linux/arch/x86/platform/intel/iosf_mbi.c
Hans de Goede 00452ba9fd x86/platform/intel/iosf_mbi Rewrite locking
There are 2 problems with the old iosf PMIC I2C bus arbritration code which
need to be addressed:

1. The lockdep code complains about a possible deadlock in the
iosf_mbi_[un]block_punit_i2c_access code:

[    6.712662] ======================================================
[    6.712673] WARNING: possible circular locking dependency detected
[    6.712685] 5.3.0-rc2+ #79 Not tainted
[    6.712692] ------------------------------------------------------
[    6.712702] kworker/0:1/7 is trying to acquire lock:
[    6.712712] 00000000df1c5681 (iosf_mbi_block_punit_i2c_access_count_mutex){+.+.}, at: iosf_mbi_unblock_punit_i2c_access+0x13/0x90
[    6.712739]
               but task is already holding lock:
[    6.712749] 0000000067cb23e7 (iosf_mbi_punit_mutex){+.+.}, at: iosf_mbi_block_punit_i2c_access+0x97/0x186
[    6.712768]
               which lock already depends on the new lock.

[    6.712780]
               the existing dependency chain (in reverse order) is:
[    6.712792]
               -> #1 (iosf_mbi_punit_mutex){+.+.}:
[    6.712808]        __mutex_lock+0xa8/0x9a0
[    6.712818]        iosf_mbi_block_punit_i2c_access+0x97/0x186
[    6.712831]        i2c_dw_acquire_lock+0x20/0x30
[    6.712841]        i2c_dw_set_reg_access+0x15/0xb0
[    6.712851]        i2c_dw_probe+0x57/0x473
[    6.712861]        dw_i2c_plat_probe+0x33e/0x640
[    6.712874]        platform_drv_probe+0x38/0x80
[    6.712884]        really_probe+0xf3/0x380
[    6.712894]        driver_probe_device+0x59/0xd0
[    6.712905]        bus_for_each_drv+0x84/0xd0
[    6.712915]        __device_attach+0xe4/0x170
[    6.712925]        bus_probe_device+0x9f/0xb0
[    6.712935]        deferred_probe_work_func+0x79/0xd0
[    6.712946]        process_one_work+0x234/0x560
[    6.712957]        worker_thread+0x50/0x3b0
[    6.712967]        kthread+0x10a/0x140
[    6.712977]        ret_from_fork+0x3a/0x50
[    6.712986]
               -> #0 (iosf_mbi_block_punit_i2c_access_count_mutex){+.+.}:
[    6.713004]        __lock_acquire+0xe07/0x1930
[    6.713015]        lock_acquire+0x9d/0x1a0
[    6.713025]        __mutex_lock+0xa8/0x9a0
[    6.713035]        iosf_mbi_unblock_punit_i2c_access+0x13/0x90
[    6.713047]        i2c_dw_set_reg_access+0x4d/0xb0
[    6.713058]        i2c_dw_probe+0x57/0x473
[    6.713068]        dw_i2c_plat_probe+0x33e/0x640
[    6.713079]        platform_drv_probe+0x38/0x80
[    6.713089]        really_probe+0xf3/0x380
[    6.713099]        driver_probe_device+0x59/0xd0
[    6.713109]        bus_for_each_drv+0x84/0xd0
[    6.713119]        __device_attach+0xe4/0x170
[    6.713129]        bus_probe_device+0x9f/0xb0
[    6.713140]        deferred_probe_work_func+0x79/0xd0
[    6.713150]        process_one_work+0x234/0x560
[    6.713160]        worker_thread+0x50/0x3b0
[    6.713170]        kthread+0x10a/0x140
[    6.713180]        ret_from_fork+0x3a/0x50
[    6.713189]
               other info that might help us debug this:

[    6.713202]  Possible unsafe locking scenario:

[    6.713212]        CPU0                    CPU1
[    6.713221]        ----                    ----
[    6.713229]   lock(iosf_mbi_punit_mutex);
[    6.713239]                                lock(iosf_mbi_block_punit_i2c_access_count_mutex);
[    6.713253]                                lock(iosf_mbi_punit_mutex);
[    6.713265]   lock(iosf_mbi_block_punit_i2c_access_count_mutex);
[    6.713276]
                *** DEADLOCK ***

In practice can never happen because only the first caller which
increments iosf_mbi_block_punit_i2c_access_count will also take
iosf_mbi_punit_mutex, that is the whole purpose of the counter, which
itself is protected by iosf_mbi_block_punit_i2c_access_count_mutex.

But there is no way to tell the lockdep code about this and we really
want to be able to run a kernel with lockdep enabled without these
warnings being triggered.

2. The lockdep warning also points out another real problem, if 2 threads
both are in a block of code protected by iosf_mbi_block_punit_i2c_access
and the first thread to acquire the block exits before the second thread
then the second thread will call mutex_unlock on iosf_mbi_punit_mutex,
but it is not the thread which took the mutex and unlocking by another
thread is not allowed.

Fix this by getting rid of the notion of holding a mutex for the entire
duration of the PMIC accesses, be it either from the PUnit side, or from an
in kernel I2C driver. In general holding a mutex after exiting a function
is a bad idea and the above problems show this case is no different.

Instead 2 counters are now used, one for PMIC accesses from the PUnit
and one for accesses from in kernel I2C code. When access is requested
now the code will wait (using a waitqueue) for the counter of the other
type of access to reach 0 and on release, if the counter reaches 0 the
wakequeue is woken.

Note that the counter approach is necessary to allow nested calls.
The main reason for this is so that a series of i2c transfers can be done
with the punit blocked from accessing the bus the whole time. This is
necessary to be able to safely read/modify/write a PMIC register without
racing with the PUNIT doing the same thing.

Allowing nested iosf_mbi_block_punit_i2c_access() calls also is desirable
from a performance pov since the whole dance necessary to block the PUnit
from accessing the PMIC I2C bus is somewhat expensive.

Signed-off-by: Hans de Goede <hdegoede@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Andy Shevchenko <andy.shevchenko@gmail.com>
Link: https://lkml.kernel.org/r/20190812102113.95794-1-hdegoede@redhat.com
2019-08-19 20:52:39 +02:00

573 lines
15 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* IOSF-SB MailBox Interface Driver
* Copyright (c) 2013, Intel Corporation.
*
* The IOSF-SB is a fabric bus available on Atom based SOC's that uses a
* mailbox interface (MBI) to communicate with multiple devices. This
* driver implements access to this interface for those platforms that can
* enumerate the device using PCI.
*/
#include <linux/delay.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/spinlock.h>
#include <linux/pci.h>
#include <linux/debugfs.h>
#include <linux/capability.h>
#include <linux/pm_qos.h>
#include <linux/wait.h>
#include <asm/iosf_mbi.h>
#define PCI_DEVICE_ID_INTEL_BAYTRAIL 0x0F00
#define PCI_DEVICE_ID_INTEL_BRASWELL 0x2280
#define PCI_DEVICE_ID_INTEL_QUARK_X1000 0x0958
#define PCI_DEVICE_ID_INTEL_TANGIER 0x1170
static struct pci_dev *mbi_pdev;
static DEFINE_SPINLOCK(iosf_mbi_lock);
/**************** Generic iosf_mbi access helpers ****************/
static inline u32 iosf_mbi_form_mcr(u8 op, u8 port, u8 offset)
{
return (op << 24) | (port << 16) | (offset << 8) | MBI_ENABLE;
}
static int iosf_mbi_pci_read_mdr(u32 mcrx, u32 mcr, u32 *mdr)
{
int result;
if (!mbi_pdev)
return -ENODEV;
if (mcrx) {
result = pci_write_config_dword(mbi_pdev, MBI_MCRX_OFFSET,
mcrx);
if (result < 0)
goto fail_read;
}
result = pci_write_config_dword(mbi_pdev, MBI_MCR_OFFSET, mcr);
if (result < 0)
goto fail_read;
result = pci_read_config_dword(mbi_pdev, MBI_MDR_OFFSET, mdr);
if (result < 0)
goto fail_read;
return 0;
fail_read:
dev_err(&mbi_pdev->dev, "PCI config access failed with %d\n", result);
return result;
}
static int iosf_mbi_pci_write_mdr(u32 mcrx, u32 mcr, u32 mdr)
{
int result;
if (!mbi_pdev)
return -ENODEV;
result = pci_write_config_dword(mbi_pdev, MBI_MDR_OFFSET, mdr);
if (result < 0)
goto fail_write;
if (mcrx) {
result = pci_write_config_dword(mbi_pdev, MBI_MCRX_OFFSET,
mcrx);
if (result < 0)
goto fail_write;
}
result = pci_write_config_dword(mbi_pdev, MBI_MCR_OFFSET, mcr);
if (result < 0)
goto fail_write;
return 0;
fail_write:
dev_err(&mbi_pdev->dev, "PCI config access failed with %d\n", result);
return result;
}
int iosf_mbi_read(u8 port, u8 opcode, u32 offset, u32 *mdr)
{
u32 mcr, mcrx;
unsigned long flags;
int ret;
/* Access to the GFX unit is handled by GPU code */
if (port == BT_MBI_UNIT_GFX) {
WARN_ON(1);
return -EPERM;
}
mcr = iosf_mbi_form_mcr(opcode, port, offset & MBI_MASK_LO);
mcrx = offset & MBI_MASK_HI;
spin_lock_irqsave(&iosf_mbi_lock, flags);
ret = iosf_mbi_pci_read_mdr(mcrx, mcr, mdr);
spin_unlock_irqrestore(&iosf_mbi_lock, flags);
return ret;
}
EXPORT_SYMBOL(iosf_mbi_read);
int iosf_mbi_write(u8 port, u8 opcode, u32 offset, u32 mdr)
{
u32 mcr, mcrx;
unsigned long flags;
int ret;
/* Access to the GFX unit is handled by GPU code */
if (port == BT_MBI_UNIT_GFX) {
WARN_ON(1);
return -EPERM;
}
mcr = iosf_mbi_form_mcr(opcode, port, offset & MBI_MASK_LO);
mcrx = offset & MBI_MASK_HI;
spin_lock_irqsave(&iosf_mbi_lock, flags);
ret = iosf_mbi_pci_write_mdr(mcrx, mcr, mdr);
spin_unlock_irqrestore(&iosf_mbi_lock, flags);
return ret;
}
EXPORT_SYMBOL(iosf_mbi_write);
int iosf_mbi_modify(u8 port, u8 opcode, u32 offset, u32 mdr, u32 mask)
{
u32 mcr, mcrx;
u32 value;
unsigned long flags;
int ret;
/* Access to the GFX unit is handled by GPU code */
if (port == BT_MBI_UNIT_GFX) {
WARN_ON(1);
return -EPERM;
}
mcr = iosf_mbi_form_mcr(opcode, port, offset & MBI_MASK_LO);
mcrx = offset & MBI_MASK_HI;
spin_lock_irqsave(&iosf_mbi_lock, flags);
/* Read current mdr value */
ret = iosf_mbi_pci_read_mdr(mcrx, mcr & MBI_RD_MASK, &value);
if (ret < 0) {
spin_unlock_irqrestore(&iosf_mbi_lock, flags);
return ret;
}
/* Apply mask */
value &= ~mask;
mdr &= mask;
value |= mdr;
/* Write back */
ret = iosf_mbi_pci_write_mdr(mcrx, mcr | MBI_WR_MASK, value);
spin_unlock_irqrestore(&iosf_mbi_lock, flags);
return ret;
}
EXPORT_SYMBOL(iosf_mbi_modify);
bool iosf_mbi_available(void)
{
/* Mbi isn't hot-pluggable. No remove routine is provided */
return mbi_pdev;
}
EXPORT_SYMBOL(iosf_mbi_available);
/*
**************** P-Unit/kernel shared I2C bus arbritration ****************
*
* Some Bay Trail and Cherry Trail devices have the P-Unit and us (the kernel)
* share a single I2C bus to the PMIC. Below are helpers to arbitrate the
* accesses between the kernel and the P-Unit.
*
* See arch/x86/include/asm/iosf_mbi.h for kernel-doc text for each function.
*/
#define SEMAPHORE_TIMEOUT 500
#define PUNIT_SEMAPHORE_BYT 0x7
#define PUNIT_SEMAPHORE_CHT 0x10e
#define PUNIT_SEMAPHORE_BIT BIT(0)
#define PUNIT_SEMAPHORE_ACQUIRE BIT(1)
static DEFINE_MUTEX(iosf_mbi_pmic_access_mutex);
static BLOCKING_NOTIFIER_HEAD(iosf_mbi_pmic_bus_access_notifier);
static DECLARE_WAIT_QUEUE_HEAD(iosf_mbi_pmic_access_waitq);
static u32 iosf_mbi_pmic_punit_access_count;
static u32 iosf_mbi_pmic_i2c_access_count;
static u32 iosf_mbi_sem_address;
static unsigned long iosf_mbi_sem_acquired;
static struct pm_qos_request iosf_mbi_pm_qos;
void iosf_mbi_punit_acquire(void)
{
/* Wait for any I2C PMIC accesses from in kernel drivers to finish. */
mutex_lock(&iosf_mbi_pmic_access_mutex);
while (iosf_mbi_pmic_i2c_access_count != 0) {
mutex_unlock(&iosf_mbi_pmic_access_mutex);
wait_event(iosf_mbi_pmic_access_waitq,
iosf_mbi_pmic_i2c_access_count == 0);
mutex_lock(&iosf_mbi_pmic_access_mutex);
}
/*
* We do not need to do anything to allow the PUNIT to safely access
* the PMIC, other then block in kernel accesses to the PMIC.
*/
iosf_mbi_pmic_punit_access_count++;
mutex_unlock(&iosf_mbi_pmic_access_mutex);
}
EXPORT_SYMBOL(iosf_mbi_punit_acquire);
void iosf_mbi_punit_release(void)
{
bool do_wakeup;
mutex_lock(&iosf_mbi_pmic_access_mutex);
iosf_mbi_pmic_punit_access_count--;
do_wakeup = iosf_mbi_pmic_punit_access_count == 0;
mutex_unlock(&iosf_mbi_pmic_access_mutex);
if (do_wakeup)
wake_up(&iosf_mbi_pmic_access_waitq);
}
EXPORT_SYMBOL(iosf_mbi_punit_release);
static int iosf_mbi_get_sem(u32 *sem)
{
int ret;
ret = iosf_mbi_read(BT_MBI_UNIT_PMC, MBI_REG_READ,
iosf_mbi_sem_address, sem);
if (ret) {
dev_err(&mbi_pdev->dev, "Error P-Unit semaphore read failed\n");
return ret;
}
*sem &= PUNIT_SEMAPHORE_BIT;
return 0;
}
static void iosf_mbi_reset_semaphore(void)
{
if (iosf_mbi_modify(BT_MBI_UNIT_PMC, MBI_REG_READ,
iosf_mbi_sem_address, 0, PUNIT_SEMAPHORE_BIT))
dev_err(&mbi_pdev->dev, "Error P-Unit semaphore reset failed\n");
pm_qos_update_request(&iosf_mbi_pm_qos, PM_QOS_DEFAULT_VALUE);
blocking_notifier_call_chain(&iosf_mbi_pmic_bus_access_notifier,
MBI_PMIC_BUS_ACCESS_END, NULL);
}
/*
* This function blocks P-Unit accesses to the PMIC I2C bus, so that kernel
* I2C code, such as e.g. a fuel-gauge driver, can access it safely.
*
* This function may be called by I2C controller code while an I2C driver has
* already blocked P-Unit accesses because it wants them blocked over multiple
* i2c-transfers, for e.g. read-modify-write of an I2C client register.
*
* To allow safe PMIC i2c bus accesses this function takes the following steps:
*
* 1) Some code sends request to the P-Unit which make it access the PMIC
* I2C bus. Testing has shown that the P-Unit does not check its internal
* PMIC bus semaphore for these requests. Callers of these requests call
* iosf_mbi_punit_acquire()/_release() around their P-Unit accesses, these
* functions increase/decrease iosf_mbi_pmic_punit_access_count, so first
* we wait for iosf_mbi_pmic_punit_access_count to become 0.
*
* 2) Check iosf_mbi_pmic_i2c_access_count, if access has already
* been blocked by another caller, we only need to increment
* iosf_mbi_pmic_i2c_access_count and we can skip the other steps.
*
* 3) Some code makes such P-Unit requests from atomic contexts where it
* cannot call iosf_mbi_punit_acquire() as that may sleep.
* As the second step we call a notifier chain which allows any code
* needing P-Unit resources from atomic context to acquire them before
* we take control over the PMIC I2C bus.
*
* 4) When CPU cores enter C6 or C7 the P-Unit needs to talk to the PMIC
* if this happens while the kernel itself is accessing the PMIC I2C bus
* the SoC hangs.
* As the third step we call pm_qos_update_request() to disallow the CPU
* to enter C6 or C7.
*
* 5) The P-Unit has a PMIC bus semaphore which we can request to stop
* autonomous P-Unit tasks from accessing the PMIC I2C bus while we hold it.
* As the fourth and final step we request this semaphore and wait for our
* request to be acknowledged.
*/
int iosf_mbi_block_punit_i2c_access(void)
{
unsigned long start, end;
int ret = 0;
u32 sem;
if (WARN_ON(!mbi_pdev || !iosf_mbi_sem_address))
return -ENXIO;
mutex_lock(&iosf_mbi_pmic_access_mutex);
while (iosf_mbi_pmic_punit_access_count != 0) {
mutex_unlock(&iosf_mbi_pmic_access_mutex);
wait_event(iosf_mbi_pmic_access_waitq,
iosf_mbi_pmic_punit_access_count == 0);
mutex_lock(&iosf_mbi_pmic_access_mutex);
}
if (iosf_mbi_pmic_i2c_access_count > 0)
goto success;
blocking_notifier_call_chain(&iosf_mbi_pmic_bus_access_notifier,
MBI_PMIC_BUS_ACCESS_BEGIN, NULL);
/*
* Disallow the CPU to enter C6 or C7 state, entering these states
* requires the P-Unit to talk to the PMIC and if this happens while
* we're holding the semaphore, the SoC hangs.
*/
pm_qos_update_request(&iosf_mbi_pm_qos, 0);
/* host driver writes to side band semaphore register */
ret = iosf_mbi_write(BT_MBI_UNIT_PMC, MBI_REG_WRITE,
iosf_mbi_sem_address, PUNIT_SEMAPHORE_ACQUIRE);
if (ret) {
dev_err(&mbi_pdev->dev, "Error P-Unit semaphore request failed\n");
goto error;
}
/* host driver waits for bit 0 to be set in semaphore register */
start = jiffies;
end = start + msecs_to_jiffies(SEMAPHORE_TIMEOUT);
do {
ret = iosf_mbi_get_sem(&sem);
if (!ret && sem) {
iosf_mbi_sem_acquired = jiffies;
dev_dbg(&mbi_pdev->dev, "P-Unit semaphore acquired after %ums\n",
jiffies_to_msecs(jiffies - start));
goto success;
}
usleep_range(1000, 2000);
} while (time_before(jiffies, end));
ret = -ETIMEDOUT;
dev_err(&mbi_pdev->dev, "Error P-Unit semaphore timed out, resetting\n");
error:
iosf_mbi_reset_semaphore();
if (!iosf_mbi_get_sem(&sem))
dev_err(&mbi_pdev->dev, "P-Unit semaphore: %d\n", sem);
success:
if (!WARN_ON(ret))
iosf_mbi_pmic_i2c_access_count++;
mutex_unlock(&iosf_mbi_pmic_access_mutex);
return ret;
}
EXPORT_SYMBOL(iosf_mbi_block_punit_i2c_access);
void iosf_mbi_unblock_punit_i2c_access(void)
{
bool do_wakeup = false;
mutex_lock(&iosf_mbi_pmic_access_mutex);
iosf_mbi_pmic_i2c_access_count--;
if (iosf_mbi_pmic_i2c_access_count == 0) {
iosf_mbi_reset_semaphore();
dev_dbg(&mbi_pdev->dev, "punit semaphore held for %ums\n",
jiffies_to_msecs(jiffies - iosf_mbi_sem_acquired));
do_wakeup = true;
}
mutex_unlock(&iosf_mbi_pmic_access_mutex);
if (do_wakeup)
wake_up(&iosf_mbi_pmic_access_waitq);
}
EXPORT_SYMBOL(iosf_mbi_unblock_punit_i2c_access);
int iosf_mbi_register_pmic_bus_access_notifier(struct notifier_block *nb)
{
int ret;
/* Wait for the bus to go inactive before registering */
iosf_mbi_punit_acquire();
ret = blocking_notifier_chain_register(
&iosf_mbi_pmic_bus_access_notifier, nb);
iosf_mbi_punit_release();
return ret;
}
EXPORT_SYMBOL(iosf_mbi_register_pmic_bus_access_notifier);
int iosf_mbi_unregister_pmic_bus_access_notifier_unlocked(
struct notifier_block *nb)
{
iosf_mbi_assert_punit_acquired();
return blocking_notifier_chain_unregister(
&iosf_mbi_pmic_bus_access_notifier, nb);
}
EXPORT_SYMBOL(iosf_mbi_unregister_pmic_bus_access_notifier_unlocked);
int iosf_mbi_unregister_pmic_bus_access_notifier(struct notifier_block *nb)
{
int ret;
/* Wait for the bus to go inactive before unregistering */
iosf_mbi_punit_acquire();
ret = iosf_mbi_unregister_pmic_bus_access_notifier_unlocked(nb);
iosf_mbi_punit_release();
return ret;
}
EXPORT_SYMBOL(iosf_mbi_unregister_pmic_bus_access_notifier);
void iosf_mbi_assert_punit_acquired(void)
{
WARN_ON(iosf_mbi_pmic_punit_access_count == 0);
}
EXPORT_SYMBOL(iosf_mbi_assert_punit_acquired);
/**************** iosf_mbi debug code ****************/
#ifdef CONFIG_IOSF_MBI_DEBUG
static u32 dbg_mdr;
static u32 dbg_mcr;
static u32 dbg_mcrx;
static int mcr_get(void *data, u64 *val)
{
*val = *(u32 *)data;
return 0;
}
static int mcr_set(void *data, u64 val)
{
u8 command = ((u32)val & 0xFF000000) >> 24,
port = ((u32)val & 0x00FF0000) >> 16,
offset = ((u32)val & 0x0000FF00) >> 8;
int err;
*(u32 *)data = val;
if (!capable(CAP_SYS_RAWIO))
return -EACCES;
if (command & 1u)
err = iosf_mbi_write(port,
command,
dbg_mcrx | offset,
dbg_mdr);
else
err = iosf_mbi_read(port,
command,
dbg_mcrx | offset,
&dbg_mdr);
return err;
}
DEFINE_SIMPLE_ATTRIBUTE(iosf_mcr_fops, mcr_get, mcr_set , "%llx\n");
static struct dentry *iosf_dbg;
static void iosf_sideband_debug_init(void)
{
iosf_dbg = debugfs_create_dir("iosf_sb", NULL);
/* mdr */
debugfs_create_x32("mdr", 0660, iosf_dbg, &dbg_mdr);
/* mcrx */
debugfs_create_x32("mcrx", 0660, iosf_dbg, &dbg_mcrx);
/* mcr - initiates mailbox tranaction */
debugfs_create_file("mcr", 0660, iosf_dbg, &dbg_mcr, &iosf_mcr_fops);
}
static void iosf_debugfs_init(void)
{
iosf_sideband_debug_init();
}
static void iosf_debugfs_remove(void)
{
debugfs_remove_recursive(iosf_dbg);
}
#else
static inline void iosf_debugfs_init(void) { }
static inline void iosf_debugfs_remove(void) { }
#endif /* CONFIG_IOSF_MBI_DEBUG */
static int iosf_mbi_probe(struct pci_dev *pdev,
const struct pci_device_id *dev_id)
{
int ret;
ret = pci_enable_device(pdev);
if (ret < 0) {
dev_err(&pdev->dev, "error: could not enable device\n");
return ret;
}
mbi_pdev = pci_dev_get(pdev);
iosf_mbi_sem_address = dev_id->driver_data;
return 0;
}
static const struct pci_device_id iosf_mbi_pci_ids[] = {
{ PCI_DEVICE_DATA(INTEL, BAYTRAIL, PUNIT_SEMAPHORE_BYT) },
{ PCI_DEVICE_DATA(INTEL, BRASWELL, PUNIT_SEMAPHORE_CHT) },
{ PCI_DEVICE_DATA(INTEL, QUARK_X1000, 0) },
{ PCI_DEVICE_DATA(INTEL, TANGIER, 0) },
{ 0, },
};
MODULE_DEVICE_TABLE(pci, iosf_mbi_pci_ids);
static struct pci_driver iosf_mbi_pci_driver = {
.name = "iosf_mbi_pci",
.probe = iosf_mbi_probe,
.id_table = iosf_mbi_pci_ids,
};
static int __init iosf_mbi_init(void)
{
iosf_debugfs_init();
pm_qos_add_request(&iosf_mbi_pm_qos, PM_QOS_CPU_DMA_LATENCY,
PM_QOS_DEFAULT_VALUE);
return pci_register_driver(&iosf_mbi_pci_driver);
}
static void __exit iosf_mbi_exit(void)
{
iosf_debugfs_remove();
pci_unregister_driver(&iosf_mbi_pci_driver);
pci_dev_put(mbi_pdev);
mbi_pdev = NULL;
pm_qos_remove_request(&iosf_mbi_pm_qos);
}
module_init(iosf_mbi_init);
module_exit(iosf_mbi_exit);
MODULE_AUTHOR("David E. Box <david.e.box@linux.intel.com>");
MODULE_DESCRIPTION("IOSF Mailbox Interface accessor");
MODULE_LICENSE("GPL v2");