forked from Minki/linux
0d0e14770d
Converting an address between cached & uncached (typically addresses in (c)kseg0 & (c)kseg1 or 2 xkphys regions) should not depend upon PHYS_OFFSET in any way - we're converting from a virtual address in one unmapped region to a virtual address in another unmapped region. For some reason our CAC_ADDR() & UNCAC_ADDR() macros make use of PAGE_OFFSET, which typically includes PHYS_OFFSET. This means that platforms with a non-zero PHYS_OFFSET typically have to workaround miscalculation by these 2 macros by also defining UNCAC_BASE to a value that isn't really correct. It appears that an attempt has previously been made to address this with commit 3f4579252aa1 ("MIPS: make CAC_ADDR and UNCAC_ADDR account for PHYS_OFFSET") which was later undone by commited3ce16c3d
("Revert "MIPS: make CAC_ADDR and UNCAC_ADDR account for PHYS_OFFSET"") which also introduced the ar7 workaround. That attempt at a fix was roughly equivalent, but essentially caused the CAC_ADDR() & UNCAC_ADDR() macros to cancel out PHYS_OFFSET by adding & then subtracting it again. In his revert Leonid is correct that using PHYS_OFFSET makes no sense in the context of these macros, but appears to have missed its inclusion via PAGE_OFFSET which means PHYS_OFFSET actually had an effect after the revert rather than before it. Here we fix this by modifying CAC_ADDR() & UNCAC_ADDR() to stop using PAGE_OFFSET (& thus PHYS_OFFSET), instead using __pa() & __va() along with UNCAC_BASE. For UNCAC_ADDR(), __pa() will convert a cached address to a physical address which we can simply use as an offset from UNCAC_BASE to obtain an address in the uncached region. For CAC_ADDR() we can undo the effect of UNCAC_ADDR() by subtracting UNCAC_BASE and using __va() on the result. With this change made, remove definitions of UNCAC_BASE from the ar7 & pic32 platforms which appear to have defined them only to workaround this problem. Signed-off-by: Paul Burton <paul.burton@mips.com> References: 3f4579252aa1 ("MIPS: make CAC_ADDR and UNCAC_ADDR account for PHYS_OFFSET") References:ed3ce16c3d
("Revert "MIPS: make CAC_ADDR and UNCAC_ADDR account for PHYS_OFFSET"") Patchwork: https://patchwork.linux-mips.org/patch/20046/ Cc: Florian Fainelli <f.fainelli@gmail.com> Cc: James Hogan <jhogan@kernel.org> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: linux-mips@linux-mips.org Cc: Vladimir Kondratiev <vladimir.kondratiev@intel.com>
209 lines
5.2 KiB
C
209 lines
5.2 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Copyright (C) 2000 Ani Joshi <ajoshi@unixbox.com>
|
|
* Copyright (C) 2000, 2001, 06 Ralf Baechle <ralf@linux-mips.org>
|
|
* swiped from i386, and cloned for MIPS by Geert, polished by Ralf.
|
|
*/
|
|
#include <linux/dma-direct.h>
|
|
#include <linux/dma-noncoherent.h>
|
|
#include <linux/dma-contiguous.h>
|
|
#include <linux/highmem.h>
|
|
|
|
#include <asm/cache.h>
|
|
#include <asm/cpu-type.h>
|
|
#include <asm/dma-coherence.h>
|
|
#include <asm/io.h>
|
|
|
|
#ifdef CONFIG_DMA_PERDEV_COHERENT
|
|
static inline int dev_is_coherent(struct device *dev)
|
|
{
|
|
return dev->archdata.dma_coherent;
|
|
}
|
|
#else
|
|
static inline int dev_is_coherent(struct device *dev)
|
|
{
|
|
switch (coherentio) {
|
|
default:
|
|
case IO_COHERENCE_DEFAULT:
|
|
return hw_coherentio;
|
|
case IO_COHERENCE_ENABLED:
|
|
return 1;
|
|
case IO_COHERENCE_DISABLED:
|
|
return 0;
|
|
}
|
|
}
|
|
#endif /* CONFIG_DMA_PERDEV_COHERENT */
|
|
|
|
/*
|
|
* The affected CPUs below in 'cpu_needs_post_dma_flush()' can speculatively
|
|
* fill random cachelines with stale data at any time, requiring an extra
|
|
* flush post-DMA.
|
|
*
|
|
* Warning on the terminology - Linux calls an uncached area coherent; MIPS
|
|
* terminology calls memory areas with hardware maintained coherency coherent.
|
|
*
|
|
* Note that the R14000 and R16000 should also be checked for in this condition.
|
|
* However this function is only called on non-I/O-coherent systems and only the
|
|
* R10000 and R12000 are used in such systems, the SGI IP28 Indigo² rsp.
|
|
* SGI IP32 aka O2.
|
|
*/
|
|
static inline bool cpu_needs_post_dma_flush(struct device *dev)
|
|
{
|
|
if (dev_is_coherent(dev))
|
|
return false;
|
|
|
|
switch (boot_cpu_type()) {
|
|
case CPU_R10000:
|
|
case CPU_R12000:
|
|
case CPU_BMIPS5000:
|
|
return true;
|
|
default:
|
|
/*
|
|
* Presence of MAARs suggests that the CPU supports
|
|
* speculatively prefetching data, and therefore requires
|
|
* the post-DMA flush/invalidate.
|
|
*/
|
|
return cpu_has_maar;
|
|
}
|
|
}
|
|
|
|
void *arch_dma_alloc(struct device *dev, size_t size,
|
|
dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs)
|
|
{
|
|
void *ret;
|
|
|
|
ret = dma_direct_alloc(dev, size, dma_handle, gfp, attrs);
|
|
if (!ret)
|
|
return NULL;
|
|
|
|
if (!dev_is_coherent(dev) && !(attrs & DMA_ATTR_NON_CONSISTENT)) {
|
|
dma_cache_wback_inv((unsigned long) ret, size);
|
|
ret = (void *)UNCAC_ADDR(ret);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
void arch_dma_free(struct device *dev, size_t size, void *cpu_addr,
|
|
dma_addr_t dma_addr, unsigned long attrs)
|
|
{
|
|
if (!(attrs & DMA_ATTR_NON_CONSISTENT) && !dev_is_coherent(dev))
|
|
cpu_addr = (void *)CAC_ADDR((unsigned long)cpu_addr);
|
|
dma_direct_free(dev, size, cpu_addr, dma_addr, attrs);
|
|
}
|
|
|
|
int arch_dma_mmap(struct device *dev, struct vm_area_struct *vma,
|
|
void *cpu_addr, dma_addr_t dma_addr, size_t size,
|
|
unsigned long attrs)
|
|
{
|
|
unsigned long user_count = vma_pages(vma);
|
|
unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
|
|
unsigned long addr = (unsigned long)cpu_addr;
|
|
unsigned long off = vma->vm_pgoff;
|
|
unsigned long pfn;
|
|
int ret = -ENXIO;
|
|
|
|
if (!dev_is_coherent(dev))
|
|
addr = CAC_ADDR(addr);
|
|
|
|
pfn = page_to_pfn(virt_to_page((void *)addr));
|
|
|
|
if (attrs & DMA_ATTR_WRITE_COMBINE)
|
|
vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot);
|
|
else
|
|
vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
|
|
|
|
if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
|
|
return ret;
|
|
|
|
if (off < count && user_count <= (count - off)) {
|
|
ret = remap_pfn_range(vma, vma->vm_start,
|
|
pfn + off,
|
|
user_count << PAGE_SHIFT,
|
|
vma->vm_page_prot);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static inline void dma_sync_virt(void *addr, size_t size,
|
|
enum dma_data_direction dir)
|
|
{
|
|
switch (dir) {
|
|
case DMA_TO_DEVICE:
|
|
dma_cache_wback((unsigned long)addr, size);
|
|
break;
|
|
|
|
case DMA_FROM_DEVICE:
|
|
dma_cache_inv((unsigned long)addr, size);
|
|
break;
|
|
|
|
case DMA_BIDIRECTIONAL:
|
|
dma_cache_wback_inv((unsigned long)addr, size);
|
|
break;
|
|
|
|
default:
|
|
BUG();
|
|
}
|
|
}
|
|
|
|
/*
|
|
* A single sg entry may refer to multiple physically contiguous pages. But
|
|
* we still need to process highmem pages individually. If highmem is not
|
|
* configured then the bulk of this loop gets optimized out.
|
|
*/
|
|
static inline void dma_sync_phys(phys_addr_t paddr, size_t size,
|
|
enum dma_data_direction dir)
|
|
{
|
|
struct page *page = pfn_to_page(paddr >> PAGE_SHIFT);
|
|
unsigned long offset = paddr & ~PAGE_MASK;
|
|
size_t left = size;
|
|
|
|
do {
|
|
size_t len = left;
|
|
|
|
if (PageHighMem(page)) {
|
|
void *addr;
|
|
|
|
if (offset + len > PAGE_SIZE) {
|
|
if (offset >= PAGE_SIZE) {
|
|
page += offset >> PAGE_SHIFT;
|
|
offset &= ~PAGE_MASK;
|
|
}
|
|
len = PAGE_SIZE - offset;
|
|
}
|
|
|
|
addr = kmap_atomic(page);
|
|
dma_sync_virt(addr + offset, len, dir);
|
|
kunmap_atomic(addr);
|
|
} else
|
|
dma_sync_virt(page_address(page) + offset, size, dir);
|
|
offset = 0;
|
|
page++;
|
|
left -= len;
|
|
} while (left);
|
|
}
|
|
|
|
void arch_sync_dma_for_device(struct device *dev, phys_addr_t paddr,
|
|
size_t size, enum dma_data_direction dir)
|
|
{
|
|
if (!dev_is_coherent(dev))
|
|
dma_sync_phys(paddr, size, dir);
|
|
}
|
|
|
|
void arch_sync_dma_for_cpu(struct device *dev, phys_addr_t paddr,
|
|
size_t size, enum dma_data_direction dir)
|
|
{
|
|
if (cpu_needs_post_dma_flush(dev))
|
|
dma_sync_phys(paddr, size, dir);
|
|
}
|
|
|
|
void arch_dma_cache_sync(struct device *dev, void *vaddr, size_t size,
|
|
enum dma_data_direction direction)
|
|
{
|
|
BUG_ON(direction == DMA_NONE);
|
|
|
|
if (!dev_is_coherent(dev))
|
|
dma_sync_virt(vaddr, size, direction);
|
|
}
|