linux/mm/slab_common.c
Andrzej Hajda 3dec16ea38 mm/slab: convert cache name allocations to kstrdup_const
slab frequently performs duplication of strings located in read-only
memory section.  Replacing kstrdup by kstrdup_const allows to avoid such
operations.

[akpm@linux-foundation.org: make the handling of kmem_cache.name const-correct]
Signed-off-by: Andrzej Hajda <a.hajda@samsung.com>
Cc: Marek Szyprowski <m.szyprowski@samsung.com>
Cc: Kyungmin Park <kyungmin.park@samsung.com>
Cc: Mike Turquette <mturquette@linaro.org>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Greg KH <greg@kroah.com>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-13 21:21:36 -08:00

1169 lines
27 KiB
C

/*
* Slab allocator functions that are independent of the allocator strategy
*
* (C) 2012 Christoph Lameter <cl@linux.com>
*/
#include <linux/slab.h>
#include <linux/mm.h>
#include <linux/poison.h>
#include <linux/interrupt.h>
#include <linux/memory.h>
#include <linux/compiler.h>
#include <linux/module.h>
#include <linux/cpu.h>
#include <linux/uaccess.h>
#include <linux/seq_file.h>
#include <linux/proc_fs.h>
#include <asm/cacheflush.h>
#include <asm/tlbflush.h>
#include <asm/page.h>
#include <linux/memcontrol.h>
#define CREATE_TRACE_POINTS
#include <trace/events/kmem.h>
#include "slab.h"
enum slab_state slab_state;
LIST_HEAD(slab_caches);
DEFINE_MUTEX(slab_mutex);
struct kmem_cache *kmem_cache;
/*
* Set of flags that will prevent slab merging
*/
#define SLAB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
SLAB_FAILSLAB)
#define SLAB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
SLAB_CACHE_DMA | SLAB_NOTRACK)
/*
* Merge control. If this is set then no merging of slab caches will occur.
* (Could be removed. This was introduced to pacify the merge skeptics.)
*/
static int slab_nomerge;
static int __init setup_slab_nomerge(char *str)
{
slab_nomerge = 1;
return 1;
}
#ifdef CONFIG_SLUB
__setup_param("slub_nomerge", slub_nomerge, setup_slab_nomerge, 0);
#endif
__setup("slab_nomerge", setup_slab_nomerge);
/*
* Determine the size of a slab object
*/
unsigned int kmem_cache_size(struct kmem_cache *s)
{
return s->object_size;
}
EXPORT_SYMBOL(kmem_cache_size);
#ifdef CONFIG_DEBUG_VM
static int kmem_cache_sanity_check(const char *name, size_t size)
{
struct kmem_cache *s = NULL;
if (!name || in_interrupt() || size < sizeof(void *) ||
size > KMALLOC_MAX_SIZE) {
pr_err("kmem_cache_create(%s) integrity check failed\n", name);
return -EINVAL;
}
list_for_each_entry(s, &slab_caches, list) {
char tmp;
int res;
/*
* This happens when the module gets unloaded and doesn't
* destroy its slab cache and no-one else reuses the vmalloc
* area of the module. Print a warning.
*/
res = probe_kernel_address(s->name, tmp);
if (res) {
pr_err("Slab cache with size %d has lost its name\n",
s->object_size);
continue;
}
}
WARN_ON(strchr(name, ' ')); /* It confuses parsers */
return 0;
}
#else
static inline int kmem_cache_sanity_check(const char *name, size_t size)
{
return 0;
}
#endif
#ifdef CONFIG_MEMCG_KMEM
void slab_init_memcg_params(struct kmem_cache *s)
{
s->memcg_params.is_root_cache = true;
INIT_LIST_HEAD(&s->memcg_params.list);
RCU_INIT_POINTER(s->memcg_params.memcg_caches, NULL);
}
static int init_memcg_params(struct kmem_cache *s,
struct mem_cgroup *memcg, struct kmem_cache *root_cache)
{
struct memcg_cache_array *arr;
if (memcg) {
s->memcg_params.is_root_cache = false;
s->memcg_params.memcg = memcg;
s->memcg_params.root_cache = root_cache;
return 0;
}
slab_init_memcg_params(s);
if (!memcg_nr_cache_ids)
return 0;
arr = kzalloc(sizeof(struct memcg_cache_array) +
memcg_nr_cache_ids * sizeof(void *),
GFP_KERNEL);
if (!arr)
return -ENOMEM;
RCU_INIT_POINTER(s->memcg_params.memcg_caches, arr);
return 0;
}
static void destroy_memcg_params(struct kmem_cache *s)
{
if (is_root_cache(s))
kfree(rcu_access_pointer(s->memcg_params.memcg_caches));
}
static int update_memcg_params(struct kmem_cache *s, int new_array_size)
{
struct memcg_cache_array *old, *new;
if (!is_root_cache(s))
return 0;
new = kzalloc(sizeof(struct memcg_cache_array) +
new_array_size * sizeof(void *), GFP_KERNEL);
if (!new)
return -ENOMEM;
old = rcu_dereference_protected(s->memcg_params.memcg_caches,
lockdep_is_held(&slab_mutex));
if (old)
memcpy(new->entries, old->entries,
memcg_nr_cache_ids * sizeof(void *));
rcu_assign_pointer(s->memcg_params.memcg_caches, new);
if (old)
kfree_rcu(old, rcu);
return 0;
}
int memcg_update_all_caches(int num_memcgs)
{
struct kmem_cache *s;
int ret = 0;
mutex_lock(&slab_mutex);
list_for_each_entry(s, &slab_caches, list) {
ret = update_memcg_params(s, num_memcgs);
/*
* Instead of freeing the memory, we'll just leave the caches
* up to this point in an updated state.
*/
if (ret)
break;
}
mutex_unlock(&slab_mutex);
return ret;
}
#else
static inline int init_memcg_params(struct kmem_cache *s,
struct mem_cgroup *memcg, struct kmem_cache *root_cache)
{
return 0;
}
static inline void destroy_memcg_params(struct kmem_cache *s)
{
}
#endif /* CONFIG_MEMCG_KMEM */
/*
* Find a mergeable slab cache
*/
int slab_unmergeable(struct kmem_cache *s)
{
if (slab_nomerge || (s->flags & SLAB_NEVER_MERGE))
return 1;
if (!is_root_cache(s))
return 1;
if (s->ctor)
return 1;
/*
* We may have set a slab to be unmergeable during bootstrap.
*/
if (s->refcount < 0)
return 1;
return 0;
}
struct kmem_cache *find_mergeable(size_t size, size_t align,
unsigned long flags, const char *name, void (*ctor)(void *))
{
struct kmem_cache *s;
if (slab_nomerge || (flags & SLAB_NEVER_MERGE))
return NULL;
if (ctor)
return NULL;
size = ALIGN(size, sizeof(void *));
align = calculate_alignment(flags, align, size);
size = ALIGN(size, align);
flags = kmem_cache_flags(size, flags, name, NULL);
list_for_each_entry_reverse(s, &slab_caches, list) {
if (slab_unmergeable(s))
continue;
if (size > s->size)
continue;
if ((flags & SLAB_MERGE_SAME) != (s->flags & SLAB_MERGE_SAME))
continue;
/*
* Check if alignment is compatible.
* Courtesy of Adrian Drzewiecki
*/
if ((s->size & ~(align - 1)) != s->size)
continue;
if (s->size - size >= sizeof(void *))
continue;
if (IS_ENABLED(CONFIG_SLAB) && align &&
(align > s->align || s->align % align))
continue;
return s;
}
return NULL;
}
/*
* Figure out what the alignment of the objects will be given a set of
* flags, a user specified alignment and the size of the objects.
*/
unsigned long calculate_alignment(unsigned long flags,
unsigned long align, unsigned long size)
{
/*
* If the user wants hardware cache aligned objects then follow that
* suggestion if the object is sufficiently large.
*
* The hardware cache alignment cannot override the specified
* alignment though. If that is greater then use it.
*/
if (flags & SLAB_HWCACHE_ALIGN) {
unsigned long ralign = cache_line_size();
while (size <= ralign / 2)
ralign /= 2;
align = max(align, ralign);
}
if (align < ARCH_SLAB_MINALIGN)
align = ARCH_SLAB_MINALIGN;
return ALIGN(align, sizeof(void *));
}
static struct kmem_cache *
do_kmem_cache_create(const char *name, size_t object_size, size_t size,
size_t align, unsigned long flags, void (*ctor)(void *),
struct mem_cgroup *memcg, struct kmem_cache *root_cache)
{
struct kmem_cache *s;
int err;
err = -ENOMEM;
s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL);
if (!s)
goto out;
s->name = name;
s->object_size = object_size;
s->size = size;
s->align = align;
s->ctor = ctor;
err = init_memcg_params(s, memcg, root_cache);
if (err)
goto out_free_cache;
err = __kmem_cache_create(s, flags);
if (err)
goto out_free_cache;
s->refcount = 1;
list_add(&s->list, &slab_caches);
out:
if (err)
return ERR_PTR(err);
return s;
out_free_cache:
destroy_memcg_params(s);
kmem_cache_free(kmem_cache, s);
goto out;
}
/*
* kmem_cache_create - Create a cache.
* @name: A string which is used in /proc/slabinfo to identify this cache.
* @size: The size of objects to be created in this cache.
* @align: The required alignment for the objects.
* @flags: SLAB flags
* @ctor: A constructor for the objects.
*
* Returns a ptr to the cache on success, NULL on failure.
* Cannot be called within a interrupt, but can be interrupted.
* The @ctor is run when new pages are allocated by the cache.
*
* The flags are
*
* %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
* to catch references to uninitialised memory.
*
* %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
* for buffer overruns.
*
* %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
* cacheline. This can be beneficial if you're counting cycles as closely
* as davem.
*/
struct kmem_cache *
kmem_cache_create(const char *name, size_t size, size_t align,
unsigned long flags, void (*ctor)(void *))
{
struct kmem_cache *s;
const char *cache_name;
int err;
get_online_cpus();
get_online_mems();
memcg_get_cache_ids();
mutex_lock(&slab_mutex);
err = kmem_cache_sanity_check(name, size);
if (err) {
s = NULL; /* suppress uninit var warning */
goto out_unlock;
}
/*
* Some allocators will constraint the set of valid flags to a subset
* of all flags. We expect them to define CACHE_CREATE_MASK in this
* case, and we'll just provide them with a sanitized version of the
* passed flags.
*/
flags &= CACHE_CREATE_MASK;
s = __kmem_cache_alias(name, size, align, flags, ctor);
if (s)
goto out_unlock;
cache_name = kstrdup_const(name, GFP_KERNEL);
if (!cache_name) {
err = -ENOMEM;
goto out_unlock;
}
s = do_kmem_cache_create(cache_name, size, size,
calculate_alignment(flags, align, size),
flags, ctor, NULL, NULL);
if (IS_ERR(s)) {
err = PTR_ERR(s);
kfree_const(cache_name);
}
out_unlock:
mutex_unlock(&slab_mutex);
memcg_put_cache_ids();
put_online_mems();
put_online_cpus();
if (err) {
if (flags & SLAB_PANIC)
panic("kmem_cache_create: Failed to create slab '%s'. Error %d\n",
name, err);
else {
printk(KERN_WARNING "kmem_cache_create(%s) failed with error %d",
name, err);
dump_stack();
}
return NULL;
}
return s;
}
EXPORT_SYMBOL(kmem_cache_create);
static int do_kmem_cache_shutdown(struct kmem_cache *s,
struct list_head *release, bool *need_rcu_barrier)
{
if (__kmem_cache_shutdown(s) != 0) {
printk(KERN_ERR "kmem_cache_destroy %s: "
"Slab cache still has objects\n", s->name);
dump_stack();
return -EBUSY;
}
if (s->flags & SLAB_DESTROY_BY_RCU)
*need_rcu_barrier = true;
#ifdef CONFIG_MEMCG_KMEM
if (!is_root_cache(s))
list_del(&s->memcg_params.list);
#endif
list_move(&s->list, release);
return 0;
}
static void do_kmem_cache_release(struct list_head *release,
bool need_rcu_barrier)
{
struct kmem_cache *s, *s2;
if (need_rcu_barrier)
rcu_barrier();
list_for_each_entry_safe(s, s2, release, list) {
#ifdef SLAB_SUPPORTS_SYSFS
sysfs_slab_remove(s);
#else
slab_kmem_cache_release(s);
#endif
}
}
#ifdef CONFIG_MEMCG_KMEM
/*
* memcg_create_kmem_cache - Create a cache for a memory cgroup.
* @memcg: The memory cgroup the new cache is for.
* @root_cache: The parent of the new cache.
*
* This function attempts to create a kmem cache that will serve allocation
* requests going from @memcg to @root_cache. The new cache inherits properties
* from its parent.
*/
void memcg_create_kmem_cache(struct mem_cgroup *memcg,
struct kmem_cache *root_cache)
{
static char memcg_name_buf[NAME_MAX + 1]; /* protected by slab_mutex */
struct cgroup_subsys_state *css = mem_cgroup_css(memcg);
struct memcg_cache_array *arr;
struct kmem_cache *s = NULL;
char *cache_name;
int idx;
get_online_cpus();
get_online_mems();
mutex_lock(&slab_mutex);
/*
* The memory cgroup could have been deactivated while the cache
* creation work was pending.
*/
if (!memcg_kmem_is_active(memcg))
goto out_unlock;
idx = memcg_cache_id(memcg);
arr = rcu_dereference_protected(root_cache->memcg_params.memcg_caches,
lockdep_is_held(&slab_mutex));
/*
* Since per-memcg caches are created asynchronously on first
* allocation (see memcg_kmem_get_cache()), several threads can try to
* create the same cache, but only one of them may succeed.
*/
if (arr->entries[idx])
goto out_unlock;
cgroup_name(css->cgroup, memcg_name_buf, sizeof(memcg_name_buf));
cache_name = kasprintf(GFP_KERNEL, "%s(%d:%s)", root_cache->name,
css->id, memcg_name_buf);
if (!cache_name)
goto out_unlock;
s = do_kmem_cache_create(cache_name, root_cache->object_size,
root_cache->size, root_cache->align,
root_cache->flags, root_cache->ctor,
memcg, root_cache);
/*
* If we could not create a memcg cache, do not complain, because
* that's not critical at all as we can always proceed with the root
* cache.
*/
if (IS_ERR(s)) {
kfree(cache_name);
goto out_unlock;
}
list_add(&s->memcg_params.list, &root_cache->memcg_params.list);
/*
* Since readers won't lock (see cache_from_memcg_idx()), we need a
* barrier here to ensure nobody will see the kmem_cache partially
* initialized.
*/
smp_wmb();
arr->entries[idx] = s;
out_unlock:
mutex_unlock(&slab_mutex);
put_online_mems();
put_online_cpus();
}
void memcg_deactivate_kmem_caches(struct mem_cgroup *memcg)
{
int idx;
struct memcg_cache_array *arr;
struct kmem_cache *s, *c;
idx = memcg_cache_id(memcg);
get_online_cpus();
get_online_mems();
mutex_lock(&slab_mutex);
list_for_each_entry(s, &slab_caches, list) {
if (!is_root_cache(s))
continue;
arr = rcu_dereference_protected(s->memcg_params.memcg_caches,
lockdep_is_held(&slab_mutex));
c = arr->entries[idx];
if (!c)
continue;
__kmem_cache_shrink(c, true);
arr->entries[idx] = NULL;
}
mutex_unlock(&slab_mutex);
put_online_mems();
put_online_cpus();
}
void memcg_destroy_kmem_caches(struct mem_cgroup *memcg)
{
LIST_HEAD(release);
bool need_rcu_barrier = false;
struct kmem_cache *s, *s2;
get_online_cpus();
get_online_mems();
mutex_lock(&slab_mutex);
list_for_each_entry_safe(s, s2, &slab_caches, list) {
if (is_root_cache(s) || s->memcg_params.memcg != memcg)
continue;
/*
* The cgroup is about to be freed and therefore has no charges
* left. Hence, all its caches must be empty by now.
*/
BUG_ON(do_kmem_cache_shutdown(s, &release, &need_rcu_barrier));
}
mutex_unlock(&slab_mutex);
put_online_mems();
put_online_cpus();
do_kmem_cache_release(&release, need_rcu_barrier);
}
#endif /* CONFIG_MEMCG_KMEM */
void slab_kmem_cache_release(struct kmem_cache *s)
{
destroy_memcg_params(s);
kfree_const(s->name);
kmem_cache_free(kmem_cache, s);
}
void kmem_cache_destroy(struct kmem_cache *s)
{
struct kmem_cache *c, *c2;
LIST_HEAD(release);
bool need_rcu_barrier = false;
bool busy = false;
BUG_ON(!is_root_cache(s));
get_online_cpus();
get_online_mems();
mutex_lock(&slab_mutex);
s->refcount--;
if (s->refcount)
goto out_unlock;
for_each_memcg_cache_safe(c, c2, s) {
if (do_kmem_cache_shutdown(c, &release, &need_rcu_barrier))
busy = true;
}
if (!busy)
do_kmem_cache_shutdown(s, &release, &need_rcu_barrier);
out_unlock:
mutex_unlock(&slab_mutex);
put_online_mems();
put_online_cpus();
do_kmem_cache_release(&release, need_rcu_barrier);
}
EXPORT_SYMBOL(kmem_cache_destroy);
/**
* kmem_cache_shrink - Shrink a cache.
* @cachep: The cache to shrink.
*
* Releases as many slabs as possible for a cache.
* To help debugging, a zero exit status indicates all slabs were released.
*/
int kmem_cache_shrink(struct kmem_cache *cachep)
{
int ret;
get_online_cpus();
get_online_mems();
ret = __kmem_cache_shrink(cachep, false);
put_online_mems();
put_online_cpus();
return ret;
}
EXPORT_SYMBOL(kmem_cache_shrink);
int slab_is_available(void)
{
return slab_state >= UP;
}
#ifndef CONFIG_SLOB
/* Create a cache during boot when no slab services are available yet */
void __init create_boot_cache(struct kmem_cache *s, const char *name, size_t size,
unsigned long flags)
{
int err;
s->name = name;
s->size = s->object_size = size;
s->align = calculate_alignment(flags, ARCH_KMALLOC_MINALIGN, size);
slab_init_memcg_params(s);
err = __kmem_cache_create(s, flags);
if (err)
panic("Creation of kmalloc slab %s size=%zu failed. Reason %d\n",
name, size, err);
s->refcount = -1; /* Exempt from merging for now */
}
struct kmem_cache *__init create_kmalloc_cache(const char *name, size_t size,
unsigned long flags)
{
struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
if (!s)
panic("Out of memory when creating slab %s\n", name);
create_boot_cache(s, name, size, flags);
list_add(&s->list, &slab_caches);
s->refcount = 1;
return s;
}
struct kmem_cache *kmalloc_caches[KMALLOC_SHIFT_HIGH + 1];
EXPORT_SYMBOL(kmalloc_caches);
#ifdef CONFIG_ZONE_DMA
struct kmem_cache *kmalloc_dma_caches[KMALLOC_SHIFT_HIGH + 1];
EXPORT_SYMBOL(kmalloc_dma_caches);
#endif
/*
* Conversion table for small slabs sizes / 8 to the index in the
* kmalloc array. This is necessary for slabs < 192 since we have non power
* of two cache sizes there. The size of larger slabs can be determined using
* fls.
*/
static s8 size_index[24] = {
3, /* 8 */
4, /* 16 */
5, /* 24 */
5, /* 32 */
6, /* 40 */
6, /* 48 */
6, /* 56 */
6, /* 64 */
1, /* 72 */
1, /* 80 */
1, /* 88 */
1, /* 96 */
7, /* 104 */
7, /* 112 */
7, /* 120 */
7, /* 128 */
2, /* 136 */
2, /* 144 */
2, /* 152 */
2, /* 160 */
2, /* 168 */
2, /* 176 */
2, /* 184 */
2 /* 192 */
};
static inline int size_index_elem(size_t bytes)
{
return (bytes - 1) / 8;
}
/*
* Find the kmem_cache structure that serves a given size of
* allocation
*/
struct kmem_cache *kmalloc_slab(size_t size, gfp_t flags)
{
int index;
if (unlikely(size > KMALLOC_MAX_SIZE)) {
WARN_ON_ONCE(!(flags & __GFP_NOWARN));
return NULL;
}
if (size <= 192) {
if (!size)
return ZERO_SIZE_PTR;
index = size_index[size_index_elem(size)];
} else
index = fls(size - 1);
#ifdef CONFIG_ZONE_DMA
if (unlikely((flags & GFP_DMA)))
return kmalloc_dma_caches[index];
#endif
return kmalloc_caches[index];
}
/*
* Create the kmalloc array. Some of the regular kmalloc arrays
* may already have been created because they were needed to
* enable allocations for slab creation.
*/
void __init create_kmalloc_caches(unsigned long flags)
{
int i;
/*
* Patch up the size_index table if we have strange large alignment
* requirements for the kmalloc array. This is only the case for
* MIPS it seems. The standard arches will not generate any code here.
*
* Largest permitted alignment is 256 bytes due to the way we
* handle the index determination for the smaller caches.
*
* Make sure that nothing crazy happens if someone starts tinkering
* around with ARCH_KMALLOC_MINALIGN
*/
BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
(KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
int elem = size_index_elem(i);
if (elem >= ARRAY_SIZE(size_index))
break;
size_index[elem] = KMALLOC_SHIFT_LOW;
}
if (KMALLOC_MIN_SIZE >= 64) {
/*
* The 96 byte size cache is not used if the alignment
* is 64 byte.
*/
for (i = 64 + 8; i <= 96; i += 8)
size_index[size_index_elem(i)] = 7;
}
if (KMALLOC_MIN_SIZE >= 128) {
/*
* The 192 byte sized cache is not used if the alignment
* is 128 byte. Redirect kmalloc to use the 256 byte cache
* instead.
*/
for (i = 128 + 8; i <= 192; i += 8)
size_index[size_index_elem(i)] = 8;
}
for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) {
if (!kmalloc_caches[i]) {
kmalloc_caches[i] = create_kmalloc_cache(NULL,
1 << i, flags);
}
/*
* Caches that are not of the two-to-the-power-of size.
* These have to be created immediately after the
* earlier power of two caches
*/
if (KMALLOC_MIN_SIZE <= 32 && !kmalloc_caches[1] && i == 6)
kmalloc_caches[1] = create_kmalloc_cache(NULL, 96, flags);
if (KMALLOC_MIN_SIZE <= 64 && !kmalloc_caches[2] && i == 7)
kmalloc_caches[2] = create_kmalloc_cache(NULL, 192, flags);
}
/* Kmalloc array is now usable */
slab_state = UP;
for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) {
struct kmem_cache *s = kmalloc_caches[i];
char *n;
if (s) {
n = kasprintf(GFP_NOWAIT, "kmalloc-%d", kmalloc_size(i));
BUG_ON(!n);
s->name = n;
}
}
#ifdef CONFIG_ZONE_DMA
for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) {
struct kmem_cache *s = kmalloc_caches[i];
if (s) {
int size = kmalloc_size(i);
char *n = kasprintf(GFP_NOWAIT,
"dma-kmalloc-%d", size);
BUG_ON(!n);
kmalloc_dma_caches[i] = create_kmalloc_cache(n,
size, SLAB_CACHE_DMA | flags);
}
}
#endif
}
#endif /* !CONFIG_SLOB */
/*
* To avoid unnecessary overhead, we pass through large allocation requests
* directly to the page allocator. We use __GFP_COMP, because we will need to
* know the allocation order to free the pages properly in kfree.
*/
void *kmalloc_order(size_t size, gfp_t flags, unsigned int order)
{
void *ret;
struct page *page;
flags |= __GFP_COMP;
page = alloc_kmem_pages(flags, order);
ret = page ? page_address(page) : NULL;
kmemleak_alloc(ret, size, 1, flags);
return ret;
}
EXPORT_SYMBOL(kmalloc_order);
#ifdef CONFIG_TRACING
void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
{
void *ret = kmalloc_order(size, flags, order);
trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
return ret;
}
EXPORT_SYMBOL(kmalloc_order_trace);
#endif
#ifdef CONFIG_SLABINFO
#ifdef CONFIG_SLAB
#define SLABINFO_RIGHTS (S_IWUSR | S_IRUSR)
#else
#define SLABINFO_RIGHTS S_IRUSR
#endif
static void print_slabinfo_header(struct seq_file *m)
{
/*
* Output format version, so at least we can change it
* without _too_ many complaints.
*/
#ifdef CONFIG_DEBUG_SLAB
seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
#else
seq_puts(m, "slabinfo - version: 2.1\n");
#endif
seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
"<objperslab> <pagesperslab>");
seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
#ifdef CONFIG_DEBUG_SLAB
seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
"<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
#endif
seq_putc(m, '\n');
}
void *slab_start(struct seq_file *m, loff_t *pos)
{
mutex_lock(&slab_mutex);
return seq_list_start(&slab_caches, *pos);
}
void *slab_next(struct seq_file *m, void *p, loff_t *pos)
{
return seq_list_next(p, &slab_caches, pos);
}
void slab_stop(struct seq_file *m, void *p)
{
mutex_unlock(&slab_mutex);
}
static void
memcg_accumulate_slabinfo(struct kmem_cache *s, struct slabinfo *info)
{
struct kmem_cache *c;
struct slabinfo sinfo;
if (!is_root_cache(s))
return;
for_each_memcg_cache(c, s) {
memset(&sinfo, 0, sizeof(sinfo));
get_slabinfo(c, &sinfo);
info->active_slabs += sinfo.active_slabs;
info->num_slabs += sinfo.num_slabs;
info->shared_avail += sinfo.shared_avail;
info->active_objs += sinfo.active_objs;
info->num_objs += sinfo.num_objs;
}
}
static void cache_show(struct kmem_cache *s, struct seq_file *m)
{
struct slabinfo sinfo;
memset(&sinfo, 0, sizeof(sinfo));
get_slabinfo(s, &sinfo);
memcg_accumulate_slabinfo(s, &sinfo);
seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
cache_name(s), sinfo.active_objs, sinfo.num_objs, s->size,
sinfo.objects_per_slab, (1 << sinfo.cache_order));
seq_printf(m, " : tunables %4u %4u %4u",
sinfo.limit, sinfo.batchcount, sinfo.shared);
seq_printf(m, " : slabdata %6lu %6lu %6lu",
sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail);
slabinfo_show_stats(m, s);
seq_putc(m, '\n');
}
static int slab_show(struct seq_file *m, void *p)
{
struct kmem_cache *s = list_entry(p, struct kmem_cache, list);
if (p == slab_caches.next)
print_slabinfo_header(m);
if (is_root_cache(s))
cache_show(s, m);
return 0;
}
#ifdef CONFIG_MEMCG_KMEM
int memcg_slab_show(struct seq_file *m, void *p)
{
struct kmem_cache *s = list_entry(p, struct kmem_cache, list);
struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
if (p == slab_caches.next)
print_slabinfo_header(m);
if (!is_root_cache(s) && s->memcg_params.memcg == memcg)
cache_show(s, m);
return 0;
}
#endif
/*
* slabinfo_op - iterator that generates /proc/slabinfo
*
* Output layout:
* cache-name
* num-active-objs
* total-objs
* object size
* num-active-slabs
* total-slabs
* num-pages-per-slab
* + further values on SMP and with statistics enabled
*/
static const struct seq_operations slabinfo_op = {
.start = slab_start,
.next = slab_next,
.stop = slab_stop,
.show = slab_show,
};
static int slabinfo_open(struct inode *inode, struct file *file)
{
return seq_open(file, &slabinfo_op);
}
static const struct file_operations proc_slabinfo_operations = {
.open = slabinfo_open,
.read = seq_read,
.write = slabinfo_write,
.llseek = seq_lseek,
.release = seq_release,
};
static int __init slab_proc_init(void)
{
proc_create("slabinfo", SLABINFO_RIGHTS, NULL,
&proc_slabinfo_operations);
return 0;
}
module_init(slab_proc_init);
#endif /* CONFIG_SLABINFO */
static __always_inline void *__do_krealloc(const void *p, size_t new_size,
gfp_t flags)
{
void *ret;
size_t ks = 0;
if (p)
ks = ksize(p);
if (ks >= new_size)
return (void *)p;
ret = kmalloc_track_caller(new_size, flags);
if (ret && p)
memcpy(ret, p, ks);
return ret;
}
/**
* __krealloc - like krealloc() but don't free @p.
* @p: object to reallocate memory for.
* @new_size: how many bytes of memory are required.
* @flags: the type of memory to allocate.
*
* This function is like krealloc() except it never frees the originally
* allocated buffer. Use this if you don't want to free the buffer immediately
* like, for example, with RCU.
*/
void *__krealloc(const void *p, size_t new_size, gfp_t flags)
{
if (unlikely(!new_size))
return ZERO_SIZE_PTR;
return __do_krealloc(p, new_size, flags);
}
EXPORT_SYMBOL(__krealloc);
/**
* krealloc - reallocate memory. The contents will remain unchanged.
* @p: object to reallocate memory for.
* @new_size: how many bytes of memory are required.
* @flags: the type of memory to allocate.
*
* The contents of the object pointed to are preserved up to the
* lesser of the new and old sizes. If @p is %NULL, krealloc()
* behaves exactly like kmalloc(). If @new_size is 0 and @p is not a
* %NULL pointer, the object pointed to is freed.
*/
void *krealloc(const void *p, size_t new_size, gfp_t flags)
{
void *ret;
if (unlikely(!new_size)) {
kfree(p);
return ZERO_SIZE_PTR;
}
ret = __do_krealloc(p, new_size, flags);
if (ret && p != ret)
kfree(p);
return ret;
}
EXPORT_SYMBOL(krealloc);
/**
* kzfree - like kfree but zero memory
* @p: object to free memory of
*
* The memory of the object @p points to is zeroed before freed.
* If @p is %NULL, kzfree() does nothing.
*
* Note: this function zeroes the whole allocated buffer which can be a good
* deal bigger than the requested buffer size passed to kmalloc(). So be
* careful when using this function in performance sensitive code.
*/
void kzfree(const void *p)
{
size_t ks;
void *mem = (void *)p;
if (unlikely(ZERO_OR_NULL_PTR(mem)))
return;
ks = ksize(mem);
memset(mem, 0, ks);
kfree(mem);
}
EXPORT_SYMBOL(kzfree);
/* Tracepoints definitions. */
EXPORT_TRACEPOINT_SYMBOL(kmalloc);
EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc);
EXPORT_TRACEPOINT_SYMBOL(kmalloc_node);
EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc_node);
EXPORT_TRACEPOINT_SYMBOL(kfree);
EXPORT_TRACEPOINT_SYMBOL(kmem_cache_free);