|
|
unsigned long nr_pages = size >> PAGE_SHIFT;
|
|
|
|
__remove_pages(start_pfn, nr_pages, altmap);
|
|
__remove_pgd_mapping(swapper_pg_dir, __phys_to_virt(start), size);
|
|
}
|
|
|
|
/*
|
|
* This memory hotplug notifier helps prevent boot memory from being
|
|
* inadvertently removed as it blocks pfn range offlining process in
|
|
* __offline_pages(). Hence this prevents both offlining as well as
|
|
* removal process for boot memory which is initially always online.
|
|
* In future if and when boot memory could be removed, this notifier
|
|
* should be dropped and free_hotplug_page_range() should handle any
|
|
* reserved pages allocated during boot.
|
|
*/
|
|
static int prevent_bootmem_remove_notifier(struct notifier_block *nb,
|
|
unsigned long action, void *data)
|
|
{
|
|
struct mem_section *ms;
|
|
struct memory_notify *arg = data;
|
|
unsigned long end_pfn = arg->start_pfn + arg->nr_pages;
|
|
unsigned long pfn = arg->start_pfn;
|
|
|
|
if ((action != MEM_GOING_OFFLINE) && (action != MEM_OFFLINE))
|
|
return NOTIFY_OK;
|
|
|
|
for (; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
|
|
unsigned long start = PFN_PHYS(pfn);
|
|
unsigned long end = start + (1UL << PA_SECTION_SHIFT);
|
|
|
|
ms = __pfn_to_section(pfn);
|
|
if (!early_section(ms))
|
|
continue;
|
|
|
|
if (action == MEM_GOING_OFFLINE) {
|
|
/*
|
|
* Boot memory removal is not supported. Prevent
|
|
* it via blocking any attempted offline request
|
|
* for the boot memory and just report it.
|
|
*/
|
|
pr_warn("Boot memory [%lx %lx] offlining attempted\n", start, end);
|
|
return NOTIFY_BAD;
|
|
} else if (action == MEM_OFFLINE) {
|
|
/*
|
|
* This should have never happened. Boot memory
|
|
* offlining should have been prevented by this
|
|
* very notifier. Probably some memory removal
|
|
* procedure might have changed which would then
|
|
* require further debug.
|
|
*/
|
|
pr_err("Boot memory [%lx %lx] offlined\n", start, end);
|
|
|
|
/*
|
|
* Core memory hotplug does not process a return
|
|
* code from the notifier for MEM_OFFLINE events.
|
|
* The error condition has been reported. Return
|
|
* from here as if ignored.
|
|
*/
|
|
return NOTIFY_DONE;
|
|
}
|
|
}
|
|
return NOTIFY_OK;
|
|
}
|
|
|
|
static struct notifier_block prevent_bootmem_remove_nb = {
|
|
.notifier_call = prevent_bootmem_remove_notifier,
|
|
};
|
|
|
|
/*
|
|
* This ensures that boot memory sections on the platform are online
|
|
* from early boot. Memory sections could not be prevented from being
|
|
* offlined, unless for some reason they are not online to begin with.
|
|
* This helps validate the basic assumption on which the above memory
|
|
* event notifier works to prevent boot memory section offlining and
|
|
* its possible removal.
|
|
*/
|
|
static void validate_bootmem_online(void)
|
|
{
|
|
phys_addr_t start, end, addr;
|
|
struct mem_section *ms;
|
|
u64 i;
|
|
|
|
/*
|
|
* Scanning across all memblock might be expensive
|
|
* on some big memory systems. Hence enable this
|
|
* validation only with DEBUG_VM.
|
|
*/
|
|
if (!IS_ENABLED(CONFIG_DEBUG_VM))
|
|
return;
|
|
|
|
for_each_mem_range(i, &start, &end) {
|
|
for (addr = start; addr < end; addr += (1UL << PA_SECTION_SHIFT)) {
|
|
ms = __pfn_to_section(PHYS_PFN(addr));
|
|
|
|
/*
|
|
* All memory ranges in the system at this point
|
|
* should have been marked as early sections.
|
|
*/
|
|
WARN_ON(!early_section(ms));
|
|
|
|
/*
|
|
* Memory notifier mechanism here to prevent boot
|
|
* memory offlining depends on the fact that each
|
|
* early section memory on the system is initially
|
|
* online. Otherwise a given memory section which
|
|
* is already offline will be overlooked and can
|
|
* be removed completely. Call out such sections.
|
|
*/
|
|
if (!online_section(ms))
|
|
pr_err("Boot memory [%llx %llx] is offline, can be removed\n",
|
|
addr, addr + (1UL << PA_SECTION_SHIFT));
|
|
}
|
|
}
|
|
}
|
|
|
|
static int __init prevent_bootmem_remove_init(void)
|
|
{
|
|
int ret = 0;
|
|
|
|
if (!IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
|
|
return ret;
|
|
|
|
validate_bootmem_online();
|
|
ret = register_memory_notifier(&prevent_bootmem_remove_nb);
|
|
if (ret)
|
|
pr_err("%s: Notifier registration failed %d\n", __func__, ret);
|
|
|
|
return ret;
|
|
}
|
|
early_initcall(prevent_bootmem_remove_init);
|
|
#endif
|