linux/include/net/mac80211.h
Juuso Oikarinen ff61638105 mac80211: Fix ps-qos network latency handling
The ps-qos latency handling is broken. It uses predetermined latency values
to select specific dynamic PS timeouts. With common AP configurations, these
values overlap with beacon interval and are therefore essentially useless
(for network latencies less than the beacon interval, PSM is disabled.)

This patch remedies the problem by replacing the predetermined network latency
values with one high value (1900ms) which is used to go trigger full psm. For
backwards compatibility, the value 2000ms is still mapped to a dynamic ps
timeout of 100ms.

Currently also the mac80211 internal value for storing user space configured
dynamic PSM values is incorrectly in the driver visible ieee80211_conf struct.
Move it to the ieee80211_local struct.

Signed-off-by: Juuso Oikarinen <juuso.oikarinen@nokia.com>
Signed-off-by: John W. Linville <linville@tuxdriver.com>
2010-06-15 16:00:48 -04:00

2639 lines
100 KiB
C

/*
* mac80211 <-> driver interface
*
* Copyright 2002-2005, Devicescape Software, Inc.
* Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
* Copyright 2007-2010 Johannes Berg <johannes@sipsolutions.net>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#ifndef MAC80211_H
#define MAC80211_H
#include <linux/kernel.h>
#include <linux/if_ether.h>
#include <linux/skbuff.h>
#include <linux/wireless.h>
#include <linux/device.h>
#include <linux/ieee80211.h>
#include <net/cfg80211.h>
/**
* DOC: Introduction
*
* mac80211 is the Linux stack for 802.11 hardware that implements
* only partial functionality in hard- or firmware. This document
* defines the interface between mac80211 and low-level hardware
* drivers.
*/
/**
* DOC: Calling mac80211 from interrupts
*
* Only ieee80211_tx_status_irqsafe() and ieee80211_rx_irqsafe() can be
* called in hardware interrupt context. The low-level driver must not call any
* other functions in hardware interrupt context. If there is a need for such
* call, the low-level driver should first ACK the interrupt and perform the
* IEEE 802.11 code call after this, e.g. from a scheduled workqueue or even
* tasklet function.
*
* NOTE: If the driver opts to use the _irqsafe() functions, it may not also
* use the non-IRQ-safe functions!
*/
/**
* DOC: Warning
*
* If you're reading this document and not the header file itself, it will
* be incomplete because not all documentation has been converted yet.
*/
/**
* DOC: Frame format
*
* As a general rule, when frames are passed between mac80211 and the driver,
* they start with the IEEE 802.11 header and include the same octets that are
* sent over the air except for the FCS which should be calculated by the
* hardware.
*
* There are, however, various exceptions to this rule for advanced features:
*
* The first exception is for hardware encryption and decryption offload
* where the IV/ICV may or may not be generated in hardware.
*
* Secondly, when the hardware handles fragmentation, the frame handed to
* the driver from mac80211 is the MSDU, not the MPDU.
*
* Finally, for received frames, the driver is able to indicate that it has
* filled a radiotap header and put that in front of the frame; if it does
* not do so then mac80211 may add this under certain circumstances.
*/
/**
* DOC: mac80211 workqueue
*
* mac80211 provides its own workqueue for drivers and internal mac80211 use.
* The workqueue is a single threaded workqueue and can only be accessed by
* helpers for sanity checking. Drivers must ensure all work added onto the
* mac80211 workqueue should be cancelled on the driver stop() callback.
*
* mac80211 will flushed the workqueue upon interface removal and during
* suspend.
*
* All work performed on the mac80211 workqueue must not acquire the RTNL lock.
*
*/
/**
* enum ieee80211_max_queues - maximum number of queues
*
* @IEEE80211_MAX_QUEUES: Maximum number of regular device queues.
*/
enum ieee80211_max_queues {
IEEE80211_MAX_QUEUES = 4,
};
/**
* struct ieee80211_tx_queue_params - transmit queue configuration
*
* The information provided in this structure is required for QoS
* transmit queue configuration. Cf. IEEE 802.11 7.3.2.29.
*
* @aifs: arbitration interframe space [0..255]
* @cw_min: minimum contention window [a value of the form
* 2^n-1 in the range 1..32767]
* @cw_max: maximum contention window [like @cw_min]
* @txop: maximum burst time in units of 32 usecs, 0 meaning disabled
* @uapsd: is U-APSD mode enabled for the queue
*/
struct ieee80211_tx_queue_params {
u16 txop;
u16 cw_min;
u16 cw_max;
u8 aifs;
bool uapsd;
};
struct ieee80211_low_level_stats {
unsigned int dot11ACKFailureCount;
unsigned int dot11RTSFailureCount;
unsigned int dot11FCSErrorCount;
unsigned int dot11RTSSuccessCount;
};
/**
* enum ieee80211_bss_change - BSS change notification flags
*
* These flags are used with the bss_info_changed() callback
* to indicate which BSS parameter changed.
*
* @BSS_CHANGED_ASSOC: association status changed (associated/disassociated),
* also implies a change in the AID.
* @BSS_CHANGED_ERP_CTS_PROT: CTS protection changed
* @BSS_CHANGED_ERP_PREAMBLE: preamble changed
* @BSS_CHANGED_ERP_SLOT: slot timing changed
* @BSS_CHANGED_HT: 802.11n parameters changed
* @BSS_CHANGED_BASIC_RATES: Basic rateset changed
* @BSS_CHANGED_BEACON_INT: Beacon interval changed
* @BSS_CHANGED_BSSID: BSSID changed, for whatever
* reason (IBSS and managed mode)
* @BSS_CHANGED_BEACON: Beacon data changed, retrieve
* new beacon (beaconing modes)
* @BSS_CHANGED_BEACON_ENABLED: Beaconing should be
* enabled/disabled (beaconing modes)
* @BSS_CHANGED_CQM: Connection quality monitor config changed
* @BSS_CHANGED_IBSS: IBSS join status changed
* @BSS_CHANGED_ARP_FILTER: Hardware ARP filter address list or state changed.
*/
enum ieee80211_bss_change {
BSS_CHANGED_ASSOC = 1<<0,
BSS_CHANGED_ERP_CTS_PROT = 1<<1,
BSS_CHANGED_ERP_PREAMBLE = 1<<2,
BSS_CHANGED_ERP_SLOT = 1<<3,
BSS_CHANGED_HT = 1<<4,
BSS_CHANGED_BASIC_RATES = 1<<5,
BSS_CHANGED_BEACON_INT = 1<<6,
BSS_CHANGED_BSSID = 1<<7,
BSS_CHANGED_BEACON = 1<<8,
BSS_CHANGED_BEACON_ENABLED = 1<<9,
BSS_CHANGED_CQM = 1<<10,
BSS_CHANGED_IBSS = 1<<11,
BSS_CHANGED_ARP_FILTER = 1<<12,
/* when adding here, make sure to change ieee80211_reconfig */
};
/*
* The maximum number of IPv4 addresses listed for ARP filtering. If the number
* of addresses for an interface increase beyond this value, hardware ARP
* filtering will be disabled.
*/
#define IEEE80211_BSS_ARP_ADDR_LIST_LEN 4
/**
* struct ieee80211_bss_conf - holds the BSS's changing parameters
*
* This structure keeps information about a BSS (and an association
* to that BSS) that can change during the lifetime of the BSS.
*
* @assoc: association status
* @ibss_joined: indicates whether this station is part of an IBSS
* or not
* @aid: association ID number, valid only when @assoc is true
* @use_cts_prot: use CTS protection
* @use_short_preamble: use 802.11b short preamble;
* if the hardware cannot handle this it must set the
* IEEE80211_HW_2GHZ_SHORT_PREAMBLE_INCAPABLE hardware flag
* @use_short_slot: use short slot time (only relevant for ERP);
* if the hardware cannot handle this it must set the
* IEEE80211_HW_2GHZ_SHORT_SLOT_INCAPABLE hardware flag
* @dtim_period: num of beacons before the next DTIM, for beaconing,
* not valid in station mode (cf. hw conf ps_dtim_period)
* @timestamp: beacon timestamp
* @beacon_int: beacon interval
* @assoc_capability: capabilities taken from assoc resp
* @basic_rates: bitmap of basic rates, each bit stands for an
* index into the rate table configured by the driver in
* the current band.
* @bssid: The BSSID for this BSS
* @enable_beacon: whether beaconing should be enabled or not
* @channel_type: Channel type for this BSS -- the hardware might be
* configured for HT40+ while this BSS only uses no-HT, for
* example.
* @ht_operation_mode: HT operation mode (like in &struct ieee80211_ht_info).
* This field is only valid when the channel type is one of the HT types.
* @cqm_rssi_thold: Connection quality monitor RSSI threshold, a zero value
* implies disabled
* @cqm_rssi_hyst: Connection quality monitor RSSI hysteresis
* @arp_addr_list: List of IPv4 addresses for hardware ARP filtering. The
* may filter ARP queries targeted for other addresses than listed here.
* The driver must allow ARP queries targeted for all address listed here
* to pass through. An empty list implies no ARP queries need to pass.
* @arp_addr_cnt: Number of addresses currently on the list.
* @arp_filter_enabled: Enable ARP filtering - if enabled, the hardware may
* filter ARP queries based on the @arp_addr_list, if disabled, the
* hardware must not perform any ARP filtering. Note, that the filter will
* be enabled also in promiscuous mode.
*/
struct ieee80211_bss_conf {
const u8 *bssid;
/* association related data */
bool assoc, ibss_joined;
u16 aid;
/* erp related data */
bool use_cts_prot;
bool use_short_preamble;
bool use_short_slot;
bool enable_beacon;
u8 dtim_period;
u16 beacon_int;
u16 assoc_capability;
u64 timestamp;
u32 basic_rates;
u16 ht_operation_mode;
s32 cqm_rssi_thold;
u32 cqm_rssi_hyst;
enum nl80211_channel_type channel_type;
__be32 arp_addr_list[IEEE80211_BSS_ARP_ADDR_LIST_LEN];
u8 arp_addr_cnt;
bool arp_filter_enabled;
};
/**
* enum mac80211_tx_control_flags - flags to describe transmission information/status
*
* These flags are used with the @flags member of &ieee80211_tx_info.
*
* @IEEE80211_TX_CTL_REQ_TX_STATUS: require TX status callback for this frame.
* @IEEE80211_TX_CTL_ASSIGN_SEQ: The driver has to assign a sequence
* number to this frame, taking care of not overwriting the fragment
* number and increasing the sequence number only when the
* IEEE80211_TX_CTL_FIRST_FRAGMENT flag is set. mac80211 will properly
* assign sequence numbers to QoS-data frames but cannot do so correctly
* for non-QoS-data and management frames because beacons need them from
* that counter as well and mac80211 cannot guarantee proper sequencing.
* If this flag is set, the driver should instruct the hardware to
* assign a sequence number to the frame or assign one itself. Cf. IEEE
* 802.11-2007 7.1.3.4.1 paragraph 3. This flag will always be set for
* beacons and always be clear for frames without a sequence number field.
* @IEEE80211_TX_CTL_NO_ACK: tell the low level not to wait for an ack
* @IEEE80211_TX_CTL_CLEAR_PS_FILT: clear powersave filter for destination
* station
* @IEEE80211_TX_CTL_FIRST_FRAGMENT: this is a first fragment of the frame
* @IEEE80211_TX_CTL_SEND_AFTER_DTIM: send this frame after DTIM beacon
* @IEEE80211_TX_CTL_AMPDU: this frame should be sent as part of an A-MPDU
* @IEEE80211_TX_CTL_INJECTED: Frame was injected, internal to mac80211.
* @IEEE80211_TX_STAT_TX_FILTERED: The frame was not transmitted
* because the destination STA was in powersave mode. Note that to
* avoid race conditions, the filter must be set by the hardware or
* firmware upon receiving a frame that indicates that the station
* went to sleep (must be done on device to filter frames already on
* the queue) and may only be unset after mac80211 gives the OK for
* that by setting the IEEE80211_TX_CTL_CLEAR_PS_FILT (see above),
* since only then is it guaranteed that no more frames are in the
* hardware queue.
* @IEEE80211_TX_STAT_ACK: Frame was acknowledged
* @IEEE80211_TX_STAT_AMPDU: The frame was aggregated, so status
* is for the whole aggregation.
* @IEEE80211_TX_STAT_AMPDU_NO_BACK: no block ack was returned,
* so consider using block ack request (BAR).
* @IEEE80211_TX_CTL_RATE_CTRL_PROBE: internal to mac80211, can be
* set by rate control algorithms to indicate probe rate, will
* be cleared for fragmented frames (except on the last fragment)
* @IEEE80211_TX_INTFL_NEED_TXPROCESSING: completely internal to mac80211,
* used to indicate that a pending frame requires TX processing before
* it can be sent out.
* @IEEE80211_TX_INTFL_RETRIED: completely internal to mac80211,
* used to indicate that a frame was already retried due to PS
* @IEEE80211_TX_INTFL_DONT_ENCRYPT: completely internal to mac80211,
* used to indicate frame should not be encrypted
* @IEEE80211_TX_CTL_PSPOLL_RESPONSE: (internal?)
* This frame is a response to a PS-poll frame and should be sent
* although the station is in powersave mode.
* @IEEE80211_TX_CTL_MORE_FRAMES: More frames will be passed to the
* transmit function after the current frame, this can be used
* by drivers to kick the DMA queue only if unset or when the
* queue gets full.
* @IEEE80211_TX_INTFL_RETRANSMISSION: This frame is being retransmitted
* after TX status because the destination was asleep, it must not
* be modified again (no seqno assignment, crypto, etc.)
* @IEEE80211_TX_INTFL_HAS_RADIOTAP: This frame was injected and still
* has a radiotap header at skb->data.
* @IEEE80211_TX_INTFL_NL80211_FRAME_TX: Frame was requested through nl80211
* MLME command (internal to mac80211 to figure out whether to send TX
* status to user space)
* @IEEE80211_TX_CTL_LDPC: tells the driver to use LDPC for this frame
* @IEEE80211_TX_CTL_STBC: Enables Space-Time Block Coding (STBC) for this
* frame and selects the maximum number of streams that it can use.
*/
enum mac80211_tx_control_flags {
IEEE80211_TX_CTL_REQ_TX_STATUS = BIT(0),
IEEE80211_TX_CTL_ASSIGN_SEQ = BIT(1),
IEEE80211_TX_CTL_NO_ACK = BIT(2),
IEEE80211_TX_CTL_CLEAR_PS_FILT = BIT(3),
IEEE80211_TX_CTL_FIRST_FRAGMENT = BIT(4),
IEEE80211_TX_CTL_SEND_AFTER_DTIM = BIT(5),
IEEE80211_TX_CTL_AMPDU = BIT(6),
IEEE80211_TX_CTL_INJECTED = BIT(7),
IEEE80211_TX_STAT_TX_FILTERED = BIT(8),
IEEE80211_TX_STAT_ACK = BIT(9),
IEEE80211_TX_STAT_AMPDU = BIT(10),
IEEE80211_TX_STAT_AMPDU_NO_BACK = BIT(11),
IEEE80211_TX_CTL_RATE_CTRL_PROBE = BIT(12),
IEEE80211_TX_INTFL_NEED_TXPROCESSING = BIT(14),
IEEE80211_TX_INTFL_RETRIED = BIT(15),
IEEE80211_TX_INTFL_DONT_ENCRYPT = BIT(16),
IEEE80211_TX_CTL_PSPOLL_RESPONSE = BIT(17),
IEEE80211_TX_CTL_MORE_FRAMES = BIT(18),
IEEE80211_TX_INTFL_RETRANSMISSION = BIT(19),
IEEE80211_TX_INTFL_HAS_RADIOTAP = BIT(20),
IEEE80211_TX_INTFL_NL80211_FRAME_TX = BIT(21),
IEEE80211_TX_CTL_LDPC = BIT(22),
IEEE80211_TX_CTL_STBC = BIT(23) | BIT(24),
};
#define IEEE80211_TX_CTL_STBC_SHIFT 23
/**
* enum mac80211_rate_control_flags - per-rate flags set by the
* Rate Control algorithm.
*
* These flags are set by the Rate control algorithm for each rate during tx,
* in the @flags member of struct ieee80211_tx_rate.
*
* @IEEE80211_TX_RC_USE_RTS_CTS: Use RTS/CTS exchange for this rate.
* @IEEE80211_TX_RC_USE_CTS_PROTECT: CTS-to-self protection is required.
* This is set if the current BSS requires ERP protection.
* @IEEE80211_TX_RC_USE_SHORT_PREAMBLE: Use short preamble.
* @IEEE80211_TX_RC_MCS: HT rate.
* @IEEE80211_TX_RC_GREEN_FIELD: Indicates whether this rate should be used in
* Greenfield mode.
* @IEEE80211_TX_RC_40_MHZ_WIDTH: Indicates if the Channel Width should be 40 MHz.
* @IEEE80211_TX_RC_DUP_DATA: The frame should be transmitted on both of the
* adjacent 20 MHz channels, if the current channel type is
* NL80211_CHAN_HT40MINUS or NL80211_CHAN_HT40PLUS.
* @IEEE80211_TX_RC_SHORT_GI: Short Guard interval should be used for this rate.
*/
enum mac80211_rate_control_flags {
IEEE80211_TX_RC_USE_RTS_CTS = BIT(0),
IEEE80211_TX_RC_USE_CTS_PROTECT = BIT(1),
IEEE80211_TX_RC_USE_SHORT_PREAMBLE = BIT(2),
/* rate index is an MCS rate number instead of an index */
IEEE80211_TX_RC_MCS = BIT(3),
IEEE80211_TX_RC_GREEN_FIELD = BIT(4),
IEEE80211_TX_RC_40_MHZ_WIDTH = BIT(5),
IEEE80211_TX_RC_DUP_DATA = BIT(6),
IEEE80211_TX_RC_SHORT_GI = BIT(7),
};
/* there are 40 bytes if you don't need the rateset to be kept */
#define IEEE80211_TX_INFO_DRIVER_DATA_SIZE 40
/* if you do need the rateset, then you have less space */
#define IEEE80211_TX_INFO_RATE_DRIVER_DATA_SIZE 24
/* maximum number of rate stages */
#define IEEE80211_TX_MAX_RATES 5
/**
* struct ieee80211_tx_rate - rate selection/status
*
* @idx: rate index to attempt to send with
* @flags: rate control flags (&enum mac80211_rate_control_flags)
* @count: number of tries in this rate before going to the next rate
*
* A value of -1 for @idx indicates an invalid rate and, if used
* in an array of retry rates, that no more rates should be tried.
*
* When used for transmit status reporting, the driver should
* always report the rate along with the flags it used.
*
* &struct ieee80211_tx_info contains an array of these structs
* in the control information, and it will be filled by the rate
* control algorithm according to what should be sent. For example,
* if this array contains, in the format { <idx>, <count> } the
* information
* { 3, 2 }, { 2, 2 }, { 1, 4 }, { -1, 0 }, { -1, 0 }
* then this means that the frame should be transmitted
* up to twice at rate 3, up to twice at rate 2, and up to four
* times at rate 1 if it doesn't get acknowledged. Say it gets
* acknowledged by the peer after the fifth attempt, the status
* information should then contain
* { 3, 2 }, { 2, 2 }, { 1, 1 }, { -1, 0 } ...
* since it was transmitted twice at rate 3, twice at rate 2
* and once at rate 1 after which we received an acknowledgement.
*/
struct ieee80211_tx_rate {
s8 idx;
u8 count;
u8 flags;
} __attribute__((packed));
/**
* struct ieee80211_tx_info - skb transmit information
*
* This structure is placed in skb->cb for three uses:
* (1) mac80211 TX control - mac80211 tells the driver what to do
* (2) driver internal use (if applicable)
* (3) TX status information - driver tells mac80211 what happened
*
* The TX control's sta pointer is only valid during the ->tx call,
* it may be NULL.
*
* @flags: transmit info flags, defined above
* @band: the band to transmit on (use for checking for races)
* @antenna_sel_tx: antenna to use, 0 for automatic diversity
* @pad: padding, ignore
* @control: union for control data
* @status: union for status data
* @driver_data: array of driver_data pointers
* @ampdu_ack_len: number of acked aggregated frames.
* relevant only if IEEE80211_TX_STAT_AMPDU was set.
* @ampdu_len: number of aggregated frames.
* relevant only if IEEE80211_TX_STAT_AMPDU was set.
* @ack_signal: signal strength of the ACK frame
*/
struct ieee80211_tx_info {
/* common information */
u32 flags;
u8 band;
u8 antenna_sel_tx;
/* 2 byte hole */
u8 pad[2];
union {
struct {
union {
/* rate control */
struct {
struct ieee80211_tx_rate rates[
IEEE80211_TX_MAX_RATES];
s8 rts_cts_rate_idx;
};
/* only needed before rate control */
unsigned long jiffies;
};
/* NB: vif can be NULL for injected frames */
struct ieee80211_vif *vif;
struct ieee80211_key_conf *hw_key;
struct ieee80211_sta *sta;
} control;
struct {
struct ieee80211_tx_rate rates[IEEE80211_TX_MAX_RATES];
u8 ampdu_ack_len;
int ack_signal;
u8 ampdu_len;
/* 15 bytes free */
} status;
struct {
struct ieee80211_tx_rate driver_rates[
IEEE80211_TX_MAX_RATES];
void *rate_driver_data[
IEEE80211_TX_INFO_RATE_DRIVER_DATA_SIZE / sizeof(void *)];
};
void *driver_data[
IEEE80211_TX_INFO_DRIVER_DATA_SIZE / sizeof(void *)];
};
};
static inline struct ieee80211_tx_info *IEEE80211_SKB_CB(struct sk_buff *skb)
{
return (struct ieee80211_tx_info *)skb->cb;
}
static inline struct ieee80211_rx_status *IEEE80211_SKB_RXCB(struct sk_buff *skb)
{
return (struct ieee80211_rx_status *)skb->cb;
}
/**
* ieee80211_tx_info_clear_status - clear TX status
*
* @info: The &struct ieee80211_tx_info to be cleared.
*
* When the driver passes an skb back to mac80211, it must report
* a number of things in TX status. This function clears everything
* in the TX status but the rate control information (it does clear
* the count since you need to fill that in anyway).
*
* NOTE: You can only use this function if you do NOT use
* info->driver_data! Use info->rate_driver_data
* instead if you need only the less space that allows.
*/
static inline void
ieee80211_tx_info_clear_status(struct ieee80211_tx_info *info)
{
int i;
BUILD_BUG_ON(offsetof(struct ieee80211_tx_info, status.rates) !=
offsetof(struct ieee80211_tx_info, control.rates));
BUILD_BUG_ON(offsetof(struct ieee80211_tx_info, status.rates) !=
offsetof(struct ieee80211_tx_info, driver_rates));
BUILD_BUG_ON(offsetof(struct ieee80211_tx_info, status.rates) != 8);
/* clear the rate counts */
for (i = 0; i < IEEE80211_TX_MAX_RATES; i++)
info->status.rates[i].count = 0;
BUILD_BUG_ON(
offsetof(struct ieee80211_tx_info, status.ampdu_ack_len) != 23);
memset(&info->status.ampdu_ack_len, 0,
sizeof(struct ieee80211_tx_info) -
offsetof(struct ieee80211_tx_info, status.ampdu_ack_len));
}
/**
* enum mac80211_rx_flags - receive flags
*
* These flags are used with the @flag member of &struct ieee80211_rx_status.
* @RX_FLAG_MMIC_ERROR: Michael MIC error was reported on this frame.
* Use together with %RX_FLAG_MMIC_STRIPPED.
* @RX_FLAG_DECRYPTED: This frame was decrypted in hardware.
* @RX_FLAG_MMIC_STRIPPED: the Michael MIC is stripped off this frame,
* verification has been done by the hardware.
* @RX_FLAG_IV_STRIPPED: The IV/ICV are stripped from this frame.
* If this flag is set, the stack cannot do any replay detection
* hence the driver or hardware will have to do that.
* @RX_FLAG_FAILED_FCS_CRC: Set this flag if the FCS check failed on
* the frame.
* @RX_FLAG_FAILED_PLCP_CRC: Set this flag if the PCLP check failed on
* the frame.
* @RX_FLAG_TSFT: The timestamp passed in the RX status (@mactime field)
* is valid. This is useful in monitor mode and necessary for beacon frames
* to enable IBSS merging.
* @RX_FLAG_SHORTPRE: Short preamble was used for this frame
* @RX_FLAG_HT: HT MCS was used and rate_idx is MCS index
* @RX_FLAG_40MHZ: HT40 (40 MHz) was used
* @RX_FLAG_SHORT_GI: Short guard interval was used
* @RX_FLAG_INTERNAL_CMTR: set internally after frame was reported
* on cooked monitor to avoid double-reporting it for multiple
* virtual interfaces
*/
enum mac80211_rx_flags {
RX_FLAG_MMIC_ERROR = 1<<0,
RX_FLAG_DECRYPTED = 1<<1,
RX_FLAG_MMIC_STRIPPED = 1<<3,
RX_FLAG_IV_STRIPPED = 1<<4,
RX_FLAG_FAILED_FCS_CRC = 1<<5,
RX_FLAG_FAILED_PLCP_CRC = 1<<6,
RX_FLAG_TSFT = 1<<7,
RX_FLAG_SHORTPRE = 1<<8,
RX_FLAG_HT = 1<<9,
RX_FLAG_40MHZ = 1<<10,
RX_FLAG_SHORT_GI = 1<<11,
RX_FLAG_INTERNAL_CMTR = 1<<12,
};
/**
* struct ieee80211_rx_status - receive status
*
* The low-level driver should provide this information (the subset
* supported by hardware) to the 802.11 code with each received
* frame, in the skb's control buffer (cb).
*
* @mactime: value in microseconds of the 64-bit Time Synchronization Function
* (TSF) timer when the first data symbol (MPDU) arrived at the hardware.
* @band: the active band when this frame was received
* @freq: frequency the radio was tuned to when receiving this frame, in MHz
* @signal: signal strength when receiving this frame, either in dBm, in dB or
* unspecified depending on the hardware capabilities flags
* @IEEE80211_HW_SIGNAL_*
* @antenna: antenna used
* @rate_idx: index of data rate into band's supported rates or MCS index if
* HT rates are use (RX_FLAG_HT)
* @flag: %RX_FLAG_*
*/
struct ieee80211_rx_status {
u64 mactime;
enum ieee80211_band band;
int freq;
int signal;
int antenna;
int rate_idx;
int flag;
};
/**
* enum ieee80211_conf_flags - configuration flags
*
* Flags to define PHY configuration options
*
* @IEEE80211_CONF_MONITOR: there's a monitor interface present -- use this
* to determine for example whether to calculate timestamps for packets
* or not, do not use instead of filter flags!
* @IEEE80211_CONF_PS: Enable 802.11 power save mode (managed mode only).
* This is the power save mode defined by IEEE 802.11-2007 section 11.2,
* meaning that the hardware still wakes up for beacons, is able to
* transmit frames and receive the possible acknowledgment frames.
* Not to be confused with hardware specific wakeup/sleep states,
* driver is responsible for that. See the section "Powersave support"
* for more.
* @IEEE80211_CONF_IDLE: The device is running, but idle; if the flag is set
* the driver should be prepared to handle configuration requests but
* may turn the device off as much as possible. Typically, this flag will
* be set when an interface is set UP but not associated or scanning, but
* it can also be unset in that case when monitor interfaces are active.
* @IEEE80211_CONF_QOS: Enable 802.11e QoS also know as WMM (Wireless
* Multimedia). On some drivers (iwlwifi is one of know) we have
* to enable/disable QoS explicitly.
*/
enum ieee80211_conf_flags {
IEEE80211_CONF_MONITOR = (1<<0),
IEEE80211_CONF_PS = (1<<1),
IEEE80211_CONF_IDLE = (1<<2),
IEEE80211_CONF_QOS = (1<<3),
};
/**
* enum ieee80211_conf_changed - denotes which configuration changed
*
* @IEEE80211_CONF_CHANGE_LISTEN_INTERVAL: the listen interval changed
* @IEEE80211_CONF_CHANGE_MONITOR: the monitor flag changed
* @IEEE80211_CONF_CHANGE_PS: the PS flag or dynamic PS timeout changed
* @IEEE80211_CONF_CHANGE_POWER: the TX power changed
* @IEEE80211_CONF_CHANGE_CHANNEL: the channel/channel_type changed
* @IEEE80211_CONF_CHANGE_RETRY_LIMITS: retry limits changed
* @IEEE80211_CONF_CHANGE_IDLE: Idle flag changed
* @IEEE80211_CONF_CHANGE_SMPS: Spatial multiplexing powersave mode changed
* @IEEE80211_CONF_CHANGE_QOS: Quality of service was enabled or disabled
*/
enum ieee80211_conf_changed {
IEEE80211_CONF_CHANGE_SMPS = BIT(1),
IEEE80211_CONF_CHANGE_LISTEN_INTERVAL = BIT(2),
IEEE80211_CONF_CHANGE_MONITOR = BIT(3),
IEEE80211_CONF_CHANGE_PS = BIT(4),
IEEE80211_CONF_CHANGE_POWER = BIT(5),
IEEE80211_CONF_CHANGE_CHANNEL = BIT(6),
IEEE80211_CONF_CHANGE_RETRY_LIMITS = BIT(7),
IEEE80211_CONF_CHANGE_IDLE = BIT(8),
IEEE80211_CONF_CHANGE_QOS = BIT(9),
};
/**
* enum ieee80211_smps_mode - spatial multiplexing power save mode
*
* @IEEE80211_SMPS_AUTOMATIC: automatic
* @IEEE80211_SMPS_OFF: off
* @IEEE80211_SMPS_STATIC: static
* @IEEE80211_SMPS_DYNAMIC: dynamic
* @IEEE80211_SMPS_NUM_MODES: internal, don't use
*/
enum ieee80211_smps_mode {
IEEE80211_SMPS_AUTOMATIC,
IEEE80211_SMPS_OFF,
IEEE80211_SMPS_STATIC,
IEEE80211_SMPS_DYNAMIC,
/* keep last */
IEEE80211_SMPS_NUM_MODES,
};
/**
* struct ieee80211_conf - configuration of the device
*
* This struct indicates how the driver shall configure the hardware.
*
* @flags: configuration flags defined above
*
* @listen_interval: listen interval in units of beacon interval
* @max_sleep_period: the maximum number of beacon intervals to sleep for
* before checking the beacon for a TIM bit (managed mode only); this
* value will be only achievable between DTIM frames, the hardware
* needs to check for the multicast traffic bit in DTIM beacons.
* This variable is valid only when the CONF_PS flag is set.
* @ps_dtim_period: The DTIM period of the AP we're connected to, for use
* in power saving. Power saving will not be enabled until a beacon
* has been received and the DTIM period is known.
* @dynamic_ps_timeout: The dynamic powersave timeout (in ms), see the
* powersave documentation below. This variable is valid only when
* the CONF_PS flag is set.
*
* @power_level: requested transmit power (in dBm)
*
* @channel: the channel to tune to
* @channel_type: the channel (HT) type
*
* @long_frame_max_tx_count: Maximum number of transmissions for a "long" frame
* (a frame not RTS protected), called "dot11LongRetryLimit" in 802.11,
* but actually means the number of transmissions not the number of retries
* @short_frame_max_tx_count: Maximum number of transmissions for a "short"
* frame, called "dot11ShortRetryLimit" in 802.11, but actually means the
* number of transmissions not the number of retries
*
* @smps_mode: spatial multiplexing powersave mode; note that
* %IEEE80211_SMPS_STATIC is used when the device is not
* configured for an HT channel
*/
struct ieee80211_conf {
u32 flags;
int power_level, dynamic_ps_timeout;
int max_sleep_period;
u16 listen_interval;
u8 ps_dtim_period;
u8 long_frame_max_tx_count, short_frame_max_tx_count;
struct ieee80211_channel *channel;
enum nl80211_channel_type channel_type;
enum ieee80211_smps_mode smps_mode;
};
/**
* struct ieee80211_channel_switch - holds the channel switch data
*
* The information provided in this structure is required for channel switch
* operation.
*
* @timestamp: value in microseconds of the 64-bit Time Synchronization
* Function (TSF) timer when the frame containing the channel switch
* announcement was received. This is simply the rx.mactime parameter
* the driver passed into mac80211.
* @block_tx: Indicates whether transmission must be blocked before the
* scheduled channel switch, as indicated by the AP.
* @channel: the new channel to switch to
* @count: the number of TBTT's until the channel switch event
*/
struct ieee80211_channel_switch {
u64 timestamp;
bool block_tx;
struct ieee80211_channel *channel;
u8 count;
};
/**
* struct ieee80211_vif - per-interface data
*
* Data in this structure is continually present for driver
* use during the life of a virtual interface.
*
* @type: type of this virtual interface
* @bss_conf: BSS configuration for this interface, either our own
* or the BSS we're associated to
* @addr: address of this interface
* @drv_priv: data area for driver use, will always be aligned to
* sizeof(void *).
*/
struct ieee80211_vif {
enum nl80211_iftype type;
struct ieee80211_bss_conf bss_conf;
u8 addr[ETH_ALEN];
/* must be last */
u8 drv_priv[0] __attribute__((__aligned__(sizeof(void *))));
};
static inline bool ieee80211_vif_is_mesh(struct ieee80211_vif *vif)
{
#ifdef CONFIG_MAC80211_MESH
return vif->type == NL80211_IFTYPE_MESH_POINT;
#endif
return false;
}
/**
* enum ieee80211_key_alg - key algorithm
* @ALG_WEP: WEP40 or WEP104
* @ALG_TKIP: TKIP
* @ALG_CCMP: CCMP (AES)
* @ALG_AES_CMAC: AES-128-CMAC
*/
enum ieee80211_key_alg {
ALG_WEP,
ALG_TKIP,
ALG_CCMP,
ALG_AES_CMAC,
};
/**
* enum ieee80211_key_flags - key flags
*
* These flags are used for communication about keys between the driver
* and mac80211, with the @flags parameter of &struct ieee80211_key_conf.
*
* @IEEE80211_KEY_FLAG_WMM_STA: Set by mac80211, this flag indicates
* that the STA this key will be used with could be using QoS.
* @IEEE80211_KEY_FLAG_GENERATE_IV: This flag should be set by the
* driver to indicate that it requires IV generation for this
* particular key.
* @IEEE80211_KEY_FLAG_GENERATE_MMIC: This flag should be set by
* the driver for a TKIP key if it requires Michael MIC
* generation in software.
* @IEEE80211_KEY_FLAG_PAIRWISE: Set by mac80211, this flag indicates
* that the key is pairwise rather then a shared key.
* @IEEE80211_KEY_FLAG_SW_MGMT: This flag should be set by the driver for a
* CCMP key if it requires CCMP encryption of management frames (MFP) to
* be done in software.
*/
enum ieee80211_key_flags {
IEEE80211_KEY_FLAG_WMM_STA = 1<<0,
IEEE80211_KEY_FLAG_GENERATE_IV = 1<<1,
IEEE80211_KEY_FLAG_GENERATE_MMIC= 1<<2,
IEEE80211_KEY_FLAG_PAIRWISE = 1<<3,
IEEE80211_KEY_FLAG_SW_MGMT = 1<<4,
};
/**
* struct ieee80211_key_conf - key information
*
* This key information is given by mac80211 to the driver by
* the set_key() callback in &struct ieee80211_ops.
*
* @hw_key_idx: To be set by the driver, this is the key index the driver
* wants to be given when a frame is transmitted and needs to be
* encrypted in hardware.
* @alg: The key algorithm.
* @flags: key flags, see &enum ieee80211_key_flags.
* @keyidx: the key index (0-3)
* @keylen: key material length
* @key: key material. For ALG_TKIP the key is encoded as a 256-bit (32 byte)
* data block:
* - Temporal Encryption Key (128 bits)
* - Temporal Authenticator Tx MIC Key (64 bits)
* - Temporal Authenticator Rx MIC Key (64 bits)
* @icv_len: The ICV length for this key type
* @iv_len: The IV length for this key type
*/
struct ieee80211_key_conf {
enum ieee80211_key_alg alg;
u8 icv_len;
u8 iv_len;
u8 hw_key_idx;
u8 flags;
s8 keyidx;
u8 keylen;
u8 key[0];
};
/**
* enum set_key_cmd - key command
*
* Used with the set_key() callback in &struct ieee80211_ops, this
* indicates whether a key is being removed or added.
*
* @SET_KEY: a key is set
* @DISABLE_KEY: a key must be disabled
*/
enum set_key_cmd {
SET_KEY, DISABLE_KEY,
};
/**
* struct ieee80211_sta - station table entry
*
* A station table entry represents a station we are possibly
* communicating with. Since stations are RCU-managed in
* mac80211, any ieee80211_sta pointer you get access to must
* either be protected by rcu_read_lock() explicitly or implicitly,
* or you must take good care to not use such a pointer after a
* call to your sta_remove callback that removed it.
*
* @addr: MAC address
* @aid: AID we assigned to the station if we're an AP
* @supp_rates: Bitmap of supported rates (per band)
* @ht_cap: HT capabilities of this STA; restricted to our own TX capabilities
* @drv_priv: data area for driver use, will always be aligned to
* sizeof(void *), size is determined in hw information.
*/
struct ieee80211_sta {
u32 supp_rates[IEEE80211_NUM_BANDS];
u8 addr[ETH_ALEN];
u16 aid;
struct ieee80211_sta_ht_cap ht_cap;
/* must be last */
u8 drv_priv[0] __attribute__((__aligned__(sizeof(void *))));
};
/**
* enum sta_notify_cmd - sta notify command
*
* Used with the sta_notify() callback in &struct ieee80211_ops, this
* indicates if an associated station made a power state transition.
*
* @STA_NOTIFY_SLEEP: a station is now sleeping
* @STA_NOTIFY_AWAKE: a sleeping station woke up
*/
enum sta_notify_cmd {
STA_NOTIFY_SLEEP, STA_NOTIFY_AWAKE,
};
/**
* enum ieee80211_tkip_key_type - get tkip key
*
* Used by drivers which need to get a tkip key for skb. Some drivers need a
* phase 1 key, others need a phase 2 key. A single function allows the driver
* to get the key, this enum indicates what type of key is required.
*
* @IEEE80211_TKIP_P1_KEY: the driver needs a phase 1 key
* @IEEE80211_TKIP_P2_KEY: the driver needs a phase 2 key
*/
enum ieee80211_tkip_key_type {
IEEE80211_TKIP_P1_KEY,
IEEE80211_TKIP_P2_KEY,
};
/**
* enum ieee80211_hw_flags - hardware flags
*
* These flags are used to indicate hardware capabilities to
* the stack. Generally, flags here should have their meaning
* done in a way that the simplest hardware doesn't need setting
* any particular flags. There are some exceptions to this rule,
* however, so you are advised to review these flags carefully.
*
* @IEEE80211_HW_HAS_RATE_CONTROL:
* The hardware or firmware includes rate control, and cannot be
* controlled by the stack. As such, no rate control algorithm
* should be instantiated, and the TX rate reported to userspace
* will be taken from the TX status instead of the rate control
* algorithm.
* Note that this requires that the driver implement a number of
* callbacks so it has the correct information, it needs to have
* the @set_rts_threshold callback and must look at the BSS config
* @use_cts_prot for G/N protection, @use_short_slot for slot
* timing in 2.4 GHz and @use_short_preamble for preambles for
* CCK frames.
*
* @IEEE80211_HW_RX_INCLUDES_FCS:
* Indicates that received frames passed to the stack include
* the FCS at the end.
*
* @IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING:
* Some wireless LAN chipsets buffer broadcast/multicast frames
* for power saving stations in the hardware/firmware and others
* rely on the host system for such buffering. This option is used
* to configure the IEEE 802.11 upper layer to buffer broadcast and
* multicast frames when there are power saving stations so that
* the driver can fetch them with ieee80211_get_buffered_bc().
*
* @IEEE80211_HW_2GHZ_SHORT_SLOT_INCAPABLE:
* Hardware is not capable of short slot operation on the 2.4 GHz band.
*
* @IEEE80211_HW_2GHZ_SHORT_PREAMBLE_INCAPABLE:
* Hardware is not capable of receiving frames with short preamble on
* the 2.4 GHz band.
*
* @IEEE80211_HW_SIGNAL_UNSPEC:
* Hardware can provide signal values but we don't know its units. We
* expect values between 0 and @max_signal.
* If possible please provide dB or dBm instead.
*
* @IEEE80211_HW_SIGNAL_DBM:
* Hardware gives signal values in dBm, decibel difference from
* one milliwatt. This is the preferred method since it is standardized
* between different devices. @max_signal does not need to be set.
*
* @IEEE80211_HW_SPECTRUM_MGMT:
* Hardware supports spectrum management defined in 802.11h
* Measurement, Channel Switch, Quieting, TPC
*
* @IEEE80211_HW_AMPDU_AGGREGATION:
* Hardware supports 11n A-MPDU aggregation.
*
* @IEEE80211_HW_SUPPORTS_PS:
* Hardware has power save support (i.e. can go to sleep).
*
* @IEEE80211_HW_PS_NULLFUNC_STACK:
* Hardware requires nullfunc frame handling in stack, implies
* stack support for dynamic PS.
*
* @IEEE80211_HW_SUPPORTS_DYNAMIC_PS:
* Hardware has support for dynamic PS.
*
* @IEEE80211_HW_MFP_CAPABLE:
* Hardware supports management frame protection (MFP, IEEE 802.11w).
*
* @IEEE80211_HW_BEACON_FILTER:
* Hardware supports dropping of irrelevant beacon frames to
* avoid waking up cpu.
*
* @IEEE80211_HW_SUPPORTS_STATIC_SMPS:
* Hardware supports static spatial multiplexing powersave,
* ie. can turn off all but one chain even on HT connections
* that should be using more chains.
*
* @IEEE80211_HW_SUPPORTS_DYNAMIC_SMPS:
* Hardware supports dynamic spatial multiplexing powersave,
* ie. can turn off all but one chain and then wake the rest
* up as required after, for example, rts/cts handshake.
*
* @IEEE80211_HW_SUPPORTS_UAPSD:
* Hardware supports Unscheduled Automatic Power Save Delivery
* (U-APSD) in managed mode. The mode is configured with
* conf_tx() operation.
*
* @IEEE80211_HW_REPORTS_TX_ACK_STATUS:
* Hardware can provide ack status reports of Tx frames to
* the stack.
*
* @IEEE80211_HW_CONNECTION_MONITOR:
* The hardware performs its own connection monitoring, including
* periodic keep-alives to the AP and probing the AP on beacon loss.
* When this flag is set, signaling beacon-loss will cause an immediate
* change to disassociated state.
*
* @IEEE80211_HW_SUPPORTS_CQM_RSSI:
* Hardware can do connection quality monitoring - i.e. it can monitor
* connection quality related parameters, such as the RSSI level and
* provide notifications if configured trigger levels are reached.
*
*/
enum ieee80211_hw_flags {
IEEE80211_HW_HAS_RATE_CONTROL = 1<<0,
IEEE80211_HW_RX_INCLUDES_FCS = 1<<1,
IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING = 1<<2,
IEEE80211_HW_2GHZ_SHORT_SLOT_INCAPABLE = 1<<3,
IEEE80211_HW_2GHZ_SHORT_PREAMBLE_INCAPABLE = 1<<4,
IEEE80211_HW_SIGNAL_UNSPEC = 1<<5,
IEEE80211_HW_SIGNAL_DBM = 1<<6,
/* use this hole */
IEEE80211_HW_SPECTRUM_MGMT = 1<<8,
IEEE80211_HW_AMPDU_AGGREGATION = 1<<9,
IEEE80211_HW_SUPPORTS_PS = 1<<10,
IEEE80211_HW_PS_NULLFUNC_STACK = 1<<11,
IEEE80211_HW_SUPPORTS_DYNAMIC_PS = 1<<12,
IEEE80211_HW_MFP_CAPABLE = 1<<13,
IEEE80211_HW_BEACON_FILTER = 1<<14,
IEEE80211_HW_SUPPORTS_STATIC_SMPS = 1<<15,
IEEE80211_HW_SUPPORTS_DYNAMIC_SMPS = 1<<16,
IEEE80211_HW_SUPPORTS_UAPSD = 1<<17,
IEEE80211_HW_REPORTS_TX_ACK_STATUS = 1<<18,
IEEE80211_HW_CONNECTION_MONITOR = 1<<19,
IEEE80211_HW_SUPPORTS_CQM_RSSI = 1<<20,
};
/**
* struct ieee80211_hw - hardware information and state
*
* This structure contains the configuration and hardware
* information for an 802.11 PHY.
*
* @wiphy: This points to the &struct wiphy allocated for this
* 802.11 PHY. You must fill in the @perm_addr and @dev
* members of this structure using SET_IEEE80211_DEV()
* and SET_IEEE80211_PERM_ADDR(). Additionally, all supported
* bands (with channels, bitrates) are registered here.
*
* @conf: &struct ieee80211_conf, device configuration, don't use.
*
* @priv: pointer to private area that was allocated for driver use
* along with this structure.
*
* @flags: hardware flags, see &enum ieee80211_hw_flags.
*
* @extra_tx_headroom: headroom to reserve in each transmit skb
* for use by the driver (e.g. for transmit headers.)
*
* @channel_change_time: time (in microseconds) it takes to change channels.
*
* @max_signal: Maximum value for signal (rssi) in RX information, used
* only when @IEEE80211_HW_SIGNAL_UNSPEC or @IEEE80211_HW_SIGNAL_DB
*
* @max_listen_interval: max listen interval in units of beacon interval
* that HW supports
*
* @queues: number of available hardware transmit queues for
* data packets. WMM/QoS requires at least four, these
* queues need to have configurable access parameters.
*
* @rate_control_algorithm: rate control algorithm for this hardware.
* If unset (NULL), the default algorithm will be used. Must be
* set before calling ieee80211_register_hw().
*
* @vif_data_size: size (in bytes) of the drv_priv data area
* within &struct ieee80211_vif.
* @sta_data_size: size (in bytes) of the drv_priv data area
* within &struct ieee80211_sta.
*
* @max_rates: maximum number of alternate rate retry stages
* @max_rate_tries: maximum number of tries for each stage
*/
struct ieee80211_hw {
struct ieee80211_conf conf;
struct wiphy *wiphy;
const char *rate_control_algorithm;
void *priv;
u32 flags;
unsigned int extra_tx_headroom;
int channel_change_time;
int vif_data_size;
int sta_data_size;
u16 queues;
u16 max_listen_interval;
s8 max_signal;
u8 max_rates;
u8 max_rate_tries;
};
/**
* wiphy_to_ieee80211_hw - return a mac80211 driver hw struct from a wiphy
*
* @wiphy: the &struct wiphy which we want to query
*
* mac80211 drivers can use this to get to their respective
* &struct ieee80211_hw. Drivers wishing to get to their own private
* structure can then access it via hw->priv. Note that mac802111 drivers should
* not use wiphy_priv() to try to get their private driver structure as this
* is already used internally by mac80211.
*/
struct ieee80211_hw *wiphy_to_ieee80211_hw(struct wiphy *wiphy);
/**
* SET_IEEE80211_DEV - set device for 802.11 hardware
*
* @hw: the &struct ieee80211_hw to set the device for
* @dev: the &struct device of this 802.11 device
*/
static inline void SET_IEEE80211_DEV(struct ieee80211_hw *hw, struct device *dev)
{
set_wiphy_dev(hw->wiphy, dev);
}
/**
* SET_IEEE80211_PERM_ADDR - set the permanent MAC address for 802.11 hardware
*
* @hw: the &struct ieee80211_hw to set the MAC address for
* @addr: the address to set
*/
static inline void SET_IEEE80211_PERM_ADDR(struct ieee80211_hw *hw, u8 *addr)
{
memcpy(hw->wiphy->perm_addr, addr, ETH_ALEN);
}
static inline struct ieee80211_rate *
ieee80211_get_tx_rate(const struct ieee80211_hw *hw,
const struct ieee80211_tx_info *c)
{
if (WARN_ON(c->control.rates[0].idx < 0))
return NULL;
return &hw->wiphy->bands[c->band]->bitrates[c->control.rates[0].idx];
}
static inline struct ieee80211_rate *
ieee80211_get_rts_cts_rate(const struct ieee80211_hw *hw,
const struct ieee80211_tx_info *c)
{
if (c->control.rts_cts_rate_idx < 0)
return NULL;
return &hw->wiphy->bands[c->band]->bitrates[c->control.rts_cts_rate_idx];
}
static inline struct ieee80211_rate *
ieee80211_get_alt_retry_rate(const struct ieee80211_hw *hw,
const struct ieee80211_tx_info *c, int idx)
{
if (c->control.rates[idx + 1].idx < 0)
return NULL;
return &hw->wiphy->bands[c->band]->bitrates[c->control.rates[idx + 1].idx];
}
/**
* DOC: Hardware crypto acceleration
*
* mac80211 is capable of taking advantage of many hardware
* acceleration designs for encryption and decryption operations.
*
* The set_key() callback in the &struct ieee80211_ops for a given
* device is called to enable hardware acceleration of encryption and
* decryption. The callback takes a @sta parameter that will be NULL
* for default keys or keys used for transmission only, or point to
* the station information for the peer for individual keys.
* Multiple transmission keys with the same key index may be used when
* VLANs are configured for an access point.
*
* When transmitting, the TX control data will use the @hw_key_idx
* selected by the driver by modifying the &struct ieee80211_key_conf
* pointed to by the @key parameter to the set_key() function.
*
* The set_key() call for the %SET_KEY command should return 0 if
* the key is now in use, -%EOPNOTSUPP or -%ENOSPC if it couldn't be
* added; if you return 0 then hw_key_idx must be assigned to the
* hardware key index, you are free to use the full u8 range.
*
* When the cmd is %DISABLE_KEY then it must succeed.
*
* Note that it is permissible to not decrypt a frame even if a key
* for it has been uploaded to hardware, the stack will not make any
* decision based on whether a key has been uploaded or not but rather
* based on the receive flags.
*
* The &struct ieee80211_key_conf structure pointed to by the @key
* parameter is guaranteed to be valid until another call to set_key()
* removes it, but it can only be used as a cookie to differentiate
* keys.
*
* In TKIP some HW need to be provided a phase 1 key, for RX decryption
* acceleration (i.e. iwlwifi). Those drivers should provide update_tkip_key
* handler.
* The update_tkip_key() call updates the driver with the new phase 1 key.
* This happens everytime the iv16 wraps around (every 65536 packets). The
* set_key() call will happen only once for each key (unless the AP did
* rekeying), it will not include a valid phase 1 key. The valid phase 1 key is
* provided by update_tkip_key only. The trigger that makes mac80211 call this
* handler is software decryption with wrap around of iv16.
*/
/**
* DOC: Powersave support
*
* mac80211 has support for various powersave implementations.
*
* First, it can support hardware that handles all powersaving by itself,
* such hardware should simply set the %IEEE80211_HW_SUPPORTS_PS hardware
* flag. In that case, it will be told about the desired powersave mode
* with the %IEEE80211_CONF_PS flag depending on the association status.
* The hardware must take care of sending nullfunc frames when necessary,
* i.e. when entering and leaving powersave mode. The hardware is required
* to look at the AID in beacons and signal to the AP that it woke up when
* it finds traffic directed to it.
*
* %IEEE80211_CONF_PS flag enabled means that the powersave mode defined in
* IEEE 802.11-2007 section 11.2 is enabled. This is not to be confused
* with hardware wakeup and sleep states. Driver is responsible for waking
* up the hardware before issueing commands to the hardware and putting it
* back to sleep at approriate times.
*
* When PS is enabled, hardware needs to wakeup for beacons and receive the
* buffered multicast/broadcast frames after the beacon. Also it must be
* possible to send frames and receive the acknowledment frame.
*
* Other hardware designs cannot send nullfunc frames by themselves and also
* need software support for parsing the TIM bitmap. This is also supported
* by mac80211 by combining the %IEEE80211_HW_SUPPORTS_PS and
* %IEEE80211_HW_PS_NULLFUNC_STACK flags. The hardware is of course still
* required to pass up beacons. The hardware is still required to handle
* waking up for multicast traffic; if it cannot the driver must handle that
* as best as it can, mac80211 is too slow to do that.
*
* Dynamic powersave is an extension to normal powersave in which the
* hardware stays awake for a user-specified period of time after sending a
* frame so that reply frames need not be buffered and therefore delayed to
* the next wakeup. It's compromise of getting good enough latency when
* there's data traffic and still saving significantly power in idle
* periods.
*
* Dynamic powersave is supported by simply mac80211 enabling and disabling
* PS based on traffic. Driver needs to only set %IEEE80211_HW_SUPPORTS_PS
* flag and mac80211 will handle everything automatically. Additionally,
* hardware having support for the dynamic PS feature may set the
* %IEEE80211_HW_SUPPORTS_DYNAMIC_PS flag to indicate that it can support
* dynamic PS mode itself. The driver needs to look at the
* @dynamic_ps_timeout hardware configuration value and use it that value
* whenever %IEEE80211_CONF_PS is set. In this case mac80211 will disable
* dynamic PS feature in stack and will just keep %IEEE80211_CONF_PS
* enabled whenever user has enabled powersave.
*
* Driver informs U-APSD client support by enabling
* %IEEE80211_HW_SUPPORTS_UAPSD flag. The mode is configured through the
* uapsd paramater in conf_tx() operation. Hardware needs to send the QoS
* Nullfunc frames and stay awake until the service period has ended. To
* utilize U-APSD, dynamic powersave is disabled for voip AC and all frames
* from that AC are transmitted with powersave enabled.
*
* Note: U-APSD client mode is not yet supported with
* %IEEE80211_HW_PS_NULLFUNC_STACK.
*/
/**
* DOC: Beacon filter support
*
* Some hardware have beacon filter support to reduce host cpu wakeups
* which will reduce system power consumption. It usuallly works so that
* the firmware creates a checksum of the beacon but omits all constantly
* changing elements (TSF, TIM etc). Whenever the checksum changes the
* beacon is forwarded to the host, otherwise it will be just dropped. That
* way the host will only receive beacons where some relevant information
* (for example ERP protection or WMM settings) have changed.
*
* Beacon filter support is advertised with the %IEEE80211_HW_BEACON_FILTER
* hardware capability. The driver needs to enable beacon filter support
* whenever power save is enabled, that is %IEEE80211_CONF_PS is set. When
* power save is enabled, the stack will not check for beacon loss and the
* driver needs to notify about loss of beacons with ieee80211_beacon_loss().
*
* The time (or number of beacons missed) until the firmware notifies the
* driver of a beacon loss event (which in turn causes the driver to call
* ieee80211_beacon_loss()) should be configurable and will be controlled
* by mac80211 and the roaming algorithm in the future.
*
* Since there may be constantly changing information elements that nothing
* in the software stack cares about, we will, in the future, have mac80211
* tell the driver which information elements are interesting in the sense
* that we want to see changes in them. This will include
* - a list of information element IDs
* - a list of OUIs for the vendor information element
*
* Ideally, the hardware would filter out any beacons without changes in the
* requested elements, but if it cannot support that it may, at the expense
* of some efficiency, filter out only a subset. For example, if the device
* doesn't support checking for OUIs it should pass up all changes in all
* vendor information elements.
*
* Note that change, for the sake of simplification, also includes information
* elements appearing or disappearing from the beacon.
*
* Some hardware supports an "ignore list" instead, just make sure nothing
* that was requested is on the ignore list, and include commonly changing
* information element IDs in the ignore list, for example 11 (BSS load) and
* the various vendor-assigned IEs with unknown contents (128, 129, 133-136,
* 149, 150, 155, 156, 173, 176, 178, 179, 219); for forward compatibility
* it could also include some currently unused IDs.
*
*
* In addition to these capabilities, hardware should support notifying the
* host of changes in the beacon RSSI. This is relevant to implement roaming
* when no traffic is flowing (when traffic is flowing we see the RSSI of
* the received data packets). This can consist in notifying the host when
* the RSSI changes significantly or when it drops below or rises above
* configurable thresholds. In the future these thresholds will also be
* configured by mac80211 (which gets them from userspace) to implement
* them as the roaming algorithm requires.
*
* If the hardware cannot implement this, the driver should ask it to
* periodically pass beacon frames to the host so that software can do the
* signal strength threshold checking.
*/
/**
* DOC: Spatial multiplexing power save
*
* SMPS (Spatial multiplexing power save) is a mechanism to conserve
* power in an 802.11n implementation. For details on the mechanism
* and rationale, please refer to 802.11 (as amended by 802.11n-2009)
* "11.2.3 SM power save".
*
* The mac80211 implementation is capable of sending action frames
* to update the AP about the station's SMPS mode, and will instruct
* the driver to enter the specific mode. It will also announce the
* requested SMPS mode during the association handshake. Hardware
* support for this feature is required, and can be indicated by
* hardware flags.
*
* The default mode will be "automatic", which nl80211/cfg80211
* defines to be dynamic SMPS in (regular) powersave, and SMPS
* turned off otherwise.
*
* To support this feature, the driver must set the appropriate
* hardware support flags, and handle the SMPS flag to the config()
* operation. It will then with this mechanism be instructed to
* enter the requested SMPS mode while associated to an HT AP.
*/
/**
* DOC: Frame filtering
*
* mac80211 requires to see many management frames for proper
* operation, and users may want to see many more frames when
* in monitor mode. However, for best CPU usage and power consumption,
* having as few frames as possible percolate through the stack is
* desirable. Hence, the hardware should filter as much as possible.
*
* To achieve this, mac80211 uses filter flags (see below) to tell
* the driver's configure_filter() function which frames should be
* passed to mac80211 and which should be filtered out.
*
* Before configure_filter() is invoked, the prepare_multicast()
* callback is invoked with the parameters @mc_count and @mc_list
* for the combined multicast address list of all virtual interfaces.
* It's use is optional, and it returns a u64 that is passed to
* configure_filter(). Additionally, configure_filter() has the
* arguments @changed_flags telling which flags were changed and
* @total_flags with the new flag states.
*
* If your device has no multicast address filters your driver will
* need to check both the %FIF_ALLMULTI flag and the @mc_count
* parameter to see whether multicast frames should be accepted
* or dropped.
*
* All unsupported flags in @total_flags must be cleared.
* Hardware does not support a flag if it is incapable of _passing_
* the frame to the stack. Otherwise the driver must ignore
* the flag, but not clear it.
* You must _only_ clear the flag (announce no support for the
* flag to mac80211) if you are not able to pass the packet type
* to the stack (so the hardware always filters it).
* So for example, you should clear @FIF_CONTROL, if your hardware
* always filters control frames. If your hardware always passes
* control frames to the kernel and is incapable of filtering them,
* you do _not_ clear the @FIF_CONTROL flag.
* This rule applies to all other FIF flags as well.
*/
/**
* enum ieee80211_filter_flags - hardware filter flags
*
* These flags determine what the filter in hardware should be
* programmed to let through and what should not be passed to the
* stack. It is always safe to pass more frames than requested,
* but this has negative impact on power consumption.
*
* @FIF_PROMISC_IN_BSS: promiscuous mode within your BSS,
* think of the BSS as your network segment and then this corresponds
* to the regular ethernet device promiscuous mode.
*
* @FIF_ALLMULTI: pass all multicast frames, this is used if requested
* by the user or if the hardware is not capable of filtering by
* multicast address.
*
* @FIF_FCSFAIL: pass frames with failed FCS (but you need to set the
* %RX_FLAG_FAILED_FCS_CRC for them)
*
* @FIF_PLCPFAIL: pass frames with failed PLCP CRC (but you need to set
* the %RX_FLAG_FAILED_PLCP_CRC for them
*
* @FIF_BCN_PRBRESP_PROMISC: This flag is set during scanning to indicate
* to the hardware that it should not filter beacons or probe responses
* by BSSID. Filtering them can greatly reduce the amount of processing
* mac80211 needs to do and the amount of CPU wakeups, so you should
* honour this flag if possible.
*
* @FIF_CONTROL: pass control frames (except for PS Poll), if PROMISC_IN_BSS
* is not set then only those addressed to this station.
*
* @FIF_OTHER_BSS: pass frames destined to other BSSes
*
* @FIF_PSPOLL: pass PS Poll frames, if PROMISC_IN_BSS is not set then only
* those addressed to this station.
*/
enum ieee80211_filter_flags {
FIF_PROMISC_IN_BSS = 1<<0,
FIF_ALLMULTI = 1<<1,
FIF_FCSFAIL = 1<<2,
FIF_PLCPFAIL = 1<<3,
FIF_BCN_PRBRESP_PROMISC = 1<<4,
FIF_CONTROL = 1<<5,
FIF_OTHER_BSS = 1<<6,
FIF_PSPOLL = 1<<7,
};
/**
* enum ieee80211_ampdu_mlme_action - A-MPDU actions
*
* These flags are used with the ampdu_action() callback in
* &struct ieee80211_ops to indicate which action is needed.
*
* Note that drivers MUST be able to deal with a TX aggregation
* session being stopped even before they OK'ed starting it by
* calling ieee80211_start_tx_ba_cb_irqsafe, because the peer
* might receive the addBA frame and send a delBA right away!
*
* @IEEE80211_AMPDU_RX_START: start Rx aggregation
* @IEEE80211_AMPDU_RX_STOP: stop Rx aggregation
* @IEEE80211_AMPDU_TX_START: start Tx aggregation
* @IEEE80211_AMPDU_TX_STOP: stop Tx aggregation
* @IEEE80211_AMPDU_TX_OPERATIONAL: TX aggregation has become operational
*/
enum ieee80211_ampdu_mlme_action {
IEEE80211_AMPDU_RX_START,
IEEE80211_AMPDU_RX_STOP,
IEEE80211_AMPDU_TX_START,
IEEE80211_AMPDU_TX_STOP,
IEEE80211_AMPDU_TX_OPERATIONAL,
};
/**
* struct ieee80211_ops - callbacks from mac80211 to the driver
*
* This structure contains various callbacks that the driver may
* handle or, in some cases, must handle, for example to configure
* the hardware to a new channel or to transmit a frame.
*
* @tx: Handler that 802.11 module calls for each transmitted frame.
* skb contains the buffer starting from the IEEE 802.11 header.
* The low-level driver should send the frame out based on
* configuration in the TX control data. This handler should,
* preferably, never fail and stop queues appropriately, more
* importantly, however, it must never fail for A-MPDU-queues.
* This function should return NETDEV_TX_OK except in very
* limited cases.
* Must be implemented and atomic.
*
* @start: Called before the first netdevice attached to the hardware
* is enabled. This should turn on the hardware and must turn on
* frame reception (for possibly enabled monitor interfaces.)
* Returns negative error codes, these may be seen in userspace,
* or zero.
* When the device is started it should not have a MAC address
* to avoid acknowledging frames before a non-monitor device
* is added.
* Must be implemented and can sleep.
*
* @stop: Called after last netdevice attached to the hardware
* is disabled. This should turn off the hardware (at least
* it must turn off frame reception.)
* May be called right after add_interface if that rejects
* an interface. If you added any work onto the mac80211 workqueue
* you should ensure to cancel it on this callback.
* Must be implemented and can sleep.
*
* @add_interface: Called when a netdevice attached to the hardware is
* enabled. Because it is not called for monitor mode devices, @start
* and @stop must be implemented.
* The driver should perform any initialization it needs before
* the device can be enabled. The initial configuration for the
* interface is given in the conf parameter.
* The callback may refuse to add an interface by returning a
* negative error code (which will be seen in userspace.)
* Must be implemented and can sleep.
*
* @remove_interface: Notifies a driver that an interface is going down.
* The @stop callback is called after this if it is the last interface
* and no monitor interfaces are present.
* When all interfaces are removed, the MAC address in the hardware
* must be cleared so the device no longer acknowledges packets,
* the mac_addr member of the conf structure is, however, set to the
* MAC address of the device going away.
* Hence, this callback must be implemented. It can sleep.
*
* @config: Handler for configuration requests. IEEE 802.11 code calls this
* function to change hardware configuration, e.g., channel.
* This function should never fail but returns a negative error code
* if it does. The callback can sleep.
*
* @bss_info_changed: Handler for configuration requests related to BSS
* parameters that may vary during BSS's lifespan, and may affect low
* level driver (e.g. assoc/disassoc status, erp parameters).
* This function should not be used if no BSS has been set, unless
* for association indication. The @changed parameter indicates which
* of the bss parameters has changed when a call is made. The callback
* can sleep.
*
* @prepare_multicast: Prepare for multicast filter configuration.
* This callback is optional, and its return value is passed
* to configure_filter(). This callback must be atomic.
*
* @configure_filter: Configure the device's RX filter.
* See the section "Frame filtering" for more information.
* This callback must be implemented and can sleep.
*
* @set_tim: Set TIM bit. mac80211 calls this function when a TIM bit
* must be set or cleared for a given STA. Must be atomic.
*
* @set_key: See the section "Hardware crypto acceleration"
* This callback is only called between add_interface and
* remove_interface calls, i.e. while the given virtual interface
* is enabled.
* Returns a negative error code if the key can't be added.
* The callback can sleep.
*
* @update_tkip_key: See the section "Hardware crypto acceleration"
* This callback will be called in the context of Rx. Called for drivers
* which set IEEE80211_KEY_FLAG_TKIP_REQ_RX_P1_KEY.
* The callback must be atomic.
*
* @hw_scan: Ask the hardware to service the scan request, no need to start
* the scan state machine in stack. The scan must honour the channel
* configuration done by the regulatory agent in the wiphy's
* registered bands. The hardware (or the driver) needs to make sure
* that power save is disabled.
* The @req ie/ie_len members are rewritten by mac80211 to contain the
* entire IEs after the SSID, so that drivers need not look at these
* at all but just send them after the SSID -- mac80211 includes the
* (extended) supported rates and HT information (where applicable).
* When the scan finishes, ieee80211_scan_completed() must be called;
* note that it also must be called when the scan cannot finish due to
* any error unless this callback returned a negative error code.
* The callback can sleep.
*
* @sw_scan_start: Notifier function that is called just before a software scan
* is started. Can be NULL, if the driver doesn't need this notification.
* The callback can sleep.
*
* @sw_scan_complete: Notifier function that is called just after a
* software scan finished. Can be NULL, if the driver doesn't need
* this notification.
* The callback can sleep.
*
* @get_stats: Return low-level statistics.
* Returns zero if statistics are available.
* The callback can sleep.
*
* @get_tkip_seq: If your device implements TKIP encryption in hardware this
* callback should be provided to read the TKIP transmit IVs (both IV32
* and IV16) for the given key from hardware.
* The callback must be atomic.
*
* @set_rts_threshold: Configuration of RTS threshold (if device needs it)
* The callback can sleep.
*
* @sta_add: Notifies low level driver about addition of an associated station,
* AP, IBSS/WDS/mesh peer etc. This callback can sleep.
*
* @sta_remove: Notifies low level driver about removal of an associated
* station, AP, IBSS/WDS/mesh peer etc. This callback can sleep.
*
* @sta_notify: Notifies low level driver about power state transition of an
* associated station, AP, IBSS/WDS/mesh peer etc. Must be atomic.
*
* @conf_tx: Configure TX queue parameters (EDCF (aifs, cw_min, cw_max),
* bursting) for a hardware TX queue.
* Returns a negative error code on failure.
* The callback can sleep.
*
* @get_tsf: Get the current TSF timer value from firmware/hardware. Currently,
* this is only used for IBSS mode BSSID merging and debugging. Is not a
* required function.
* The callback can sleep.
*
* @set_tsf: Set the TSF timer to the specified value in the firmware/hardware.
* Currently, this is only used for IBSS mode debugging. Is not a
* required function.
* The callback can sleep.
*
* @reset_tsf: Reset the TSF timer and allow firmware/hardware to synchronize
* with other STAs in the IBSS. This is only used in IBSS mode. This
* function is optional if the firmware/hardware takes full care of
* TSF synchronization.
* The callback can sleep.
*
* @tx_last_beacon: Determine whether the last IBSS beacon was sent by us.
* This is needed only for IBSS mode and the result of this function is
* used to determine whether to reply to Probe Requests.
* Returns non-zero if this device sent the last beacon.
* The callback can sleep.
*
* @ampdu_action: Perform a certain A-MPDU action
* The RA/TID combination determines the destination and TID we want
* the ampdu action to be performed for. The action is defined through
* ieee80211_ampdu_mlme_action. Starting sequence number (@ssn)
* is the first frame we expect to perform the action on. Notice
* that TX/RX_STOP can pass NULL for this parameter.
* Returns a negative error code on failure.
* The callback can sleep.
*
* @get_survey: Return per-channel survey information
*
* @rfkill_poll: Poll rfkill hardware state. If you need this, you also
* need to set wiphy->rfkill_poll to %true before registration,
* and need to call wiphy_rfkill_set_hw_state() in the callback.
* The callback can sleep.
*
* @set_coverage_class: Set slot time for given coverage class as specified
* in IEEE 802.11-2007 section 17.3.8.6 and modify ACK timeout
* accordingly. This callback is not required and may sleep.
*
* @testmode_cmd: Implement a cfg80211 test mode command.
* The callback can sleep.
*
* @flush: Flush all pending frames from the hardware queue, making sure
* that the hardware queues are empty. If the parameter @drop is set
* to %true, pending frames may be dropped. The callback can sleep.
*
* @channel_switch: Drivers that need (or want) to offload the channel
* switch operation for CSAs received from the AP may implement this
* callback. They must then call ieee80211_chswitch_done() to indicate
* completion of the channel switch.
*/
struct ieee80211_ops {
int (*tx)(struct ieee80211_hw *hw, struct sk_buff *skb);
int (*start)(struct ieee80211_hw *hw);
void (*stop)(struct ieee80211_hw *hw);
int (*add_interface)(struct ieee80211_hw *hw,
struct ieee80211_vif *vif);
void (*remove_interface)(struct ieee80211_hw *hw,
struct ieee80211_vif *vif);
int (*config)(struct ieee80211_hw *hw, u32 changed);
void (*bss_info_changed)(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
struct ieee80211_bss_conf *info,
u32 changed);
u64 (*prepare_multicast)(struct ieee80211_hw *hw,
struct netdev_hw_addr_list *mc_list);
void (*configure_filter)(struct ieee80211_hw *hw,
unsigned int changed_flags,
unsigned int *total_flags,
u64 multicast);
int (*set_tim)(struct ieee80211_hw *hw, struct ieee80211_sta *sta,
bool set);
int (*set_key)(struct ieee80211_hw *hw, enum set_key_cmd cmd,
struct ieee80211_vif *vif, struct ieee80211_sta *sta,
struct ieee80211_key_conf *key);
void (*update_tkip_key)(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
struct ieee80211_key_conf *conf,
struct ieee80211_sta *sta,
u32 iv32, u16 *phase1key);
int (*hw_scan)(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
struct cfg80211_scan_request *req);
void (*sw_scan_start)(struct ieee80211_hw *hw);
void (*sw_scan_complete)(struct ieee80211_hw *hw);
int (*get_stats)(struct ieee80211_hw *hw,
struct ieee80211_low_level_stats *stats);
void (*get_tkip_seq)(struct ieee80211_hw *hw, u8 hw_key_idx,
u32 *iv32, u16 *iv16);
int (*set_rts_threshold)(struct ieee80211_hw *hw, u32 value);
int (*sta_add)(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
struct ieee80211_sta *sta);
int (*sta_remove)(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
struct ieee80211_sta *sta);
void (*sta_notify)(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
enum sta_notify_cmd, struct ieee80211_sta *sta);
int (*conf_tx)(struct ieee80211_hw *hw, u16 queue,
const struct ieee80211_tx_queue_params *params);
u64 (*get_tsf)(struct ieee80211_hw *hw);
void (*set_tsf)(struct ieee80211_hw *hw, u64 tsf);
void (*reset_tsf)(struct ieee80211_hw *hw);
int (*tx_last_beacon)(struct ieee80211_hw *hw);
int (*ampdu_action)(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
enum ieee80211_ampdu_mlme_action action,
struct ieee80211_sta *sta, u16 tid, u16 *ssn);
int (*get_survey)(struct ieee80211_hw *hw, int idx,
struct survey_info *survey);
void (*rfkill_poll)(struct ieee80211_hw *hw);
void (*set_coverage_class)(struct ieee80211_hw *hw, u8 coverage_class);
#ifdef CONFIG_NL80211_TESTMODE
int (*testmode_cmd)(struct ieee80211_hw *hw, void *data, int len);
#endif
void (*flush)(struct ieee80211_hw *hw, bool drop);
void (*channel_switch)(struct ieee80211_hw *hw,
struct ieee80211_channel_switch *ch_switch);
};
/**
* ieee80211_alloc_hw - Allocate a new hardware device
*
* This must be called once for each hardware device. The returned pointer
* must be used to refer to this device when calling other functions.
* mac80211 allocates a private data area for the driver pointed to by
* @priv in &struct ieee80211_hw, the size of this area is given as
* @priv_data_len.
*
* @priv_data_len: length of private data
* @ops: callbacks for this device
*/
struct ieee80211_hw *ieee80211_alloc_hw(size_t priv_data_len,
const struct ieee80211_ops *ops);
/**
* ieee80211_register_hw - Register hardware device
*
* You must call this function before any other functions in
* mac80211. Note that before a hardware can be registered, you
* need to fill the contained wiphy's information.
*
* @hw: the device to register as returned by ieee80211_alloc_hw()
*/
int ieee80211_register_hw(struct ieee80211_hw *hw);
#ifdef CONFIG_MAC80211_LEDS
extern char *__ieee80211_get_tx_led_name(struct ieee80211_hw *hw);
extern char *__ieee80211_get_rx_led_name(struct ieee80211_hw *hw);
extern char *__ieee80211_get_assoc_led_name(struct ieee80211_hw *hw);
extern char *__ieee80211_get_radio_led_name(struct ieee80211_hw *hw);
#endif
/**
* ieee80211_get_tx_led_name - get name of TX LED
*
* mac80211 creates a transmit LED trigger for each wireless hardware
* that can be used to drive LEDs if your driver registers a LED device.
* This function returns the name (or %NULL if not configured for LEDs)
* of the trigger so you can automatically link the LED device.
*
* @hw: the hardware to get the LED trigger name for
*/
static inline char *ieee80211_get_tx_led_name(struct ieee80211_hw *hw)
{
#ifdef CONFIG_MAC80211_LEDS
return __ieee80211_get_tx_led_name(hw);
#else
return NULL;
#endif
}
/**
* ieee80211_get_rx_led_name - get name of RX LED
*
* mac80211 creates a receive LED trigger for each wireless hardware
* that can be used to drive LEDs if your driver registers a LED device.
* This function returns the name (or %NULL if not configured for LEDs)
* of the trigger so you can automatically link the LED device.
*
* @hw: the hardware to get the LED trigger name for
*/
static inline char *ieee80211_get_rx_led_name(struct ieee80211_hw *hw)
{
#ifdef CONFIG_MAC80211_LEDS
return __ieee80211_get_rx_led_name(hw);
#else
return NULL;
#endif
}
/**
* ieee80211_get_assoc_led_name - get name of association LED
*
* mac80211 creates a association LED trigger for each wireless hardware
* that can be used to drive LEDs if your driver registers a LED device.
* This function returns the name (or %NULL if not configured for LEDs)
* of the trigger so you can automatically link the LED device.
*
* @hw: the hardware to get the LED trigger name for
*/
static inline char *ieee80211_get_assoc_led_name(struct ieee80211_hw *hw)
{
#ifdef CONFIG_MAC80211_LEDS
return __ieee80211_get_assoc_led_name(hw);
#else
return NULL;
#endif
}
/**
* ieee80211_get_radio_led_name - get name of radio LED
*
* mac80211 creates a radio change LED trigger for each wireless hardware
* that can be used to drive LEDs if your driver registers a LED device.
* This function returns the name (or %NULL if not configured for LEDs)
* of the trigger so you can automatically link the LED device.
*
* @hw: the hardware to get the LED trigger name for
*/
static inline char *ieee80211_get_radio_led_name(struct ieee80211_hw *hw)
{
#ifdef CONFIG_MAC80211_LEDS
return __ieee80211_get_radio_led_name(hw);
#else
return NULL;
#endif
}
/**
* ieee80211_unregister_hw - Unregister a hardware device
*
* This function instructs mac80211 to free allocated resources
* and unregister netdevices from the networking subsystem.
*
* @hw: the hardware to unregister
*/
void ieee80211_unregister_hw(struct ieee80211_hw *hw);
/**
* ieee80211_free_hw - free hardware descriptor
*
* This function frees everything that was allocated, including the
* private data for the driver. You must call ieee80211_unregister_hw()
* before calling this function.
*
* @hw: the hardware to free
*/
void ieee80211_free_hw(struct ieee80211_hw *hw);
/**
* ieee80211_restart_hw - restart hardware completely
*
* Call this function when the hardware was restarted for some reason
* (hardware error, ...) and the driver is unable to restore its state
* by itself. mac80211 assumes that at this point the driver/hardware
* is completely uninitialised and stopped, it starts the process by
* calling the ->start() operation. The driver will need to reset all
* internal state that it has prior to calling this function.
*
* @hw: the hardware to restart
*/
void ieee80211_restart_hw(struct ieee80211_hw *hw);
/**
* ieee80211_rx - receive frame
*
* Use this function to hand received frames to mac80211. The receive
* buffer in @skb must start with an IEEE 802.11 header. In case of a
* paged @skb is used, the driver is recommended to put the ieee80211
* header of the frame on the linear part of the @skb to avoid memory
* allocation and/or memcpy by the stack.
*
* This function may not be called in IRQ context. Calls to this function
* for a single hardware must be synchronized against each other. Calls to
* this function, ieee80211_rx_ni() and ieee80211_rx_irqsafe() may not be
* mixed for a single hardware.
*
* In process context use instead ieee80211_rx_ni().
*
* @hw: the hardware this frame came in on
* @skb: the buffer to receive, owned by mac80211 after this call
*/
void ieee80211_rx(struct ieee80211_hw *hw, struct sk_buff *skb);
/**
* ieee80211_rx_irqsafe - receive frame
*
* Like ieee80211_rx() but can be called in IRQ context
* (internally defers to a tasklet.)
*
* Calls to this function, ieee80211_rx() or ieee80211_rx_ni() may not
* be mixed for a single hardware.
*
* @hw: the hardware this frame came in on
* @skb: the buffer to receive, owned by mac80211 after this call
*/
void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb);
/**
* ieee80211_rx_ni - receive frame (in process context)
*
* Like ieee80211_rx() but can be called in process context
* (internally disables bottom halves).
*
* Calls to this function, ieee80211_rx() and ieee80211_rx_irqsafe() may
* not be mixed for a single hardware.
*
* @hw: the hardware this frame came in on
* @skb: the buffer to receive, owned by mac80211 after this call
*/
static inline void ieee80211_rx_ni(struct ieee80211_hw *hw,
struct sk_buff *skb)
{
local_bh_disable();
ieee80211_rx(hw, skb);
local_bh_enable();
}
/*
* The TX headroom reserved by mac80211 for its own tx_status functions.
* This is enough for the radiotap header.
*/
#define IEEE80211_TX_STATUS_HEADROOM 13
/**
* ieee80211_tx_status - transmit status callback
*
* Call this function for all transmitted frames after they have been
* transmitted. It is permissible to not call this function for
* multicast frames but this can affect statistics.
*
* This function may not be called in IRQ context. Calls to this function
* for a single hardware must be synchronized against each other. Calls
* to this function and ieee80211_tx_status_irqsafe() may not be mixed
* for a single hardware.
*
* @hw: the hardware the frame was transmitted by
* @skb: the frame that was transmitted, owned by mac80211 after this call
*/
void ieee80211_tx_status(struct ieee80211_hw *hw,
struct sk_buff *skb);
/**
* ieee80211_tx_status_irqsafe - IRQ-safe transmit status callback
*
* Like ieee80211_tx_status() but can be called in IRQ context
* (internally defers to a tasklet.)
*
* Calls to this function and ieee80211_tx_status() may not be mixed for a
* single hardware.
*
* @hw: the hardware the frame was transmitted by
* @skb: the frame that was transmitted, owned by mac80211 after this call
*/
void ieee80211_tx_status_irqsafe(struct ieee80211_hw *hw,
struct sk_buff *skb);
/**
* ieee80211_beacon_get_tim - beacon generation function
* @hw: pointer obtained from ieee80211_alloc_hw().
* @vif: &struct ieee80211_vif pointer from the add_interface callback.
* @tim_offset: pointer to variable that will receive the TIM IE offset.
* Set to 0 if invalid (in non-AP modes).
* @tim_length: pointer to variable that will receive the TIM IE length,
* (including the ID and length bytes!).
* Set to 0 if invalid (in non-AP modes).
*
* If the driver implements beaconing modes, it must use this function to
* obtain the beacon frame/template.
*
* If the beacon frames are generated by the host system (i.e., not in
* hardware/firmware), the driver uses this function to get each beacon
* frame from mac80211 -- it is responsible for calling this function
* before the beacon is needed (e.g. based on hardware interrupt).
*
* If the beacon frames are generated by the device, then the driver
* must use the returned beacon as the template and change the TIM IE
* according to the current DTIM parameters/TIM bitmap.
*
* The driver is responsible for freeing the returned skb.
*/
struct sk_buff *ieee80211_beacon_get_tim(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
u16 *tim_offset, u16 *tim_length);
/**
* ieee80211_beacon_get - beacon generation function
* @hw: pointer obtained from ieee80211_alloc_hw().
* @vif: &struct ieee80211_vif pointer from the add_interface callback.
*
* See ieee80211_beacon_get_tim().
*/
static inline struct sk_buff *ieee80211_beacon_get(struct ieee80211_hw *hw,
struct ieee80211_vif *vif)
{
return ieee80211_beacon_get_tim(hw, vif, NULL, NULL);
}
/**
* ieee80211_pspoll_get - retrieve a PS Poll template
* @hw: pointer obtained from ieee80211_alloc_hw().
* @vif: &struct ieee80211_vif pointer from the add_interface callback.
*
* Creates a PS Poll a template which can, for example, uploaded to
* hardware. The template must be updated after association so that correct
* AID, BSSID and MAC address is used.
*
* Note: Caller (or hardware) is responsible for setting the
* &IEEE80211_FCTL_PM bit.
*/
struct sk_buff *ieee80211_pspoll_get(struct ieee80211_hw *hw,
struct ieee80211_vif *vif);
/**
* ieee80211_nullfunc_get - retrieve a nullfunc template
* @hw: pointer obtained from ieee80211_alloc_hw().
* @vif: &struct ieee80211_vif pointer from the add_interface callback.
*
* Creates a Nullfunc template which can, for example, uploaded to
* hardware. The template must be updated after association so that correct
* BSSID and address is used.
*
* Note: Caller (or hardware) is responsible for setting the
* &IEEE80211_FCTL_PM bit as well as Duration and Sequence Control fields.
*/
struct sk_buff *ieee80211_nullfunc_get(struct ieee80211_hw *hw,
struct ieee80211_vif *vif);
/**
* ieee80211_probereq_get - retrieve a Probe Request template
* @hw: pointer obtained from ieee80211_alloc_hw().
* @vif: &struct ieee80211_vif pointer from the add_interface callback.
* @ssid: SSID buffer
* @ssid_len: length of SSID
* @ie: buffer containing all IEs except SSID for the template
* @ie_len: length of the IE buffer
*
* Creates a Probe Request template which can, for example, be uploaded to
* hardware.
*/
struct sk_buff *ieee80211_probereq_get(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
const u8 *ssid, size_t ssid_len,
const u8 *ie, size_t ie_len);
/**
* ieee80211_rts_get - RTS frame generation function
* @hw: pointer obtained from ieee80211_alloc_hw().
* @vif: &struct ieee80211_vif pointer from the add_interface callback.
* @frame: pointer to the frame that is going to be protected by the RTS.
* @frame_len: the frame length (in octets).
* @frame_txctl: &struct ieee80211_tx_info of the frame.
* @rts: The buffer where to store the RTS frame.
*
* If the RTS frames are generated by the host system (i.e., not in
* hardware/firmware), the low-level driver uses this function to receive
* the next RTS frame from the 802.11 code. The low-level is responsible
* for calling this function before and RTS frame is needed.
*/
void ieee80211_rts_get(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
const void *frame, size_t frame_len,
const struct ieee80211_tx_info *frame_txctl,
struct ieee80211_rts *rts);
/**
* ieee80211_rts_duration - Get the duration field for an RTS frame
* @hw: pointer obtained from ieee80211_alloc_hw().
* @vif: &struct ieee80211_vif pointer from the add_interface callback.
* @frame_len: the length of the frame that is going to be protected by the RTS.
* @frame_txctl: &struct ieee80211_tx_info of the frame.
*
* If the RTS is generated in firmware, but the host system must provide
* the duration field, the low-level driver uses this function to receive
* the duration field value in little-endian byteorder.
*/
__le16 ieee80211_rts_duration(struct ieee80211_hw *hw,
struct ieee80211_vif *vif, size_t frame_len,
const struct ieee80211_tx_info *frame_txctl);
/**
* ieee80211_ctstoself_get - CTS-to-self frame generation function
* @hw: pointer obtained from ieee80211_alloc_hw().
* @vif: &struct ieee80211_vif pointer from the add_interface callback.
* @frame: pointer to the frame that is going to be protected by the CTS-to-self.
* @frame_len: the frame length (in octets).
* @frame_txctl: &struct ieee80211_tx_info of the frame.
* @cts: The buffer where to store the CTS-to-self frame.
*
* If the CTS-to-self frames are generated by the host system (i.e., not in
* hardware/firmware), the low-level driver uses this function to receive
* the next CTS-to-self frame from the 802.11 code. The low-level is responsible
* for calling this function before and CTS-to-self frame is needed.
*/
void ieee80211_ctstoself_get(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
const void *frame, size_t frame_len,
const struct ieee80211_tx_info *frame_txctl,
struct ieee80211_cts *cts);
/**
* ieee80211_ctstoself_duration - Get the duration field for a CTS-to-self frame
* @hw: pointer obtained from ieee80211_alloc_hw().
* @vif: &struct ieee80211_vif pointer from the add_interface callback.
* @frame_len: the length of the frame that is going to be protected by the CTS-to-self.
* @frame_txctl: &struct ieee80211_tx_info of the frame.
*
* If the CTS-to-self is generated in firmware, but the host system must provide
* the duration field, the low-level driver uses this function to receive
* the duration field value in little-endian byteorder.
*/
__le16 ieee80211_ctstoself_duration(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
size_t frame_len,
const struct ieee80211_tx_info *frame_txctl);
/**
* ieee80211_generic_frame_duration - Calculate the duration field for a frame
* @hw: pointer obtained from ieee80211_alloc_hw().
* @vif: &struct ieee80211_vif pointer from the add_interface callback.
* @frame_len: the length of the frame.
* @rate: the rate at which the frame is going to be transmitted.
*
* Calculate the duration field of some generic frame, given its
* length and transmission rate (in 100kbps).
*/
__le16 ieee80211_generic_frame_duration(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
size_t frame_len,
struct ieee80211_rate *rate);
/**
* ieee80211_get_buffered_bc - accessing buffered broadcast and multicast frames
* @hw: pointer as obtained from ieee80211_alloc_hw().
* @vif: &struct ieee80211_vif pointer from the add_interface callback.
*
* Function for accessing buffered broadcast and multicast frames. If
* hardware/firmware does not implement buffering of broadcast/multicast
* frames when power saving is used, 802.11 code buffers them in the host
* memory. The low-level driver uses this function to fetch next buffered
* frame. In most cases, this is used when generating beacon frame. This
* function returns a pointer to the next buffered skb or NULL if no more
* buffered frames are available.
*
* Note: buffered frames are returned only after DTIM beacon frame was
* generated with ieee80211_beacon_get() and the low-level driver must thus
* call ieee80211_beacon_get() first. ieee80211_get_buffered_bc() returns
* NULL if the previous generated beacon was not DTIM, so the low-level driver
* does not need to check for DTIM beacons separately and should be able to
* use common code for all beacons.
*/
struct sk_buff *
ieee80211_get_buffered_bc(struct ieee80211_hw *hw, struct ieee80211_vif *vif);
/**
* ieee80211_get_tkip_key - get a TKIP rc4 for skb
*
* This function computes a TKIP rc4 key for an skb. It computes
* a phase 1 key if needed (iv16 wraps around). This function is to
* be used by drivers which can do HW encryption but need to compute
* to phase 1/2 key in SW.
*
* @keyconf: the parameter passed with the set key
* @skb: the skb for which the key is needed
* @type: TBD
* @key: a buffer to which the key will be written
*/
void ieee80211_get_tkip_key(struct ieee80211_key_conf *keyconf,
struct sk_buff *skb,
enum ieee80211_tkip_key_type type, u8 *key);
/**
* ieee80211_wake_queue - wake specific queue
* @hw: pointer as obtained from ieee80211_alloc_hw().
* @queue: queue number (counted from zero).
*
* Drivers should use this function instead of netif_wake_queue.
*/
void ieee80211_wake_queue(struct ieee80211_hw *hw, int queue);
/**
* ieee80211_stop_queue - stop specific queue
* @hw: pointer as obtained from ieee80211_alloc_hw().
* @queue: queue number (counted from zero).
*
* Drivers should use this function instead of netif_stop_queue.
*/
void ieee80211_stop_queue(struct ieee80211_hw *hw, int queue);
/**
* ieee80211_queue_stopped - test status of the queue
* @hw: pointer as obtained from ieee80211_alloc_hw().
* @queue: queue number (counted from zero).
*
* Drivers should use this function instead of netif_stop_queue.
*/
int ieee80211_queue_stopped(struct ieee80211_hw *hw, int queue);
/**
* ieee80211_stop_queues - stop all queues
* @hw: pointer as obtained from ieee80211_alloc_hw().
*
* Drivers should use this function instead of netif_stop_queue.
*/
void ieee80211_stop_queues(struct ieee80211_hw *hw);
/**
* ieee80211_wake_queues - wake all queues
* @hw: pointer as obtained from ieee80211_alloc_hw().
*
* Drivers should use this function instead of netif_wake_queue.
*/
void ieee80211_wake_queues(struct ieee80211_hw *hw);
/**
* ieee80211_scan_completed - completed hardware scan
*
* When hardware scan offload is used (i.e. the hw_scan() callback is
* assigned) this function needs to be called by the driver to notify
* mac80211 that the scan finished.
*
* @hw: the hardware that finished the scan
* @aborted: set to true if scan was aborted
*/
void ieee80211_scan_completed(struct ieee80211_hw *hw, bool aborted);
/**
* ieee80211_iterate_active_interfaces - iterate active interfaces
*
* This function iterates over the interfaces associated with a given
* hardware that are currently active and calls the callback for them.
* This function allows the iterator function to sleep, when the iterator
* function is atomic @ieee80211_iterate_active_interfaces_atomic can
* be used.
*
* @hw: the hardware struct of which the interfaces should be iterated over
* @iterator: the iterator function to call
* @data: first argument of the iterator function
*/
void ieee80211_iterate_active_interfaces(struct ieee80211_hw *hw,
void (*iterator)(void *data, u8 *mac,
struct ieee80211_vif *vif),
void *data);
/**
* ieee80211_iterate_active_interfaces_atomic - iterate active interfaces
*
* This function iterates over the interfaces associated with a given
* hardware that are currently active and calls the callback for them.
* This function requires the iterator callback function to be atomic,
* if that is not desired, use @ieee80211_iterate_active_interfaces instead.
*
* @hw: the hardware struct of which the interfaces should be iterated over
* @iterator: the iterator function to call, cannot sleep
* @data: first argument of the iterator function
*/
void ieee80211_iterate_active_interfaces_atomic(struct ieee80211_hw *hw,
void (*iterator)(void *data,
u8 *mac,
struct ieee80211_vif *vif),
void *data);
/**
* ieee80211_queue_work - add work onto the mac80211 workqueue
*
* Drivers and mac80211 use this to add work onto the mac80211 workqueue.
* This helper ensures drivers are not queueing work when they should not be.
*
* @hw: the hardware struct for the interface we are adding work for
* @work: the work we want to add onto the mac80211 workqueue
*/
void ieee80211_queue_work(struct ieee80211_hw *hw, struct work_struct *work);
/**
* ieee80211_queue_delayed_work - add work onto the mac80211 workqueue
*
* Drivers and mac80211 use this to queue delayed work onto the mac80211
* workqueue.
*
* @hw: the hardware struct for the interface we are adding work for
* @dwork: delayable work to queue onto the mac80211 workqueue
* @delay: number of jiffies to wait before queueing
*/
void ieee80211_queue_delayed_work(struct ieee80211_hw *hw,
struct delayed_work *dwork,
unsigned long delay);
/**
* ieee80211_start_tx_ba_session - Start a tx Block Ack session.
* @sta: the station for which to start a BA session
* @tid: the TID to BA on.
*
* Return: success if addBA request was sent, failure otherwise
*
* Although mac80211/low level driver/user space application can estimate
* the need to start aggregation on a certain RA/TID, the session level
* will be managed by the mac80211.
*/
int ieee80211_start_tx_ba_session(struct ieee80211_sta *sta, u16 tid);
/**
* ieee80211_start_tx_ba_cb_irqsafe - low level driver ready to aggregate.
* @vif: &struct ieee80211_vif pointer from the add_interface callback
* @ra: receiver address of the BA session recipient.
* @tid: the TID to BA on.
*
* This function must be called by low level driver once it has
* finished with preparations for the BA session. It can be called
* from any context.
*/
void ieee80211_start_tx_ba_cb_irqsafe(struct ieee80211_vif *vif, const u8 *ra,
u16 tid);
/**
* ieee80211_stop_tx_ba_session - Stop a Block Ack session.
* @sta: the station whose BA session to stop
* @tid: the TID to stop BA.
*
* Return: negative error if the TID is invalid, or no aggregation active
*
* Although mac80211/low level driver/user space application can estimate
* the need to stop aggregation on a certain RA/TID, the session level
* will be managed by the mac80211.
*/
int ieee80211_stop_tx_ba_session(struct ieee80211_sta *sta, u16 tid);
/**
* ieee80211_stop_tx_ba_cb_irqsafe - low level driver ready to stop aggregate.
* @vif: &struct ieee80211_vif pointer from the add_interface callback
* @ra: receiver address of the BA session recipient.
* @tid: the desired TID to BA on.
*
* This function must be called by low level driver once it has
* finished with preparations for the BA session tear down. It
* can be called from any context.
*/
void ieee80211_stop_tx_ba_cb_irqsafe(struct ieee80211_vif *vif, const u8 *ra,
u16 tid);
/**
* ieee80211_find_sta - find a station
*
* @vif: virtual interface to look for station on
* @addr: station's address
*
* This function must be called under RCU lock and the
* resulting pointer is only valid under RCU lock as well.
*/
struct ieee80211_sta *ieee80211_find_sta(struct ieee80211_vif *vif,
const u8 *addr);
/**
* ieee80211_find_sta_by_hw - find a station on hardware
*
* @hw: pointer as obtained from ieee80211_alloc_hw()
* @addr: station's address
*
* This function must be called under RCU lock and the
* resulting pointer is only valid under RCU lock as well.
*
* NOTE: This function should not be used! When mac80211 is converted
* internally to properly keep track of stations on multiple
* virtual interfaces, it will not always know which station to
* return here since a single address might be used by multiple
* logical stations (e.g. consider a station connecting to another
* BSSID on the same AP hardware without disconnecting first).
*
* DO NOT USE THIS FUNCTION.
*/
struct ieee80211_sta *ieee80211_find_sta_by_hw(struct ieee80211_hw *hw,
const u8 *addr);
/**
* ieee80211_sta_block_awake - block station from waking up
* @hw: the hardware
* @pubsta: the station
* @block: whether to block or unblock
*
* Some devices require that all frames that are on the queues
* for a specific station that went to sleep are flushed before
* a poll response or frames after the station woke up can be
* delivered to that it. Note that such frames must be rejected
* by the driver as filtered, with the appropriate status flag.
*
* This function allows implementing this mode in a race-free
* manner.
*
* To do this, a driver must keep track of the number of frames
* still enqueued for a specific station. If this number is not
* zero when the station goes to sleep, the driver must call
* this function to force mac80211 to consider the station to
* be asleep regardless of the station's actual state. Once the
* number of outstanding frames reaches zero, the driver must
* call this function again to unblock the station. That will
* cause mac80211 to be able to send ps-poll responses, and if
* the station queried in the meantime then frames will also
* be sent out as a result of this. Additionally, the driver
* will be notified that the station woke up some time after
* it is unblocked, regardless of whether the station actually
* woke up while blocked or not.
*/
void ieee80211_sta_block_awake(struct ieee80211_hw *hw,
struct ieee80211_sta *pubsta, bool block);
/**
* ieee80211_beacon_loss - inform hardware does not receive beacons
*
* @vif: &struct ieee80211_vif pointer from the add_interface callback.
*
* When beacon filtering is enabled with %IEEE80211_HW_BEACON_FILTERING and
* %IEEE80211_CONF_PS is set, the driver needs to inform whenever the
* hardware is not receiving beacons with this function.
*/
void ieee80211_beacon_loss(struct ieee80211_vif *vif);
/**
* ieee80211_connection_loss - inform hardware has lost connection to the AP
*
* @vif: &struct ieee80211_vif pointer from the add_interface callback.
*
* When beacon filtering is enabled with %IEEE80211_HW_BEACON_FILTERING, and
* %IEEE80211_CONF_PS and %IEEE80211_HW_CONNECTION_MONITOR are set, the driver
* needs to inform if the connection to the AP has been lost.
*
* This function will cause immediate change to disassociated state,
* without connection recovery attempts.
*/
void ieee80211_connection_loss(struct ieee80211_vif *vif);
/**
* ieee80211_cqm_rssi_notify - inform a configured connection quality monitoring
* rssi threshold triggered
*
* @vif: &struct ieee80211_vif pointer from the add_interface callback.
* @rssi_event: the RSSI trigger event type
* @gfp: context flags
*
* When the %IEEE80211_HW_SUPPORTS_CQM_RSSI is set, and a connection quality
* monitoring is configured with an rssi threshold, the driver will inform
* whenever the rssi level reaches the threshold.
*/
void ieee80211_cqm_rssi_notify(struct ieee80211_vif *vif,
enum nl80211_cqm_rssi_threshold_event rssi_event,
gfp_t gfp);
/**
* ieee80211_chswitch_done - Complete channel switch process
* @vif: &struct ieee80211_vif pointer from the add_interface callback.
* @success: make the channel switch successful or not
*
* Complete the channel switch post-process: set the new operational channel
* and wake up the suspended queues.
*/
void ieee80211_chswitch_done(struct ieee80211_vif *vif, bool success);
/* Rate control API */
/**
* enum rate_control_changed - flags to indicate which parameter changed
*
* @IEEE80211_RC_HT_CHANGED: The HT parameters of the operating channel have
* changed, rate control algorithm can update its internal state if needed.
*/
enum rate_control_changed {
IEEE80211_RC_HT_CHANGED = BIT(0)
};
/**
* struct ieee80211_tx_rate_control - rate control information for/from RC algo
*
* @hw: The hardware the algorithm is invoked for.
* @sband: The band this frame is being transmitted on.
* @bss_conf: the current BSS configuration
* @reported_rate: The rate control algorithm can fill this in to indicate
* which rate should be reported to userspace as the current rate and
* used for rate calculations in the mesh network.
* @rts: whether RTS will be used for this frame because it is longer than the
* RTS threshold
* @short_preamble: whether mac80211 will request short-preamble transmission
* if the selected rate supports it
* @max_rate_idx: user-requested maximum rate (not MCS for now)
* (deprecated; this will be removed once drivers get updated to use
* rate_idx_mask)
* @rate_idx_mask: user-requested rate mask (not MCS for now)
* @skb: the skb that will be transmitted, the control information in it needs
* to be filled in
* @ap: whether this frame is sent out in AP mode
*/
struct ieee80211_tx_rate_control {
struct ieee80211_hw *hw;
struct ieee80211_supported_band *sband;
struct ieee80211_bss_conf *bss_conf;
struct sk_buff *skb;
struct ieee80211_tx_rate reported_rate;
bool rts, short_preamble;
u8 max_rate_idx;
u32 rate_idx_mask;
bool ap;
};
struct rate_control_ops {
struct module *module;
const char *name;
void *(*alloc)(struct ieee80211_hw *hw, struct dentry *debugfsdir);
void (*free)(void *priv);
void *(*alloc_sta)(void *priv, struct ieee80211_sta *sta, gfp_t gfp);
void (*rate_init)(void *priv, struct ieee80211_supported_band *sband,
struct ieee80211_sta *sta, void *priv_sta);
void (*rate_update)(void *priv, struct ieee80211_supported_band *sband,
struct ieee80211_sta *sta,
void *priv_sta, u32 changed,
enum nl80211_channel_type oper_chan_type);
void (*free_sta)(void *priv, struct ieee80211_sta *sta,
void *priv_sta);
void (*tx_status)(void *priv, struct ieee80211_supported_band *sband,
struct ieee80211_sta *sta, void *priv_sta,
struct sk_buff *skb);
void (*get_rate)(void *priv, struct ieee80211_sta *sta, void *priv_sta,
struct ieee80211_tx_rate_control *txrc);
void (*add_sta_debugfs)(void *priv, void *priv_sta,
struct dentry *dir);
void (*remove_sta_debugfs)(void *priv, void *priv_sta);
};
static inline int rate_supported(struct ieee80211_sta *sta,
enum ieee80211_band band,
int index)
{
return (sta == NULL || sta->supp_rates[band] & BIT(index));
}
/**
* rate_control_send_low - helper for drivers for management/no-ack frames
*
* Rate control algorithms that agree to use the lowest rate to
* send management frames and NO_ACK data with the respective hw
* retries should use this in the beginning of their mac80211 get_rate
* callback. If true is returned the rate control can simply return.
* If false is returned we guarantee that sta and sta and priv_sta is
* not null.
*
* Rate control algorithms wishing to do more intelligent selection of
* rate for multicast/broadcast frames may choose to not use this.
*
* @sta: &struct ieee80211_sta pointer to the target destination. Note
* that this may be null.
* @priv_sta: private rate control structure. This may be null.
* @txrc: rate control information we sholud populate for mac80211.
*/
bool rate_control_send_low(struct ieee80211_sta *sta,
void *priv_sta,
struct ieee80211_tx_rate_control *txrc);
static inline s8
rate_lowest_index(struct ieee80211_supported_band *sband,
struct ieee80211_sta *sta)
{
int i;
for (i = 0; i < sband->n_bitrates; i++)
if (rate_supported(sta, sband->band, i))
return i;
/* warn when we cannot find a rate. */
WARN_ON(1);
return 0;
}
static inline
bool rate_usable_index_exists(struct ieee80211_supported_band *sband,
struct ieee80211_sta *sta)
{
unsigned int i;
for (i = 0; i < sband->n_bitrates; i++)
if (rate_supported(sta, sband->band, i))
return true;
return false;
}
int ieee80211_rate_control_register(struct rate_control_ops *ops);
void ieee80211_rate_control_unregister(struct rate_control_ops *ops);
static inline bool
conf_is_ht20(struct ieee80211_conf *conf)
{
return conf->channel_type == NL80211_CHAN_HT20;
}
static inline bool
conf_is_ht40_minus(struct ieee80211_conf *conf)
{
return conf->channel_type == NL80211_CHAN_HT40MINUS;
}
static inline bool
conf_is_ht40_plus(struct ieee80211_conf *conf)
{
return conf->channel_type == NL80211_CHAN_HT40PLUS;
}
static inline bool
conf_is_ht40(struct ieee80211_conf *conf)
{
return conf_is_ht40_minus(conf) || conf_is_ht40_plus(conf);
}
static inline bool
conf_is_ht(struct ieee80211_conf *conf)
{
return conf->channel_type != NL80211_CHAN_NO_HT;
}
#endif /* MAC80211_H */