8a8633978b
This patch makes use of build_skb() throughout in driver's receieve data path [HW gro flow and non HW gro flow]. With this, driver can build skb directly from the page segments which are already mapped to the hardware instead of allocating new SKB via netdev_alloc_skb() and memcpy the data which is quite costly. This really improves performance (keeping same or slight gain in rx throughput) in terms of CPU utilization which is significantly reduced [almost half] in non HW gro flow where for every incoming MTU sized packet driver had to allocate skb, memcpy headers etc. Additionally in that flow, it also gets rid of bunch of additional overheads [eth_get_headlen() etc.] to split headers and data in the skb. Tested with: system: 2 sockets, 4 cores per socket, hyperthreading, 2x4x2=16 cores iperf [server]: iperf -s iperf [client]: iperf -c <server_ip> -t 500 -i 10 -P 32 HW GRO off – w/o build_skb(), throughput: 36.8 Gbits/sec Average: CPU %usr %nice %sys %iowait %irq %soft %steal %guest %idle Average: all 0.59 0.00 32.93 0.00 0.00 43.07 0.00 0.00 23.42 HW GRO off - with build_skb(), throughput: 36.9 Gbits/sec Average: CPU %usr %nice %sys %iowait %irq %soft %steal %guest %idle Average: all 0.70 0.00 31.70 0.00 0.00 25.68 0.00 0.00 41.92 HW GRO on - w/o build_skb(), throughput: 36.9 Gbits/sec Average: CPU %usr %nice %sys %iowait %irq %soft %steal %guest %idle Average: all 0.86 0.00 24.14 0.00 0.00 6.59 0.00 0.00 68.41 HW GRO on - with build_skb(), throughput: 37.5 Gbits/sec Average: CPU %usr %nice %sys %iowait %irq %soft %steal %guest %idle Average: all 0.87 0.00 23.75 0.00 0.00 6.19 0.00 0.00 69.19 Signed-off-by: Ariel Elior <ariel.elior@cavium.com> Signed-off-by: Manish Chopra <manish.chopra@cavium.com> Signed-off-by: David S. Miller <davem@davemloft.net>
1729 lines
47 KiB
C
1729 lines
47 KiB
C
/* QLogic qede NIC Driver
|
|
* Copyright (c) 2015-2017 QLogic Corporation
|
|
*
|
|
* This software is available to you under a choice of one of two
|
|
* licenses. You may choose to be licensed under the terms of the GNU
|
|
* General Public License (GPL) Version 2, available from the file
|
|
* COPYING in the main directory of this source tree, or the
|
|
* OpenIB.org BSD license below:
|
|
*
|
|
* Redistribution and use in source and binary forms, with or
|
|
* without modification, are permitted provided that the following
|
|
* conditions are met:
|
|
*
|
|
* - Redistributions of source code must retain the above
|
|
* copyright notice, this list of conditions and the following
|
|
* disclaimer.
|
|
*
|
|
* - Redistributions in binary form must reproduce the above
|
|
* copyright notice, this list of conditions and the following
|
|
* disclaimer in the documentation and /or other materials
|
|
* provided with the distribution.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
|
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
|
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
|
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
|
|
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
|
|
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
|
|
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
* SOFTWARE.
|
|
*/
|
|
#include <linux/netdevice.h>
|
|
#include <linux/etherdevice.h>
|
|
#include <linux/skbuff.h>
|
|
#include <linux/bpf_trace.h>
|
|
#include <net/udp_tunnel.h>
|
|
#include <linux/ip.h>
|
|
#include <net/ipv6.h>
|
|
#include <net/tcp.h>
|
|
#include <linux/if_ether.h>
|
|
#include <linux/if_vlan.h>
|
|
#include <net/ip6_checksum.h>
|
|
#include "qede_ptp.h"
|
|
|
|
#include <linux/qed/qed_if.h>
|
|
#include "qede.h"
|
|
/*********************************
|
|
* Content also used by slowpath *
|
|
*********************************/
|
|
|
|
int qede_alloc_rx_buffer(struct qede_rx_queue *rxq, bool allow_lazy)
|
|
{
|
|
struct sw_rx_data *sw_rx_data;
|
|
struct eth_rx_bd *rx_bd;
|
|
dma_addr_t mapping;
|
|
struct page *data;
|
|
|
|
/* In case lazy-allocation is allowed, postpone allocation until the
|
|
* end of the NAPI run. We'd still need to make sure the Rx ring has
|
|
* sufficient buffers to guarantee an additional Rx interrupt.
|
|
*/
|
|
if (allow_lazy && likely(rxq->filled_buffers > 12)) {
|
|
rxq->filled_buffers--;
|
|
return 0;
|
|
}
|
|
|
|
data = alloc_pages(GFP_ATOMIC, 0);
|
|
if (unlikely(!data))
|
|
return -ENOMEM;
|
|
|
|
/* Map the entire page as it would be used
|
|
* for multiple RX buffer segment size mapping.
|
|
*/
|
|
mapping = dma_map_page(rxq->dev, data, 0,
|
|
PAGE_SIZE, rxq->data_direction);
|
|
if (unlikely(dma_mapping_error(rxq->dev, mapping))) {
|
|
__free_page(data);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
sw_rx_data = &rxq->sw_rx_ring[rxq->sw_rx_prod & NUM_RX_BDS_MAX];
|
|
sw_rx_data->page_offset = 0;
|
|
sw_rx_data->data = data;
|
|
sw_rx_data->mapping = mapping;
|
|
|
|
/* Advance PROD and get BD pointer */
|
|
rx_bd = (struct eth_rx_bd *)qed_chain_produce(&rxq->rx_bd_ring);
|
|
WARN_ON(!rx_bd);
|
|
rx_bd->addr.hi = cpu_to_le32(upper_32_bits(mapping));
|
|
rx_bd->addr.lo = cpu_to_le32(lower_32_bits(mapping) +
|
|
rxq->rx_headroom);
|
|
|
|
rxq->sw_rx_prod++;
|
|
rxq->filled_buffers++;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Unmap the data and free skb */
|
|
int qede_free_tx_pkt(struct qede_dev *edev, struct qede_tx_queue *txq, int *len)
|
|
{
|
|
u16 idx = txq->sw_tx_cons;
|
|
struct sk_buff *skb = txq->sw_tx_ring.skbs[idx].skb;
|
|
struct eth_tx_1st_bd *first_bd;
|
|
struct eth_tx_bd *tx_data_bd;
|
|
int bds_consumed = 0;
|
|
int nbds;
|
|
bool data_split = txq->sw_tx_ring.skbs[idx].flags & QEDE_TSO_SPLIT_BD;
|
|
int i, split_bd_len = 0;
|
|
|
|
if (unlikely(!skb)) {
|
|
DP_ERR(edev,
|
|
"skb is null for txq idx=%d txq->sw_tx_cons=%d txq->sw_tx_prod=%d\n",
|
|
idx, txq->sw_tx_cons, txq->sw_tx_prod);
|
|
return -1;
|
|
}
|
|
|
|
*len = skb->len;
|
|
|
|
first_bd = (struct eth_tx_1st_bd *)qed_chain_consume(&txq->tx_pbl);
|
|
|
|
bds_consumed++;
|
|
|
|
nbds = first_bd->data.nbds;
|
|
|
|
if (data_split) {
|
|
struct eth_tx_bd *split = (struct eth_tx_bd *)
|
|
qed_chain_consume(&txq->tx_pbl);
|
|
split_bd_len = BD_UNMAP_LEN(split);
|
|
bds_consumed++;
|
|
}
|
|
dma_unmap_single(&edev->pdev->dev, BD_UNMAP_ADDR(first_bd),
|
|
BD_UNMAP_LEN(first_bd) + split_bd_len, DMA_TO_DEVICE);
|
|
|
|
/* Unmap the data of the skb frags */
|
|
for (i = 0; i < skb_shinfo(skb)->nr_frags; i++, bds_consumed++) {
|
|
tx_data_bd = (struct eth_tx_bd *)
|
|
qed_chain_consume(&txq->tx_pbl);
|
|
dma_unmap_page(&edev->pdev->dev, BD_UNMAP_ADDR(tx_data_bd),
|
|
BD_UNMAP_LEN(tx_data_bd), DMA_TO_DEVICE);
|
|
}
|
|
|
|
while (bds_consumed++ < nbds)
|
|
qed_chain_consume(&txq->tx_pbl);
|
|
|
|
/* Free skb */
|
|
dev_kfree_skb_any(skb);
|
|
txq->sw_tx_ring.skbs[idx].skb = NULL;
|
|
txq->sw_tx_ring.skbs[idx].flags = 0;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Unmap the data and free skb when mapping failed during start_xmit */
|
|
static void qede_free_failed_tx_pkt(struct qede_tx_queue *txq,
|
|
struct eth_tx_1st_bd *first_bd,
|
|
int nbd, bool data_split)
|
|
{
|
|
u16 idx = txq->sw_tx_prod;
|
|
struct sk_buff *skb = txq->sw_tx_ring.skbs[idx].skb;
|
|
struct eth_tx_bd *tx_data_bd;
|
|
int i, split_bd_len = 0;
|
|
|
|
/* Return prod to its position before this skb was handled */
|
|
qed_chain_set_prod(&txq->tx_pbl,
|
|
le16_to_cpu(txq->tx_db.data.bd_prod), first_bd);
|
|
|
|
first_bd = (struct eth_tx_1st_bd *)qed_chain_produce(&txq->tx_pbl);
|
|
|
|
if (data_split) {
|
|
struct eth_tx_bd *split = (struct eth_tx_bd *)
|
|
qed_chain_produce(&txq->tx_pbl);
|
|
split_bd_len = BD_UNMAP_LEN(split);
|
|
nbd--;
|
|
}
|
|
|
|
dma_unmap_single(txq->dev, BD_UNMAP_ADDR(first_bd),
|
|
BD_UNMAP_LEN(first_bd) + split_bd_len, DMA_TO_DEVICE);
|
|
|
|
/* Unmap the data of the skb frags */
|
|
for (i = 0; i < nbd; i++) {
|
|
tx_data_bd = (struct eth_tx_bd *)
|
|
qed_chain_produce(&txq->tx_pbl);
|
|
if (tx_data_bd->nbytes)
|
|
dma_unmap_page(txq->dev,
|
|
BD_UNMAP_ADDR(tx_data_bd),
|
|
BD_UNMAP_LEN(tx_data_bd), DMA_TO_DEVICE);
|
|
}
|
|
|
|
/* Return again prod to its position before this skb was handled */
|
|
qed_chain_set_prod(&txq->tx_pbl,
|
|
le16_to_cpu(txq->tx_db.data.bd_prod), first_bd);
|
|
|
|
/* Free skb */
|
|
dev_kfree_skb_any(skb);
|
|
txq->sw_tx_ring.skbs[idx].skb = NULL;
|
|
txq->sw_tx_ring.skbs[idx].flags = 0;
|
|
}
|
|
|
|
static u32 qede_xmit_type(struct sk_buff *skb, int *ipv6_ext)
|
|
{
|
|
u32 rc = XMIT_L4_CSUM;
|
|
__be16 l3_proto;
|
|
|
|
if (skb->ip_summed != CHECKSUM_PARTIAL)
|
|
return XMIT_PLAIN;
|
|
|
|
l3_proto = vlan_get_protocol(skb);
|
|
if (l3_proto == htons(ETH_P_IPV6) &&
|
|
(ipv6_hdr(skb)->nexthdr == NEXTHDR_IPV6))
|
|
*ipv6_ext = 1;
|
|
|
|
if (skb->encapsulation) {
|
|
rc |= XMIT_ENC;
|
|
if (skb_is_gso(skb)) {
|
|
unsigned short gso_type = skb_shinfo(skb)->gso_type;
|
|
|
|
if ((gso_type & SKB_GSO_UDP_TUNNEL_CSUM) ||
|
|
(gso_type & SKB_GSO_GRE_CSUM))
|
|
rc |= XMIT_ENC_GSO_L4_CSUM;
|
|
|
|
rc |= XMIT_LSO;
|
|
return rc;
|
|
}
|
|
}
|
|
|
|
if (skb_is_gso(skb))
|
|
rc |= XMIT_LSO;
|
|
|
|
return rc;
|
|
}
|
|
|
|
static void qede_set_params_for_ipv6_ext(struct sk_buff *skb,
|
|
struct eth_tx_2nd_bd *second_bd,
|
|
struct eth_tx_3rd_bd *third_bd)
|
|
{
|
|
u8 l4_proto;
|
|
u16 bd2_bits1 = 0, bd2_bits2 = 0;
|
|
|
|
bd2_bits1 |= (1 << ETH_TX_DATA_2ND_BD_IPV6_EXT_SHIFT);
|
|
|
|
bd2_bits2 |= ((((u8 *)skb_transport_header(skb) - skb->data) >> 1) &
|
|
ETH_TX_DATA_2ND_BD_L4_HDR_START_OFFSET_W_MASK)
|
|
<< ETH_TX_DATA_2ND_BD_L4_HDR_START_OFFSET_W_SHIFT;
|
|
|
|
bd2_bits1 |= (ETH_L4_PSEUDO_CSUM_CORRECT_LENGTH <<
|
|
ETH_TX_DATA_2ND_BD_L4_PSEUDO_CSUM_MODE_SHIFT);
|
|
|
|
if (vlan_get_protocol(skb) == htons(ETH_P_IPV6))
|
|
l4_proto = ipv6_hdr(skb)->nexthdr;
|
|
else
|
|
l4_proto = ip_hdr(skb)->protocol;
|
|
|
|
if (l4_proto == IPPROTO_UDP)
|
|
bd2_bits1 |= 1 << ETH_TX_DATA_2ND_BD_L4_UDP_SHIFT;
|
|
|
|
if (third_bd)
|
|
third_bd->data.bitfields |=
|
|
cpu_to_le16(((tcp_hdrlen(skb) / 4) &
|
|
ETH_TX_DATA_3RD_BD_TCP_HDR_LEN_DW_MASK) <<
|
|
ETH_TX_DATA_3RD_BD_TCP_HDR_LEN_DW_SHIFT);
|
|
|
|
second_bd->data.bitfields1 = cpu_to_le16(bd2_bits1);
|
|
second_bd->data.bitfields2 = cpu_to_le16(bd2_bits2);
|
|
}
|
|
|
|
static int map_frag_to_bd(struct qede_tx_queue *txq,
|
|
skb_frag_t *frag, struct eth_tx_bd *bd)
|
|
{
|
|
dma_addr_t mapping;
|
|
|
|
/* Map skb non-linear frag data for DMA */
|
|
mapping = skb_frag_dma_map(txq->dev, frag, 0,
|
|
skb_frag_size(frag), DMA_TO_DEVICE);
|
|
if (unlikely(dma_mapping_error(txq->dev, mapping)))
|
|
return -ENOMEM;
|
|
|
|
/* Setup the data pointer of the frag data */
|
|
BD_SET_UNMAP_ADDR_LEN(bd, mapping, skb_frag_size(frag));
|
|
|
|
return 0;
|
|
}
|
|
|
|
static u16 qede_get_skb_hlen(struct sk_buff *skb, bool is_encap_pkt)
|
|
{
|
|
if (is_encap_pkt)
|
|
return (skb_inner_transport_header(skb) +
|
|
inner_tcp_hdrlen(skb) - skb->data);
|
|
else
|
|
return (skb_transport_header(skb) +
|
|
tcp_hdrlen(skb) - skb->data);
|
|
}
|
|
|
|
/* +2 for 1st BD for headers and 2nd BD for headlen (if required) */
|
|
#if ((MAX_SKB_FRAGS + 2) > ETH_TX_MAX_BDS_PER_NON_LSO_PACKET)
|
|
static bool qede_pkt_req_lin(struct sk_buff *skb, u8 xmit_type)
|
|
{
|
|
int allowed_frags = ETH_TX_MAX_BDS_PER_NON_LSO_PACKET - 1;
|
|
|
|
if (xmit_type & XMIT_LSO) {
|
|
int hlen;
|
|
|
|
hlen = qede_get_skb_hlen(skb, xmit_type & XMIT_ENC);
|
|
|
|
/* linear payload would require its own BD */
|
|
if (skb_headlen(skb) > hlen)
|
|
allowed_frags--;
|
|
}
|
|
|
|
return (skb_shinfo(skb)->nr_frags > allowed_frags);
|
|
}
|
|
#endif
|
|
|
|
static inline void qede_update_tx_producer(struct qede_tx_queue *txq)
|
|
{
|
|
/* wmb makes sure that the BDs data is updated before updating the
|
|
* producer, otherwise FW may read old data from the BDs.
|
|
*/
|
|
wmb();
|
|
barrier();
|
|
writel(txq->tx_db.raw, txq->doorbell_addr);
|
|
|
|
/* Fence required to flush the write combined buffer, since another
|
|
* CPU may write to the same doorbell address and data may be lost
|
|
* due to relaxed order nature of write combined bar.
|
|
*/
|
|
wmb();
|
|
}
|
|
|
|
static int qede_xdp_xmit(struct qede_dev *edev, struct qede_fastpath *fp,
|
|
struct sw_rx_data *metadata, u16 padding, u16 length)
|
|
{
|
|
struct qede_tx_queue *txq = fp->xdp_tx;
|
|
struct eth_tx_1st_bd *first_bd;
|
|
u16 idx = txq->sw_tx_prod;
|
|
u16 val;
|
|
|
|
if (!qed_chain_get_elem_left(&txq->tx_pbl)) {
|
|
txq->stopped_cnt++;
|
|
return -ENOMEM;
|
|
}
|
|
|
|
first_bd = (struct eth_tx_1st_bd *)qed_chain_produce(&txq->tx_pbl);
|
|
|
|
memset(first_bd, 0, sizeof(*first_bd));
|
|
first_bd->data.bd_flags.bitfields =
|
|
BIT(ETH_TX_1ST_BD_FLAGS_START_BD_SHIFT);
|
|
|
|
val = (length & ETH_TX_DATA_1ST_BD_PKT_LEN_MASK) <<
|
|
ETH_TX_DATA_1ST_BD_PKT_LEN_SHIFT;
|
|
|
|
first_bd->data.bitfields |= cpu_to_le16(val);
|
|
first_bd->data.nbds = 1;
|
|
|
|
/* We can safely ignore the offset, as it's 0 for XDP */
|
|
BD_SET_UNMAP_ADDR_LEN(first_bd, metadata->mapping + padding, length);
|
|
|
|
/* Synchronize the buffer back to device, as program [probably]
|
|
* has changed it.
|
|
*/
|
|
dma_sync_single_for_device(&edev->pdev->dev,
|
|
metadata->mapping + padding,
|
|
length, PCI_DMA_TODEVICE);
|
|
|
|
txq->sw_tx_ring.xdp[idx].page = metadata->data;
|
|
txq->sw_tx_ring.xdp[idx].mapping = metadata->mapping;
|
|
txq->sw_tx_prod = (txq->sw_tx_prod + 1) % txq->num_tx_buffers;
|
|
|
|
/* Mark the fastpath for future XDP doorbell */
|
|
fp->xdp_xmit = 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int qede_txq_has_work(struct qede_tx_queue *txq)
|
|
{
|
|
u16 hw_bd_cons;
|
|
|
|
/* Tell compiler that consumer and producer can change */
|
|
barrier();
|
|
hw_bd_cons = le16_to_cpu(*txq->hw_cons_ptr);
|
|
if (qed_chain_get_cons_idx(&txq->tx_pbl) == hw_bd_cons + 1)
|
|
return 0;
|
|
|
|
return hw_bd_cons != qed_chain_get_cons_idx(&txq->tx_pbl);
|
|
}
|
|
|
|
static void qede_xdp_tx_int(struct qede_dev *edev, struct qede_tx_queue *txq)
|
|
{
|
|
u16 hw_bd_cons, idx;
|
|
|
|
hw_bd_cons = le16_to_cpu(*txq->hw_cons_ptr);
|
|
barrier();
|
|
|
|
while (hw_bd_cons != qed_chain_get_cons_idx(&txq->tx_pbl)) {
|
|
qed_chain_consume(&txq->tx_pbl);
|
|
idx = txq->sw_tx_cons;
|
|
|
|
dma_unmap_page(&edev->pdev->dev,
|
|
txq->sw_tx_ring.xdp[idx].mapping,
|
|
PAGE_SIZE, DMA_BIDIRECTIONAL);
|
|
__free_page(txq->sw_tx_ring.xdp[idx].page);
|
|
|
|
txq->sw_tx_cons = (txq->sw_tx_cons + 1) % txq->num_tx_buffers;
|
|
txq->xmit_pkts++;
|
|
}
|
|
}
|
|
|
|
static int qede_tx_int(struct qede_dev *edev, struct qede_tx_queue *txq)
|
|
{
|
|
struct netdev_queue *netdev_txq;
|
|
u16 hw_bd_cons;
|
|
unsigned int pkts_compl = 0, bytes_compl = 0;
|
|
int rc;
|
|
|
|
netdev_txq = netdev_get_tx_queue(edev->ndev, txq->index);
|
|
|
|
hw_bd_cons = le16_to_cpu(*txq->hw_cons_ptr);
|
|
barrier();
|
|
|
|
while (hw_bd_cons != qed_chain_get_cons_idx(&txq->tx_pbl)) {
|
|
int len = 0;
|
|
|
|
rc = qede_free_tx_pkt(edev, txq, &len);
|
|
if (rc) {
|
|
DP_NOTICE(edev, "hw_bd_cons = %d, chain_cons=%d\n",
|
|
hw_bd_cons,
|
|
qed_chain_get_cons_idx(&txq->tx_pbl));
|
|
break;
|
|
}
|
|
|
|
bytes_compl += len;
|
|
pkts_compl++;
|
|
txq->sw_tx_cons = (txq->sw_tx_cons + 1) % txq->num_tx_buffers;
|
|
txq->xmit_pkts++;
|
|
}
|
|
|
|
netdev_tx_completed_queue(netdev_txq, pkts_compl, bytes_compl);
|
|
|
|
/* Need to make the tx_bd_cons update visible to start_xmit()
|
|
* before checking for netif_tx_queue_stopped(). Without the
|
|
* memory barrier, there is a small possibility that
|
|
* start_xmit() will miss it and cause the queue to be stopped
|
|
* forever.
|
|
* On the other hand we need an rmb() here to ensure the proper
|
|
* ordering of bit testing in the following
|
|
* netif_tx_queue_stopped(txq) call.
|
|
*/
|
|
smp_mb();
|
|
|
|
if (unlikely(netif_tx_queue_stopped(netdev_txq))) {
|
|
/* Taking tx_lock is needed to prevent reenabling the queue
|
|
* while it's empty. This could have happen if rx_action() gets
|
|
* suspended in qede_tx_int() after the condition before
|
|
* netif_tx_wake_queue(), while tx_action (qede_start_xmit()):
|
|
*
|
|
* stops the queue->sees fresh tx_bd_cons->releases the queue->
|
|
* sends some packets consuming the whole queue again->
|
|
* stops the queue
|
|
*/
|
|
|
|
__netif_tx_lock(netdev_txq, smp_processor_id());
|
|
|
|
if ((netif_tx_queue_stopped(netdev_txq)) &&
|
|
(edev->state == QEDE_STATE_OPEN) &&
|
|
(qed_chain_get_elem_left(&txq->tx_pbl)
|
|
>= (MAX_SKB_FRAGS + 1))) {
|
|
netif_tx_wake_queue(netdev_txq);
|
|
DP_VERBOSE(edev, NETIF_MSG_TX_DONE,
|
|
"Wake queue was called\n");
|
|
}
|
|
|
|
__netif_tx_unlock(netdev_txq);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
bool qede_has_rx_work(struct qede_rx_queue *rxq)
|
|
{
|
|
u16 hw_comp_cons, sw_comp_cons;
|
|
|
|
/* Tell compiler that status block fields can change */
|
|
barrier();
|
|
|
|
hw_comp_cons = le16_to_cpu(*rxq->hw_cons_ptr);
|
|
sw_comp_cons = qed_chain_get_cons_idx(&rxq->rx_comp_ring);
|
|
|
|
return hw_comp_cons != sw_comp_cons;
|
|
}
|
|
|
|
static inline void qede_rx_bd_ring_consume(struct qede_rx_queue *rxq)
|
|
{
|
|
qed_chain_consume(&rxq->rx_bd_ring);
|
|
rxq->sw_rx_cons++;
|
|
}
|
|
|
|
/* This function reuses the buffer(from an offset) from
|
|
* consumer index to producer index in the bd ring
|
|
*/
|
|
static inline void qede_reuse_page(struct qede_rx_queue *rxq,
|
|
struct sw_rx_data *curr_cons)
|
|
{
|
|
struct eth_rx_bd *rx_bd_prod = qed_chain_produce(&rxq->rx_bd_ring);
|
|
struct sw_rx_data *curr_prod;
|
|
dma_addr_t new_mapping;
|
|
|
|
curr_prod = &rxq->sw_rx_ring[rxq->sw_rx_prod & NUM_RX_BDS_MAX];
|
|
*curr_prod = *curr_cons;
|
|
|
|
new_mapping = curr_prod->mapping + curr_prod->page_offset;
|
|
|
|
rx_bd_prod->addr.hi = cpu_to_le32(upper_32_bits(new_mapping));
|
|
rx_bd_prod->addr.lo = cpu_to_le32(lower_32_bits(new_mapping) +
|
|
rxq->rx_headroom);
|
|
|
|
rxq->sw_rx_prod++;
|
|
curr_cons->data = NULL;
|
|
}
|
|
|
|
/* In case of allocation failures reuse buffers
|
|
* from consumer index to produce buffers for firmware
|
|
*/
|
|
void qede_recycle_rx_bd_ring(struct qede_rx_queue *rxq, u8 count)
|
|
{
|
|
struct sw_rx_data *curr_cons;
|
|
|
|
for (; count > 0; count--) {
|
|
curr_cons = &rxq->sw_rx_ring[rxq->sw_rx_cons & NUM_RX_BDS_MAX];
|
|
qede_reuse_page(rxq, curr_cons);
|
|
qede_rx_bd_ring_consume(rxq);
|
|
}
|
|
}
|
|
|
|
static inline int qede_realloc_rx_buffer(struct qede_rx_queue *rxq,
|
|
struct sw_rx_data *curr_cons)
|
|
{
|
|
/* Move to the next segment in the page */
|
|
curr_cons->page_offset += rxq->rx_buf_seg_size;
|
|
|
|
if (curr_cons->page_offset == PAGE_SIZE) {
|
|
if (unlikely(qede_alloc_rx_buffer(rxq, true))) {
|
|
/* Since we failed to allocate new buffer
|
|
* current buffer can be used again.
|
|
*/
|
|
curr_cons->page_offset -= rxq->rx_buf_seg_size;
|
|
|
|
return -ENOMEM;
|
|
}
|
|
|
|
dma_unmap_page(rxq->dev, curr_cons->mapping,
|
|
PAGE_SIZE, rxq->data_direction);
|
|
} else {
|
|
/* Increment refcount of the page as we don't want
|
|
* network stack to take the ownership of the page
|
|
* which can be recycled multiple times by the driver.
|
|
*/
|
|
page_ref_inc(curr_cons->data);
|
|
qede_reuse_page(rxq, curr_cons);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
void qede_update_rx_prod(struct qede_dev *edev, struct qede_rx_queue *rxq)
|
|
{
|
|
u16 bd_prod = qed_chain_get_prod_idx(&rxq->rx_bd_ring);
|
|
u16 cqe_prod = qed_chain_get_prod_idx(&rxq->rx_comp_ring);
|
|
struct eth_rx_prod_data rx_prods = {0};
|
|
|
|
/* Update producers */
|
|
rx_prods.bd_prod = cpu_to_le16(bd_prod);
|
|
rx_prods.cqe_prod = cpu_to_le16(cqe_prod);
|
|
|
|
/* Make sure that the BD and SGE data is updated before updating the
|
|
* producers since FW might read the BD/SGE right after the producer
|
|
* is updated.
|
|
*/
|
|
wmb();
|
|
|
|
internal_ram_wr(rxq->hw_rxq_prod_addr, sizeof(rx_prods),
|
|
(u32 *)&rx_prods);
|
|
|
|
/* mmiowb is needed to synchronize doorbell writes from more than one
|
|
* processor. It guarantees that the write arrives to the device before
|
|
* the napi lock is released and another qede_poll is called (possibly
|
|
* on another CPU). Without this barrier, the next doorbell can bypass
|
|
* this doorbell. This is applicable to IA64/Altix systems.
|
|
*/
|
|
mmiowb();
|
|
}
|
|
|
|
static void qede_get_rxhash(struct sk_buff *skb, u8 bitfields, __le32 rss_hash)
|
|
{
|
|
enum pkt_hash_types hash_type = PKT_HASH_TYPE_NONE;
|
|
enum rss_hash_type htype;
|
|
u32 hash = 0;
|
|
|
|
htype = GET_FIELD(bitfields, ETH_FAST_PATH_RX_REG_CQE_RSS_HASH_TYPE);
|
|
if (htype) {
|
|
hash_type = ((htype == RSS_HASH_TYPE_IPV4) ||
|
|
(htype == RSS_HASH_TYPE_IPV6)) ?
|
|
PKT_HASH_TYPE_L3 : PKT_HASH_TYPE_L4;
|
|
hash = le32_to_cpu(rss_hash);
|
|
}
|
|
skb_set_hash(skb, hash, hash_type);
|
|
}
|
|
|
|
static void qede_set_skb_csum(struct sk_buff *skb, u8 csum_flag)
|
|
{
|
|
skb_checksum_none_assert(skb);
|
|
|
|
if (csum_flag & QEDE_CSUM_UNNECESSARY)
|
|
skb->ip_summed = CHECKSUM_UNNECESSARY;
|
|
|
|
if (csum_flag & QEDE_TUNN_CSUM_UNNECESSARY) {
|
|
skb->csum_level = 1;
|
|
skb->encapsulation = 1;
|
|
}
|
|
}
|
|
|
|
static inline void qede_skb_receive(struct qede_dev *edev,
|
|
struct qede_fastpath *fp,
|
|
struct qede_rx_queue *rxq,
|
|
struct sk_buff *skb, u16 vlan_tag)
|
|
{
|
|
if (vlan_tag)
|
|
__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);
|
|
|
|
napi_gro_receive(&fp->napi, skb);
|
|
}
|
|
|
|
static void qede_set_gro_params(struct qede_dev *edev,
|
|
struct sk_buff *skb,
|
|
struct eth_fast_path_rx_tpa_start_cqe *cqe)
|
|
{
|
|
u16 parsing_flags = le16_to_cpu(cqe->pars_flags.flags);
|
|
|
|
if (((parsing_flags >> PARSING_AND_ERR_FLAGS_L3TYPE_SHIFT) &
|
|
PARSING_AND_ERR_FLAGS_L3TYPE_MASK) == 2)
|
|
skb_shinfo(skb)->gso_type = SKB_GSO_TCPV6;
|
|
else
|
|
skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4;
|
|
|
|
skb_shinfo(skb)->gso_size = __le16_to_cpu(cqe->len_on_first_bd) -
|
|
cqe->header_len;
|
|
}
|
|
|
|
static int qede_fill_frag_skb(struct qede_dev *edev,
|
|
struct qede_rx_queue *rxq,
|
|
u8 tpa_agg_index, u16 len_on_bd)
|
|
{
|
|
struct sw_rx_data *current_bd = &rxq->sw_rx_ring[rxq->sw_rx_cons &
|
|
NUM_RX_BDS_MAX];
|
|
struct qede_agg_info *tpa_info = &rxq->tpa_info[tpa_agg_index];
|
|
struct sk_buff *skb = tpa_info->skb;
|
|
|
|
if (unlikely(tpa_info->state != QEDE_AGG_STATE_START))
|
|
goto out;
|
|
|
|
/* Add one frag and update the appropriate fields in the skb */
|
|
skb_fill_page_desc(skb, tpa_info->frag_id++,
|
|
current_bd->data,
|
|
current_bd->page_offset + rxq->rx_headroom,
|
|
len_on_bd);
|
|
|
|
if (unlikely(qede_realloc_rx_buffer(rxq, current_bd))) {
|
|
/* Incr page ref count to reuse on allocation failure
|
|
* so that it doesn't get freed while freeing SKB.
|
|
*/
|
|
page_ref_inc(current_bd->data);
|
|
goto out;
|
|
}
|
|
|
|
qede_rx_bd_ring_consume(rxq);
|
|
|
|
skb->data_len += len_on_bd;
|
|
skb->truesize += rxq->rx_buf_seg_size;
|
|
skb->len += len_on_bd;
|
|
|
|
return 0;
|
|
|
|
out:
|
|
tpa_info->state = QEDE_AGG_STATE_ERROR;
|
|
qede_recycle_rx_bd_ring(rxq, 1);
|
|
|
|
return -ENOMEM;
|
|
}
|
|
|
|
static bool qede_tunn_exist(u16 flag)
|
|
{
|
|
return !!(flag & (PARSING_AND_ERR_FLAGS_TUNNELEXIST_MASK <<
|
|
PARSING_AND_ERR_FLAGS_TUNNELEXIST_SHIFT));
|
|
}
|
|
|
|
static u8 qede_check_tunn_csum(u16 flag)
|
|
{
|
|
u16 csum_flag = 0;
|
|
u8 tcsum = 0;
|
|
|
|
if (flag & (PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMWASCALCULATED_MASK <<
|
|
PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMWASCALCULATED_SHIFT))
|
|
csum_flag |= PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMERROR_MASK <<
|
|
PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMERROR_SHIFT;
|
|
|
|
if (flag & (PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_MASK <<
|
|
PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_SHIFT)) {
|
|
csum_flag |= PARSING_AND_ERR_FLAGS_L4CHKSMERROR_MASK <<
|
|
PARSING_AND_ERR_FLAGS_L4CHKSMERROR_SHIFT;
|
|
tcsum = QEDE_TUNN_CSUM_UNNECESSARY;
|
|
}
|
|
|
|
csum_flag |= PARSING_AND_ERR_FLAGS_TUNNELIPHDRERROR_MASK <<
|
|
PARSING_AND_ERR_FLAGS_TUNNELIPHDRERROR_SHIFT |
|
|
PARSING_AND_ERR_FLAGS_IPHDRERROR_MASK <<
|
|
PARSING_AND_ERR_FLAGS_IPHDRERROR_SHIFT;
|
|
|
|
if (csum_flag & flag)
|
|
return QEDE_CSUM_ERROR;
|
|
|
|
return QEDE_CSUM_UNNECESSARY | tcsum;
|
|
}
|
|
|
|
static inline struct sk_buff *
|
|
qede_build_skb(struct qede_rx_queue *rxq,
|
|
struct sw_rx_data *bd, u16 len, u16 pad)
|
|
{
|
|
struct sk_buff *skb;
|
|
void *buf;
|
|
|
|
buf = page_address(bd->data) + bd->page_offset;
|
|
skb = build_skb(buf, rxq->rx_buf_seg_size);
|
|
|
|
skb_reserve(skb, pad);
|
|
skb_put(skb, len);
|
|
|
|
return skb;
|
|
}
|
|
|
|
static struct sk_buff *
|
|
qede_tpa_rx_build_skb(struct qede_dev *edev,
|
|
struct qede_rx_queue *rxq,
|
|
struct sw_rx_data *bd, u16 len, u16 pad,
|
|
bool alloc_skb)
|
|
{
|
|
struct sk_buff *skb;
|
|
|
|
skb = qede_build_skb(rxq, bd, len, pad);
|
|
bd->page_offset += rxq->rx_buf_seg_size;
|
|
|
|
if (bd->page_offset == PAGE_SIZE) {
|
|
if (unlikely(qede_alloc_rx_buffer(rxq, true))) {
|
|
DP_NOTICE(edev,
|
|
"Failed to allocate RX buffer for tpa start\n");
|
|
bd->page_offset -= rxq->rx_buf_seg_size;
|
|
page_ref_inc(bd->data);
|
|
dev_kfree_skb_any(skb);
|
|
return NULL;
|
|
}
|
|
} else {
|
|
page_ref_inc(bd->data);
|
|
qede_reuse_page(rxq, bd);
|
|
}
|
|
|
|
/* We've consumed the first BD and prepared an SKB */
|
|
qede_rx_bd_ring_consume(rxq);
|
|
|
|
return skb;
|
|
}
|
|
|
|
static struct sk_buff *
|
|
qede_rx_build_skb(struct qede_dev *edev,
|
|
struct qede_rx_queue *rxq,
|
|
struct sw_rx_data *bd, u16 len, u16 pad)
|
|
{
|
|
struct sk_buff *skb = NULL;
|
|
|
|
/* For smaller frames still need to allocate skb, memcpy
|
|
* data and benefit in reusing the page segment instead of
|
|
* un-mapping it.
|
|
*/
|
|
if ((len + pad <= edev->rx_copybreak)) {
|
|
unsigned int offset = bd->page_offset + pad;
|
|
|
|
skb = netdev_alloc_skb(edev->ndev, QEDE_RX_HDR_SIZE);
|
|
if (unlikely(!skb))
|
|
return NULL;
|
|
|
|
skb_reserve(skb, pad);
|
|
memcpy(skb_put(skb, len),
|
|
page_address(bd->data) + offset, len);
|
|
qede_reuse_page(rxq, bd);
|
|
goto out;
|
|
}
|
|
|
|
skb = qede_build_skb(rxq, bd, len, pad);
|
|
|
|
if (unlikely(qede_realloc_rx_buffer(rxq, bd))) {
|
|
/* Incr page ref count to reuse on allocation failure so
|
|
* that it doesn't get freed while freeing SKB [as its
|
|
* already mapped there].
|
|
*/
|
|
page_ref_inc(bd->data);
|
|
dev_kfree_skb_any(skb);
|
|
return NULL;
|
|
}
|
|
out:
|
|
/* We've consumed the first BD and prepared an SKB */
|
|
qede_rx_bd_ring_consume(rxq);
|
|
|
|
return skb;
|
|
}
|
|
|
|
static void qede_tpa_start(struct qede_dev *edev,
|
|
struct qede_rx_queue *rxq,
|
|
struct eth_fast_path_rx_tpa_start_cqe *cqe)
|
|
{
|
|
struct qede_agg_info *tpa_info = &rxq->tpa_info[cqe->tpa_agg_index];
|
|
struct sw_rx_data *sw_rx_data_cons;
|
|
u16 pad;
|
|
|
|
sw_rx_data_cons = &rxq->sw_rx_ring[rxq->sw_rx_cons & NUM_RX_BDS_MAX];
|
|
pad = cqe->placement_offset + rxq->rx_headroom;
|
|
|
|
tpa_info->skb = qede_tpa_rx_build_skb(edev, rxq, sw_rx_data_cons,
|
|
le16_to_cpu(cqe->len_on_first_bd),
|
|
pad, false);
|
|
tpa_info->buffer.page_offset = sw_rx_data_cons->page_offset;
|
|
tpa_info->buffer.mapping = sw_rx_data_cons->mapping;
|
|
|
|
if (unlikely(!tpa_info->skb)) {
|
|
DP_NOTICE(edev, "Failed to allocate SKB for gro\n");
|
|
|
|
/* Consume from ring but do not produce since
|
|
* this might be used by FW still, it will be re-used
|
|
* at TPA end.
|
|
*/
|
|
tpa_info->tpa_start_fail = true;
|
|
qede_rx_bd_ring_consume(rxq);
|
|
tpa_info->state = QEDE_AGG_STATE_ERROR;
|
|
goto cons_buf;
|
|
}
|
|
|
|
tpa_info->frag_id = 0;
|
|
tpa_info->state = QEDE_AGG_STATE_START;
|
|
|
|
if ((le16_to_cpu(cqe->pars_flags.flags) >>
|
|
PARSING_AND_ERR_FLAGS_TAG8021QEXIST_SHIFT) &
|
|
PARSING_AND_ERR_FLAGS_TAG8021QEXIST_MASK)
|
|
tpa_info->vlan_tag = le16_to_cpu(cqe->vlan_tag);
|
|
else
|
|
tpa_info->vlan_tag = 0;
|
|
|
|
qede_get_rxhash(tpa_info->skb, cqe->bitfields, cqe->rss_hash);
|
|
|
|
/* This is needed in order to enable forwarding support */
|
|
qede_set_gro_params(edev, tpa_info->skb, cqe);
|
|
|
|
cons_buf: /* We still need to handle bd_len_list to consume buffers */
|
|
if (likely(cqe->ext_bd_len_list[0]))
|
|
qede_fill_frag_skb(edev, rxq, cqe->tpa_agg_index,
|
|
le16_to_cpu(cqe->ext_bd_len_list[0]));
|
|
|
|
if (unlikely(cqe->ext_bd_len_list[1])) {
|
|
DP_ERR(edev,
|
|
"Unlikely - got a TPA aggregation with more than one ext_bd_len_list entry in the TPA start\n");
|
|
tpa_info->state = QEDE_AGG_STATE_ERROR;
|
|
}
|
|
}
|
|
|
|
#ifdef CONFIG_INET
|
|
static void qede_gro_ip_csum(struct sk_buff *skb)
|
|
{
|
|
const struct iphdr *iph = ip_hdr(skb);
|
|
struct tcphdr *th;
|
|
|
|
skb_set_transport_header(skb, sizeof(struct iphdr));
|
|
th = tcp_hdr(skb);
|
|
|
|
th->check = ~tcp_v4_check(skb->len - skb_transport_offset(skb),
|
|
iph->saddr, iph->daddr, 0);
|
|
|
|
tcp_gro_complete(skb);
|
|
}
|
|
|
|
static void qede_gro_ipv6_csum(struct sk_buff *skb)
|
|
{
|
|
struct ipv6hdr *iph = ipv6_hdr(skb);
|
|
struct tcphdr *th;
|
|
|
|
skb_set_transport_header(skb, sizeof(struct ipv6hdr));
|
|
th = tcp_hdr(skb);
|
|
|
|
th->check = ~tcp_v6_check(skb->len - skb_transport_offset(skb),
|
|
&iph->saddr, &iph->daddr, 0);
|
|
tcp_gro_complete(skb);
|
|
}
|
|
#endif
|
|
|
|
static void qede_gro_receive(struct qede_dev *edev,
|
|
struct qede_fastpath *fp,
|
|
struct sk_buff *skb,
|
|
u16 vlan_tag)
|
|
{
|
|
/* FW can send a single MTU sized packet from gro flow
|
|
* due to aggregation timeout/last segment etc. which
|
|
* is not expected to be a gro packet. If a skb has zero
|
|
* frags then simply push it in the stack as non gso skb.
|
|
*/
|
|
if (unlikely(!skb->data_len)) {
|
|
skb_shinfo(skb)->gso_type = 0;
|
|
skb_shinfo(skb)->gso_size = 0;
|
|
goto send_skb;
|
|
}
|
|
|
|
#ifdef CONFIG_INET
|
|
if (skb_shinfo(skb)->gso_size) {
|
|
skb_reset_network_header(skb);
|
|
|
|
switch (skb->protocol) {
|
|
case htons(ETH_P_IP):
|
|
qede_gro_ip_csum(skb);
|
|
break;
|
|
case htons(ETH_P_IPV6):
|
|
qede_gro_ipv6_csum(skb);
|
|
break;
|
|
default:
|
|
DP_ERR(edev,
|
|
"Error: FW GRO supports only IPv4/IPv6, not 0x%04x\n",
|
|
ntohs(skb->protocol));
|
|
}
|
|
}
|
|
#endif
|
|
|
|
send_skb:
|
|
skb_record_rx_queue(skb, fp->rxq->rxq_id);
|
|
qede_skb_receive(edev, fp, fp->rxq, skb, vlan_tag);
|
|
}
|
|
|
|
static inline void qede_tpa_cont(struct qede_dev *edev,
|
|
struct qede_rx_queue *rxq,
|
|
struct eth_fast_path_rx_tpa_cont_cqe *cqe)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; cqe->len_list[i]; i++)
|
|
qede_fill_frag_skb(edev, rxq, cqe->tpa_agg_index,
|
|
le16_to_cpu(cqe->len_list[i]));
|
|
|
|
if (unlikely(i > 1))
|
|
DP_ERR(edev,
|
|
"Strange - TPA cont with more than a single len_list entry\n");
|
|
}
|
|
|
|
static int qede_tpa_end(struct qede_dev *edev,
|
|
struct qede_fastpath *fp,
|
|
struct eth_fast_path_rx_tpa_end_cqe *cqe)
|
|
{
|
|
struct qede_rx_queue *rxq = fp->rxq;
|
|
struct qede_agg_info *tpa_info;
|
|
struct sk_buff *skb;
|
|
int i;
|
|
|
|
tpa_info = &rxq->tpa_info[cqe->tpa_agg_index];
|
|
skb = tpa_info->skb;
|
|
|
|
if (tpa_info->buffer.page_offset == PAGE_SIZE)
|
|
dma_unmap_page(rxq->dev, tpa_info->buffer.mapping,
|
|
PAGE_SIZE, rxq->data_direction);
|
|
|
|
for (i = 0; cqe->len_list[i]; i++)
|
|
qede_fill_frag_skb(edev, rxq, cqe->tpa_agg_index,
|
|
le16_to_cpu(cqe->len_list[i]));
|
|
if (unlikely(i > 1))
|
|
DP_ERR(edev,
|
|
"Strange - TPA emd with more than a single len_list entry\n");
|
|
|
|
if (unlikely(tpa_info->state != QEDE_AGG_STATE_START))
|
|
goto err;
|
|
|
|
/* Sanity */
|
|
if (unlikely(cqe->num_of_bds != tpa_info->frag_id + 1))
|
|
DP_ERR(edev,
|
|
"Strange - TPA had %02x BDs, but SKB has only %d frags\n",
|
|
cqe->num_of_bds, tpa_info->frag_id);
|
|
if (unlikely(skb->len != le16_to_cpu(cqe->total_packet_len)))
|
|
DP_ERR(edev,
|
|
"Strange - total packet len [cqe] is %4x but SKB has len %04x\n",
|
|
le16_to_cpu(cqe->total_packet_len), skb->len);
|
|
|
|
/* Finalize the SKB */
|
|
skb->protocol = eth_type_trans(skb, edev->ndev);
|
|
skb->ip_summed = CHECKSUM_UNNECESSARY;
|
|
|
|
/* tcp_gro_complete() will copy NAPI_GRO_CB(skb)->count
|
|
* to skb_shinfo(skb)->gso_segs
|
|
*/
|
|
NAPI_GRO_CB(skb)->count = le16_to_cpu(cqe->num_of_coalesced_segs);
|
|
|
|
qede_gro_receive(edev, fp, skb, tpa_info->vlan_tag);
|
|
|
|
tpa_info->state = QEDE_AGG_STATE_NONE;
|
|
|
|
return 1;
|
|
err:
|
|
tpa_info->state = QEDE_AGG_STATE_NONE;
|
|
|
|
if (tpa_info->tpa_start_fail) {
|
|
qede_reuse_page(rxq, &tpa_info->buffer);
|
|
tpa_info->tpa_start_fail = false;
|
|
}
|
|
|
|
dev_kfree_skb_any(tpa_info->skb);
|
|
tpa_info->skb = NULL;
|
|
return 0;
|
|
}
|
|
|
|
static u8 qede_check_notunn_csum(u16 flag)
|
|
{
|
|
u16 csum_flag = 0;
|
|
u8 csum = 0;
|
|
|
|
if (flag & (PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_MASK <<
|
|
PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_SHIFT)) {
|
|
csum_flag |= PARSING_AND_ERR_FLAGS_L4CHKSMERROR_MASK <<
|
|
PARSING_AND_ERR_FLAGS_L4CHKSMERROR_SHIFT;
|
|
csum = QEDE_CSUM_UNNECESSARY;
|
|
}
|
|
|
|
csum_flag |= PARSING_AND_ERR_FLAGS_IPHDRERROR_MASK <<
|
|
PARSING_AND_ERR_FLAGS_IPHDRERROR_SHIFT;
|
|
|
|
if (csum_flag & flag)
|
|
return QEDE_CSUM_ERROR;
|
|
|
|
return csum;
|
|
}
|
|
|
|
static u8 qede_check_csum(u16 flag)
|
|
{
|
|
if (!qede_tunn_exist(flag))
|
|
return qede_check_notunn_csum(flag);
|
|
else
|
|
return qede_check_tunn_csum(flag);
|
|
}
|
|
|
|
static bool qede_pkt_is_ip_fragmented(struct eth_fast_path_rx_reg_cqe *cqe,
|
|
u16 flag)
|
|
{
|
|
u8 tun_pars_flg = cqe->tunnel_pars_flags.flags;
|
|
|
|
if ((tun_pars_flg & (ETH_TUNNEL_PARSING_FLAGS_IPV4_FRAGMENT_MASK <<
|
|
ETH_TUNNEL_PARSING_FLAGS_IPV4_FRAGMENT_SHIFT)) ||
|
|
(flag & (PARSING_AND_ERR_FLAGS_IPV4FRAG_MASK <<
|
|
PARSING_AND_ERR_FLAGS_IPV4FRAG_SHIFT)))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
/* Return true iff packet is to be passed to stack */
|
|
static bool qede_rx_xdp(struct qede_dev *edev,
|
|
struct qede_fastpath *fp,
|
|
struct qede_rx_queue *rxq,
|
|
struct bpf_prog *prog,
|
|
struct sw_rx_data *bd,
|
|
struct eth_fast_path_rx_reg_cqe *cqe,
|
|
u16 *data_offset, u16 *len)
|
|
{
|
|
struct xdp_buff xdp;
|
|
enum xdp_action act;
|
|
|
|
xdp.data_hard_start = page_address(bd->data);
|
|
xdp.data = xdp.data_hard_start + *data_offset;
|
|
xdp_set_data_meta_invalid(&xdp);
|
|
xdp.data_end = xdp.data + *len;
|
|
xdp.rxq = &rxq->xdp_rxq;
|
|
|
|
/* Queues always have a full reset currently, so for the time
|
|
* being until there's atomic program replace just mark read
|
|
* side for map helpers.
|
|
*/
|
|
rcu_read_lock();
|
|
act = bpf_prog_run_xdp(prog, &xdp);
|
|
rcu_read_unlock();
|
|
|
|
/* Recalculate, as XDP might have changed the headers */
|
|
*data_offset = xdp.data - xdp.data_hard_start;
|
|
*len = xdp.data_end - xdp.data;
|
|
|
|
if (act == XDP_PASS)
|
|
return true;
|
|
|
|
/* Count number of packets not to be passed to stack */
|
|
rxq->xdp_no_pass++;
|
|
|
|
switch (act) {
|
|
case XDP_TX:
|
|
/* We need the replacement buffer before transmit. */
|
|
if (qede_alloc_rx_buffer(rxq, true)) {
|
|
qede_recycle_rx_bd_ring(rxq, 1);
|
|
trace_xdp_exception(edev->ndev, prog, act);
|
|
return false;
|
|
}
|
|
|
|
/* Now if there's a transmission problem, we'd still have to
|
|
* throw current buffer, as replacement was already allocated.
|
|
*/
|
|
if (qede_xdp_xmit(edev, fp, bd, *data_offset, *len)) {
|
|
dma_unmap_page(rxq->dev, bd->mapping,
|
|
PAGE_SIZE, DMA_BIDIRECTIONAL);
|
|
__free_page(bd->data);
|
|
trace_xdp_exception(edev->ndev, prog, act);
|
|
}
|
|
|
|
/* Regardless, we've consumed an Rx BD */
|
|
qede_rx_bd_ring_consume(rxq);
|
|
return false;
|
|
|
|
default:
|
|
bpf_warn_invalid_xdp_action(act);
|
|
case XDP_ABORTED:
|
|
trace_xdp_exception(edev->ndev, prog, act);
|
|
case XDP_DROP:
|
|
qede_recycle_rx_bd_ring(rxq, cqe->bd_num);
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static int qede_rx_build_jumbo(struct qede_dev *edev,
|
|
struct qede_rx_queue *rxq,
|
|
struct sk_buff *skb,
|
|
struct eth_fast_path_rx_reg_cqe *cqe,
|
|
u16 first_bd_len)
|
|
{
|
|
u16 pkt_len = le16_to_cpu(cqe->pkt_len);
|
|
struct sw_rx_data *bd;
|
|
u16 bd_cons_idx;
|
|
u8 num_frags;
|
|
|
|
pkt_len -= first_bd_len;
|
|
|
|
/* We've already used one BD for the SKB. Now take care of the rest */
|
|
for (num_frags = cqe->bd_num - 1; num_frags > 0; num_frags--) {
|
|
u16 cur_size = pkt_len > rxq->rx_buf_size ? rxq->rx_buf_size :
|
|
pkt_len;
|
|
|
|
if (unlikely(!cur_size)) {
|
|
DP_ERR(edev,
|
|
"Still got %d BDs for mapping jumbo, but length became 0\n",
|
|
num_frags);
|
|
goto out;
|
|
}
|
|
|
|
/* We need a replacement buffer for each BD */
|
|
if (unlikely(qede_alloc_rx_buffer(rxq, true)))
|
|
goto out;
|
|
|
|
/* Now that we've allocated the replacement buffer,
|
|
* we can safely consume the next BD and map it to the SKB.
|
|
*/
|
|
bd_cons_idx = rxq->sw_rx_cons & NUM_RX_BDS_MAX;
|
|
bd = &rxq->sw_rx_ring[bd_cons_idx];
|
|
qede_rx_bd_ring_consume(rxq);
|
|
|
|
dma_unmap_page(rxq->dev, bd->mapping,
|
|
PAGE_SIZE, DMA_FROM_DEVICE);
|
|
|
|
skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags++,
|
|
bd->data, rxq->rx_headroom, cur_size);
|
|
|
|
skb->truesize += PAGE_SIZE;
|
|
skb->data_len += cur_size;
|
|
skb->len += cur_size;
|
|
pkt_len -= cur_size;
|
|
}
|
|
|
|
if (unlikely(pkt_len))
|
|
DP_ERR(edev,
|
|
"Mapped all BDs of jumbo, but still have %d bytes\n",
|
|
pkt_len);
|
|
|
|
out:
|
|
return num_frags;
|
|
}
|
|
|
|
static int qede_rx_process_tpa_cqe(struct qede_dev *edev,
|
|
struct qede_fastpath *fp,
|
|
struct qede_rx_queue *rxq,
|
|
union eth_rx_cqe *cqe,
|
|
enum eth_rx_cqe_type type)
|
|
{
|
|
switch (type) {
|
|
case ETH_RX_CQE_TYPE_TPA_START:
|
|
qede_tpa_start(edev, rxq, &cqe->fast_path_tpa_start);
|
|
return 0;
|
|
case ETH_RX_CQE_TYPE_TPA_CONT:
|
|
qede_tpa_cont(edev, rxq, &cqe->fast_path_tpa_cont);
|
|
return 0;
|
|
case ETH_RX_CQE_TYPE_TPA_END:
|
|
return qede_tpa_end(edev, fp, &cqe->fast_path_tpa_end);
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
static int qede_rx_process_cqe(struct qede_dev *edev,
|
|
struct qede_fastpath *fp,
|
|
struct qede_rx_queue *rxq)
|
|
{
|
|
struct bpf_prog *xdp_prog = READ_ONCE(rxq->xdp_prog);
|
|
struct eth_fast_path_rx_reg_cqe *fp_cqe;
|
|
u16 len, pad, bd_cons_idx, parse_flag;
|
|
enum eth_rx_cqe_type cqe_type;
|
|
union eth_rx_cqe *cqe;
|
|
struct sw_rx_data *bd;
|
|
struct sk_buff *skb;
|
|
__le16 flags;
|
|
u8 csum_flag;
|
|
|
|
/* Get the CQE from the completion ring */
|
|
cqe = (union eth_rx_cqe *)qed_chain_consume(&rxq->rx_comp_ring);
|
|
cqe_type = cqe->fast_path_regular.type;
|
|
|
|
/* Process an unlikely slowpath event */
|
|
if (unlikely(cqe_type == ETH_RX_CQE_TYPE_SLOW_PATH)) {
|
|
struct eth_slow_path_rx_cqe *sp_cqe;
|
|
|
|
sp_cqe = (struct eth_slow_path_rx_cqe *)cqe;
|
|
edev->ops->eth_cqe_completion(edev->cdev, fp->id, sp_cqe);
|
|
return 0;
|
|
}
|
|
|
|
/* Handle TPA cqes */
|
|
if (cqe_type != ETH_RX_CQE_TYPE_REGULAR)
|
|
return qede_rx_process_tpa_cqe(edev, fp, rxq, cqe, cqe_type);
|
|
|
|
/* Get the data from the SW ring; Consume it only after it's evident
|
|
* we wouldn't recycle it.
|
|
*/
|
|
bd_cons_idx = rxq->sw_rx_cons & NUM_RX_BDS_MAX;
|
|
bd = &rxq->sw_rx_ring[bd_cons_idx];
|
|
|
|
fp_cqe = &cqe->fast_path_regular;
|
|
len = le16_to_cpu(fp_cqe->len_on_first_bd);
|
|
pad = fp_cqe->placement_offset + rxq->rx_headroom;
|
|
|
|
/* Run eBPF program if one is attached */
|
|
if (xdp_prog)
|
|
if (!qede_rx_xdp(edev, fp, rxq, xdp_prog, bd, fp_cqe,
|
|
&pad, &len))
|
|
return 0;
|
|
|
|
/* If this is an error packet then drop it */
|
|
flags = cqe->fast_path_regular.pars_flags.flags;
|
|
parse_flag = le16_to_cpu(flags);
|
|
|
|
csum_flag = qede_check_csum(parse_flag);
|
|
if (unlikely(csum_flag == QEDE_CSUM_ERROR)) {
|
|
if (qede_pkt_is_ip_fragmented(fp_cqe, parse_flag))
|
|
rxq->rx_ip_frags++;
|
|
else
|
|
rxq->rx_hw_errors++;
|
|
}
|
|
|
|
/* Basic validation passed; Need to prepare an SKB. This would also
|
|
* guarantee to finally consume the first BD upon success.
|
|
*/
|
|
skb = qede_rx_build_skb(edev, rxq, bd, len, pad);
|
|
if (!skb) {
|
|
rxq->rx_alloc_errors++;
|
|
qede_recycle_rx_bd_ring(rxq, fp_cqe->bd_num);
|
|
return 0;
|
|
}
|
|
|
|
/* In case of Jumbo packet, several PAGE_SIZEd buffers will be pointed
|
|
* by a single cqe.
|
|
*/
|
|
if (fp_cqe->bd_num > 1) {
|
|
u16 unmapped_frags = qede_rx_build_jumbo(edev, rxq, skb,
|
|
fp_cqe, len);
|
|
|
|
if (unlikely(unmapped_frags > 0)) {
|
|
qede_recycle_rx_bd_ring(rxq, unmapped_frags);
|
|
dev_kfree_skb_any(skb);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/* The SKB contains all the data. Now prepare meta-magic */
|
|
skb->protocol = eth_type_trans(skb, edev->ndev);
|
|
qede_get_rxhash(skb, fp_cqe->bitfields, fp_cqe->rss_hash);
|
|
qede_set_skb_csum(skb, csum_flag);
|
|
skb_record_rx_queue(skb, rxq->rxq_id);
|
|
qede_ptp_record_rx_ts(edev, cqe, skb);
|
|
|
|
/* SKB is prepared - pass it to stack */
|
|
qede_skb_receive(edev, fp, rxq, skb, le16_to_cpu(fp_cqe->vlan_tag));
|
|
|
|
return 1;
|
|
}
|
|
|
|
static int qede_rx_int(struct qede_fastpath *fp, int budget)
|
|
{
|
|
struct qede_rx_queue *rxq = fp->rxq;
|
|
struct qede_dev *edev = fp->edev;
|
|
int work_done = 0, rcv_pkts = 0;
|
|
u16 hw_comp_cons, sw_comp_cons;
|
|
|
|
hw_comp_cons = le16_to_cpu(*rxq->hw_cons_ptr);
|
|
sw_comp_cons = qed_chain_get_cons_idx(&rxq->rx_comp_ring);
|
|
|
|
/* Memory barrier to prevent the CPU from doing speculative reads of CQE
|
|
* / BD in the while-loop before reading hw_comp_cons. If the CQE is
|
|
* read before it is written by FW, then FW writes CQE and SB, and then
|
|
* the CPU reads the hw_comp_cons, it will use an old CQE.
|
|
*/
|
|
rmb();
|
|
|
|
/* Loop to complete all indicated BDs */
|
|
while ((sw_comp_cons != hw_comp_cons) && (work_done < budget)) {
|
|
rcv_pkts += qede_rx_process_cqe(edev, fp, rxq);
|
|
qed_chain_recycle_consumed(&rxq->rx_comp_ring);
|
|
sw_comp_cons = qed_chain_get_cons_idx(&rxq->rx_comp_ring);
|
|
work_done++;
|
|
}
|
|
|
|
rxq->rcv_pkts += rcv_pkts;
|
|
|
|
/* Allocate replacement buffers */
|
|
while (rxq->num_rx_buffers - rxq->filled_buffers)
|
|
if (qede_alloc_rx_buffer(rxq, false))
|
|
break;
|
|
|
|
/* Update producers */
|
|
qede_update_rx_prod(edev, rxq);
|
|
|
|
return work_done;
|
|
}
|
|
|
|
static bool qede_poll_is_more_work(struct qede_fastpath *fp)
|
|
{
|
|
qed_sb_update_sb_idx(fp->sb_info);
|
|
|
|
/* *_has_*_work() reads the status block, thus we need to ensure that
|
|
* status block indices have been actually read (qed_sb_update_sb_idx)
|
|
* prior to this check (*_has_*_work) so that we won't write the
|
|
* "newer" value of the status block to HW (if there was a DMA right
|
|
* after qede_has_rx_work and if there is no rmb, the memory reading
|
|
* (qed_sb_update_sb_idx) may be postponed to right before *_ack_sb).
|
|
* In this case there will never be another interrupt until there is
|
|
* another update of the status block, while there is still unhandled
|
|
* work.
|
|
*/
|
|
rmb();
|
|
|
|
if (likely(fp->type & QEDE_FASTPATH_RX))
|
|
if (qede_has_rx_work(fp->rxq))
|
|
return true;
|
|
|
|
if (fp->type & QEDE_FASTPATH_XDP)
|
|
if (qede_txq_has_work(fp->xdp_tx))
|
|
return true;
|
|
|
|
if (likely(fp->type & QEDE_FASTPATH_TX))
|
|
if (qede_txq_has_work(fp->txq))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
/*********************
|
|
* NDO & API related *
|
|
*********************/
|
|
int qede_poll(struct napi_struct *napi, int budget)
|
|
{
|
|
struct qede_fastpath *fp = container_of(napi, struct qede_fastpath,
|
|
napi);
|
|
struct qede_dev *edev = fp->edev;
|
|
int rx_work_done = 0;
|
|
|
|
if (likely(fp->type & QEDE_FASTPATH_TX) && qede_txq_has_work(fp->txq))
|
|
qede_tx_int(edev, fp->txq);
|
|
|
|
if ((fp->type & QEDE_FASTPATH_XDP) && qede_txq_has_work(fp->xdp_tx))
|
|
qede_xdp_tx_int(edev, fp->xdp_tx);
|
|
|
|
rx_work_done = (likely(fp->type & QEDE_FASTPATH_RX) &&
|
|
qede_has_rx_work(fp->rxq)) ?
|
|
qede_rx_int(fp, budget) : 0;
|
|
if (rx_work_done < budget) {
|
|
if (!qede_poll_is_more_work(fp)) {
|
|
napi_complete_done(napi, rx_work_done);
|
|
|
|
/* Update and reenable interrupts */
|
|
qed_sb_ack(fp->sb_info, IGU_INT_ENABLE, 1);
|
|
} else {
|
|
rx_work_done = budget;
|
|
}
|
|
}
|
|
|
|
if (fp->xdp_xmit) {
|
|
u16 xdp_prod = qed_chain_get_prod_idx(&fp->xdp_tx->tx_pbl);
|
|
|
|
fp->xdp_xmit = 0;
|
|
fp->xdp_tx->tx_db.data.bd_prod = cpu_to_le16(xdp_prod);
|
|
qede_update_tx_producer(fp->xdp_tx);
|
|
}
|
|
|
|
return rx_work_done;
|
|
}
|
|
|
|
irqreturn_t qede_msix_fp_int(int irq, void *fp_cookie)
|
|
{
|
|
struct qede_fastpath *fp = fp_cookie;
|
|
|
|
qed_sb_ack(fp->sb_info, IGU_INT_DISABLE, 0 /*do not update*/);
|
|
|
|
napi_schedule_irqoff(&fp->napi);
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
/* Main transmit function */
|
|
netdev_tx_t qede_start_xmit(struct sk_buff *skb, struct net_device *ndev)
|
|
{
|
|
struct qede_dev *edev = netdev_priv(ndev);
|
|
struct netdev_queue *netdev_txq;
|
|
struct qede_tx_queue *txq;
|
|
struct eth_tx_1st_bd *first_bd;
|
|
struct eth_tx_2nd_bd *second_bd = NULL;
|
|
struct eth_tx_3rd_bd *third_bd = NULL;
|
|
struct eth_tx_bd *tx_data_bd = NULL;
|
|
u16 txq_index, val = 0;
|
|
u8 nbd = 0;
|
|
dma_addr_t mapping;
|
|
int rc, frag_idx = 0, ipv6_ext = 0;
|
|
u8 xmit_type;
|
|
u16 idx;
|
|
u16 hlen;
|
|
bool data_split = false;
|
|
|
|
/* Get tx-queue context and netdev index */
|
|
txq_index = skb_get_queue_mapping(skb);
|
|
WARN_ON(txq_index >= QEDE_TSS_COUNT(edev));
|
|
txq = edev->fp_array[edev->fp_num_rx + txq_index].txq;
|
|
netdev_txq = netdev_get_tx_queue(ndev, txq_index);
|
|
|
|
WARN_ON(qed_chain_get_elem_left(&txq->tx_pbl) < (MAX_SKB_FRAGS + 1));
|
|
|
|
xmit_type = qede_xmit_type(skb, &ipv6_ext);
|
|
|
|
#if ((MAX_SKB_FRAGS + 2) > ETH_TX_MAX_BDS_PER_NON_LSO_PACKET)
|
|
if (qede_pkt_req_lin(skb, xmit_type)) {
|
|
if (skb_linearize(skb)) {
|
|
DP_NOTICE(edev,
|
|
"SKB linearization failed - silently dropping this SKB\n");
|
|
dev_kfree_skb_any(skb);
|
|
return NETDEV_TX_OK;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/* Fill the entry in the SW ring and the BDs in the FW ring */
|
|
idx = txq->sw_tx_prod;
|
|
txq->sw_tx_ring.skbs[idx].skb = skb;
|
|
first_bd = (struct eth_tx_1st_bd *)
|
|
qed_chain_produce(&txq->tx_pbl);
|
|
memset(first_bd, 0, sizeof(*first_bd));
|
|
first_bd->data.bd_flags.bitfields =
|
|
1 << ETH_TX_1ST_BD_FLAGS_START_BD_SHIFT;
|
|
|
|
if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP))
|
|
qede_ptp_tx_ts(edev, skb);
|
|
|
|
/* Map skb linear data for DMA and set in the first BD */
|
|
mapping = dma_map_single(txq->dev, skb->data,
|
|
skb_headlen(skb), DMA_TO_DEVICE);
|
|
if (unlikely(dma_mapping_error(txq->dev, mapping))) {
|
|
DP_NOTICE(edev, "SKB mapping failed\n");
|
|
qede_free_failed_tx_pkt(txq, first_bd, 0, false);
|
|
qede_update_tx_producer(txq);
|
|
return NETDEV_TX_OK;
|
|
}
|
|
nbd++;
|
|
BD_SET_UNMAP_ADDR_LEN(first_bd, mapping, skb_headlen(skb));
|
|
|
|
/* In case there is IPv6 with extension headers or LSO we need 2nd and
|
|
* 3rd BDs.
|
|
*/
|
|
if (unlikely((xmit_type & XMIT_LSO) | ipv6_ext)) {
|
|
second_bd = (struct eth_tx_2nd_bd *)
|
|
qed_chain_produce(&txq->tx_pbl);
|
|
memset(second_bd, 0, sizeof(*second_bd));
|
|
|
|
nbd++;
|
|
third_bd = (struct eth_tx_3rd_bd *)
|
|
qed_chain_produce(&txq->tx_pbl);
|
|
memset(third_bd, 0, sizeof(*third_bd));
|
|
|
|
nbd++;
|
|
/* We need to fill in additional data in second_bd... */
|
|
tx_data_bd = (struct eth_tx_bd *)second_bd;
|
|
}
|
|
|
|
if (skb_vlan_tag_present(skb)) {
|
|
first_bd->data.vlan = cpu_to_le16(skb_vlan_tag_get(skb));
|
|
first_bd->data.bd_flags.bitfields |=
|
|
1 << ETH_TX_1ST_BD_FLAGS_VLAN_INSERTION_SHIFT;
|
|
}
|
|
|
|
/* Fill the parsing flags & params according to the requested offload */
|
|
if (xmit_type & XMIT_L4_CSUM) {
|
|
/* We don't re-calculate IP checksum as it is already done by
|
|
* the upper stack
|
|
*/
|
|
first_bd->data.bd_flags.bitfields |=
|
|
1 << ETH_TX_1ST_BD_FLAGS_L4_CSUM_SHIFT;
|
|
|
|
if (xmit_type & XMIT_ENC) {
|
|
first_bd->data.bd_flags.bitfields |=
|
|
1 << ETH_TX_1ST_BD_FLAGS_IP_CSUM_SHIFT;
|
|
|
|
val |= (1 << ETH_TX_DATA_1ST_BD_TUNN_FLAG_SHIFT);
|
|
}
|
|
|
|
/* Legacy FW had flipped behavior in regard to this bit -
|
|
* I.e., needed to set to prevent FW from touching encapsulated
|
|
* packets when it didn't need to.
|
|
*/
|
|
if (unlikely(txq->is_legacy))
|
|
val ^= (1 << ETH_TX_DATA_1ST_BD_TUNN_FLAG_SHIFT);
|
|
|
|
/* If the packet is IPv6 with extension header, indicate that
|
|
* to FW and pass few params, since the device cracker doesn't
|
|
* support parsing IPv6 with extension header/s.
|
|
*/
|
|
if (unlikely(ipv6_ext))
|
|
qede_set_params_for_ipv6_ext(skb, second_bd, third_bd);
|
|
}
|
|
|
|
if (xmit_type & XMIT_LSO) {
|
|
first_bd->data.bd_flags.bitfields |=
|
|
(1 << ETH_TX_1ST_BD_FLAGS_LSO_SHIFT);
|
|
third_bd->data.lso_mss =
|
|
cpu_to_le16(skb_shinfo(skb)->gso_size);
|
|
|
|
if (unlikely(xmit_type & XMIT_ENC)) {
|
|
first_bd->data.bd_flags.bitfields |=
|
|
1 << ETH_TX_1ST_BD_FLAGS_TUNN_IP_CSUM_SHIFT;
|
|
|
|
if (xmit_type & XMIT_ENC_GSO_L4_CSUM) {
|
|
u8 tmp = ETH_TX_1ST_BD_FLAGS_TUNN_L4_CSUM_SHIFT;
|
|
|
|
first_bd->data.bd_flags.bitfields |= 1 << tmp;
|
|
}
|
|
hlen = qede_get_skb_hlen(skb, true);
|
|
} else {
|
|
first_bd->data.bd_flags.bitfields |=
|
|
1 << ETH_TX_1ST_BD_FLAGS_IP_CSUM_SHIFT;
|
|
hlen = qede_get_skb_hlen(skb, false);
|
|
}
|
|
|
|
/* @@@TBD - if will not be removed need to check */
|
|
third_bd->data.bitfields |=
|
|
cpu_to_le16(1 << ETH_TX_DATA_3RD_BD_HDR_NBD_SHIFT);
|
|
|
|
/* Make life easier for FW guys who can't deal with header and
|
|
* data on same BD. If we need to split, use the second bd...
|
|
*/
|
|
if (unlikely(skb_headlen(skb) > hlen)) {
|
|
DP_VERBOSE(edev, NETIF_MSG_TX_QUEUED,
|
|
"TSO split header size is %d (%x:%x)\n",
|
|
first_bd->nbytes, first_bd->addr.hi,
|
|
first_bd->addr.lo);
|
|
|
|
mapping = HILO_U64(le32_to_cpu(first_bd->addr.hi),
|
|
le32_to_cpu(first_bd->addr.lo)) +
|
|
hlen;
|
|
|
|
BD_SET_UNMAP_ADDR_LEN(tx_data_bd, mapping,
|
|
le16_to_cpu(first_bd->nbytes) -
|
|
hlen);
|
|
|
|
/* this marks the BD as one that has no
|
|
* individual mapping
|
|
*/
|
|
txq->sw_tx_ring.skbs[idx].flags |= QEDE_TSO_SPLIT_BD;
|
|
|
|
first_bd->nbytes = cpu_to_le16(hlen);
|
|
|
|
tx_data_bd = (struct eth_tx_bd *)third_bd;
|
|
data_split = true;
|
|
}
|
|
} else {
|
|
val |= ((skb->len & ETH_TX_DATA_1ST_BD_PKT_LEN_MASK) <<
|
|
ETH_TX_DATA_1ST_BD_PKT_LEN_SHIFT);
|
|
}
|
|
|
|
first_bd->data.bitfields = cpu_to_le16(val);
|
|
|
|
/* Handle fragmented skb */
|
|
/* special handle for frags inside 2nd and 3rd bds.. */
|
|
while (tx_data_bd && frag_idx < skb_shinfo(skb)->nr_frags) {
|
|
rc = map_frag_to_bd(txq,
|
|
&skb_shinfo(skb)->frags[frag_idx],
|
|
tx_data_bd);
|
|
if (rc) {
|
|
qede_free_failed_tx_pkt(txq, first_bd, nbd, data_split);
|
|
qede_update_tx_producer(txq);
|
|
return NETDEV_TX_OK;
|
|
}
|
|
|
|
if (tx_data_bd == (struct eth_tx_bd *)second_bd)
|
|
tx_data_bd = (struct eth_tx_bd *)third_bd;
|
|
else
|
|
tx_data_bd = NULL;
|
|
|
|
frag_idx++;
|
|
}
|
|
|
|
/* map last frags into 4th, 5th .... */
|
|
for (; frag_idx < skb_shinfo(skb)->nr_frags; frag_idx++, nbd++) {
|
|
tx_data_bd = (struct eth_tx_bd *)
|
|
qed_chain_produce(&txq->tx_pbl);
|
|
|
|
memset(tx_data_bd, 0, sizeof(*tx_data_bd));
|
|
|
|
rc = map_frag_to_bd(txq,
|
|
&skb_shinfo(skb)->frags[frag_idx],
|
|
tx_data_bd);
|
|
if (rc) {
|
|
qede_free_failed_tx_pkt(txq, first_bd, nbd, data_split);
|
|
qede_update_tx_producer(txq);
|
|
return NETDEV_TX_OK;
|
|
}
|
|
}
|
|
|
|
/* update the first BD with the actual num BDs */
|
|
first_bd->data.nbds = nbd;
|
|
|
|
netdev_tx_sent_queue(netdev_txq, skb->len);
|
|
|
|
skb_tx_timestamp(skb);
|
|
|
|
/* Advance packet producer only before sending the packet since mapping
|
|
* of pages may fail.
|
|
*/
|
|
txq->sw_tx_prod = (txq->sw_tx_prod + 1) % txq->num_tx_buffers;
|
|
|
|
/* 'next page' entries are counted in the producer value */
|
|
txq->tx_db.data.bd_prod =
|
|
cpu_to_le16(qed_chain_get_prod_idx(&txq->tx_pbl));
|
|
|
|
if (!skb->xmit_more || netif_xmit_stopped(netdev_txq))
|
|
qede_update_tx_producer(txq);
|
|
|
|
if (unlikely(qed_chain_get_elem_left(&txq->tx_pbl)
|
|
< (MAX_SKB_FRAGS + 1))) {
|
|
if (skb->xmit_more)
|
|
qede_update_tx_producer(txq);
|
|
|
|
netif_tx_stop_queue(netdev_txq);
|
|
txq->stopped_cnt++;
|
|
DP_VERBOSE(edev, NETIF_MSG_TX_QUEUED,
|
|
"Stop queue was called\n");
|
|
/* paired memory barrier is in qede_tx_int(), we have to keep
|
|
* ordering of set_bit() in netif_tx_stop_queue() and read of
|
|
* fp->bd_tx_cons
|
|
*/
|
|
smp_mb();
|
|
|
|
if ((qed_chain_get_elem_left(&txq->tx_pbl) >=
|
|
(MAX_SKB_FRAGS + 1)) &&
|
|
(edev->state == QEDE_STATE_OPEN)) {
|
|
netif_tx_wake_queue(netdev_txq);
|
|
DP_VERBOSE(edev, NETIF_MSG_TX_QUEUED,
|
|
"Wake queue was called\n");
|
|
}
|
|
}
|
|
|
|
return NETDEV_TX_OK;
|
|
}
|
|
|
|
/* 8B udp header + 8B base tunnel header + 32B option length */
|
|
#define QEDE_MAX_TUN_HDR_LEN 48
|
|
|
|
netdev_features_t qede_features_check(struct sk_buff *skb,
|
|
struct net_device *dev,
|
|
netdev_features_t features)
|
|
{
|
|
if (skb->encapsulation) {
|
|
u8 l4_proto = 0;
|
|
|
|
switch (vlan_get_protocol(skb)) {
|
|
case htons(ETH_P_IP):
|
|
l4_proto = ip_hdr(skb)->protocol;
|
|
break;
|
|
case htons(ETH_P_IPV6):
|
|
l4_proto = ipv6_hdr(skb)->nexthdr;
|
|
break;
|
|
default:
|
|
return features;
|
|
}
|
|
|
|
/* Disable offloads for geneve tunnels, as HW can't parse
|
|
* the geneve header which has option length greater than 32b
|
|
* and disable offloads for the ports which are not offloaded.
|
|
*/
|
|
if (l4_proto == IPPROTO_UDP) {
|
|
struct qede_dev *edev = netdev_priv(dev);
|
|
u16 hdrlen, vxln_port, gnv_port;
|
|
|
|
hdrlen = QEDE_MAX_TUN_HDR_LEN;
|
|
vxln_port = edev->vxlan_dst_port;
|
|
gnv_port = edev->geneve_dst_port;
|
|
|
|
if ((skb_inner_mac_header(skb) -
|
|
skb_transport_header(skb)) > hdrlen ||
|
|
(ntohs(udp_hdr(skb)->dest) != vxln_port &&
|
|
ntohs(udp_hdr(skb)->dest) != gnv_port))
|
|
return features & ~(NETIF_F_CSUM_MASK |
|
|
NETIF_F_GSO_MASK);
|
|
}
|
|
}
|
|
|
|
return features;
|
|
}
|