linux/arch/x86/power/cpu.c
konrad@kernel.org 4d681be3c3 x86, wakeup, sleep: Use pvops functions for changing GDT entries
We check the TSS descriptor before we try to dereference it.
Also we document what the value '9' actually means using the
AMD64 Architecture Programmer's Manual Volume 2, pg 90:
"Hex value 9: Available 64-bit TSS" and pg 91:
"The available 32-bit TSS (09h), which is redefined as the
available 64-bit TSS."

Without this, on Xen, where the GDT is available as R/O (to
protect the hypervisor from the guest modifying it), we end up
with a pagetable fault.

Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Link: http://lkml.kernel.org/r/1365194544-14648-5-git-send-email-konrad.wilk@oracle.com
Cc: Rafael J. Wysocki <rjw@sisk.pl>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2013-04-11 15:41:15 -07:00

323 lines
8.2 KiB
C

/*
* Suspend support specific for i386/x86-64.
*
* Distribute under GPLv2
*
* Copyright (c) 2007 Rafael J. Wysocki <rjw@sisk.pl>
* Copyright (c) 2002 Pavel Machek <pavel@ucw.cz>
* Copyright (c) 2001 Patrick Mochel <mochel@osdl.org>
*/
#include <linux/suspend.h>
#include <linux/export.h>
#include <linux/smp.h>
#include <asm/pgtable.h>
#include <asm/proto.h>
#include <asm/mtrr.h>
#include <asm/page.h>
#include <asm/mce.h>
#include <asm/xcr.h>
#include <asm/suspend.h>
#include <asm/debugreg.h>
#include <asm/fpu-internal.h> /* pcntxt_mask */
#include <asm/cpu.h>
#ifdef CONFIG_X86_32
static struct saved_context saved_context;
unsigned long saved_context_ebx;
unsigned long saved_context_esp, saved_context_ebp;
unsigned long saved_context_esi, saved_context_edi;
unsigned long saved_context_eflags;
#else
/* CONFIG_X86_64 */
struct saved_context saved_context;
#endif
/**
* __save_processor_state - save CPU registers before creating a
* hibernation image and before restoring the memory state from it
* @ctxt - structure to store the registers contents in
*
* NOTE: If there is a CPU register the modification of which by the
* boot kernel (ie. the kernel used for loading the hibernation image)
* might affect the operations of the restored target kernel (ie. the one
* saved in the hibernation image), then its contents must be saved by this
* function. In other words, if kernel A is hibernated and different
* kernel B is used for loading the hibernation image into memory, the
* kernel A's __save_processor_state() function must save all registers
* needed by kernel A, so that it can operate correctly after the resume
* regardless of what kernel B does in the meantime.
*/
static void __save_processor_state(struct saved_context *ctxt)
{
#ifdef CONFIG_X86_32
mtrr_save_fixed_ranges(NULL);
#endif
kernel_fpu_begin();
/*
* descriptor tables
*/
#ifdef CONFIG_X86_32
store_idt(&ctxt->idt);
#else
/* CONFIG_X86_64 */
store_idt((struct desc_ptr *)&ctxt->idt_limit);
#endif
store_tr(ctxt->tr);
/* XMM0..XMM15 should be handled by kernel_fpu_begin(). */
/*
* segment registers
*/
#ifdef CONFIG_X86_32
savesegment(es, ctxt->es);
savesegment(fs, ctxt->fs);
savesegment(gs, ctxt->gs);
savesegment(ss, ctxt->ss);
#else
/* CONFIG_X86_64 */
asm volatile ("movw %%ds, %0" : "=m" (ctxt->ds));
asm volatile ("movw %%es, %0" : "=m" (ctxt->es));
asm volatile ("movw %%fs, %0" : "=m" (ctxt->fs));
asm volatile ("movw %%gs, %0" : "=m" (ctxt->gs));
asm volatile ("movw %%ss, %0" : "=m" (ctxt->ss));
rdmsrl(MSR_FS_BASE, ctxt->fs_base);
rdmsrl(MSR_GS_BASE, ctxt->gs_base);
rdmsrl(MSR_KERNEL_GS_BASE, ctxt->gs_kernel_base);
mtrr_save_fixed_ranges(NULL);
rdmsrl(MSR_EFER, ctxt->efer);
#endif
/*
* control registers
*/
ctxt->cr0 = read_cr0();
ctxt->cr2 = read_cr2();
ctxt->cr3 = read_cr3();
#ifdef CONFIG_X86_32
ctxt->cr4 = read_cr4_safe();
#else
/* CONFIG_X86_64 */
ctxt->cr4 = read_cr4();
ctxt->cr8 = read_cr8();
#endif
ctxt->misc_enable_saved = !rdmsrl_safe(MSR_IA32_MISC_ENABLE,
&ctxt->misc_enable);
}
/* Needed by apm.c */
void save_processor_state(void)
{
__save_processor_state(&saved_context);
x86_platform.save_sched_clock_state();
}
#ifdef CONFIG_X86_32
EXPORT_SYMBOL(save_processor_state);
#endif
static void do_fpu_end(void)
{
/*
* Restore FPU regs if necessary.
*/
kernel_fpu_end();
}
static void fix_processor_context(void)
{
int cpu = smp_processor_id();
struct tss_struct *t = &per_cpu(init_tss, cpu);
#ifdef CONFIG_X86_64
struct desc_struct *desc = get_cpu_gdt_table(cpu);
tss_desc tss;
#endif
set_tss_desc(cpu, t); /*
* This just modifies memory; should not be
* necessary. But... This is necessary, because
* 386 hardware has concept of busy TSS or some
* similar stupidity.
*/
#ifdef CONFIG_X86_64
memcpy(&tss, &desc[GDT_ENTRY_TSS], sizeof(tss_desc));
tss.type = 0x9; /* The available 64-bit TSS (see AMD vol 2, pg 91 */
write_gdt_entry(desc, GDT_ENTRY_TSS, &tss, DESC_TSS);
syscall_init(); /* This sets MSR_*STAR and related */
#endif
load_TR_desc(); /* This does ltr */
load_LDT(&current->active_mm->context); /* This does lldt */
}
/**
* __restore_processor_state - restore the contents of CPU registers saved
* by __save_processor_state()
* @ctxt - structure to load the registers contents from
*/
static void __restore_processor_state(struct saved_context *ctxt)
{
if (ctxt->misc_enable_saved)
wrmsrl(MSR_IA32_MISC_ENABLE, ctxt->misc_enable);
/*
* control registers
*/
/* cr4 was introduced in the Pentium CPU */
#ifdef CONFIG_X86_32
if (ctxt->cr4)
write_cr4(ctxt->cr4);
#else
/* CONFIG X86_64 */
wrmsrl(MSR_EFER, ctxt->efer);
write_cr8(ctxt->cr8);
write_cr4(ctxt->cr4);
#endif
write_cr3(ctxt->cr3);
write_cr2(ctxt->cr2);
write_cr0(ctxt->cr0);
/*
* now restore the descriptor tables to their proper values
* ltr is done i fix_processor_context().
*/
#ifdef CONFIG_X86_32
load_idt(&ctxt->idt);
#else
/* CONFIG_X86_64 */
load_idt((const struct desc_ptr *)&ctxt->idt_limit);
#endif
/*
* segment registers
*/
#ifdef CONFIG_X86_32
loadsegment(es, ctxt->es);
loadsegment(fs, ctxt->fs);
loadsegment(gs, ctxt->gs);
loadsegment(ss, ctxt->ss);
/*
* sysenter MSRs
*/
if (boot_cpu_has(X86_FEATURE_SEP))
enable_sep_cpu();
#else
/* CONFIG_X86_64 */
asm volatile ("movw %0, %%ds" :: "r" (ctxt->ds));
asm volatile ("movw %0, %%es" :: "r" (ctxt->es));
asm volatile ("movw %0, %%fs" :: "r" (ctxt->fs));
load_gs_index(ctxt->gs);
asm volatile ("movw %0, %%ss" :: "r" (ctxt->ss));
wrmsrl(MSR_FS_BASE, ctxt->fs_base);
wrmsrl(MSR_GS_BASE, ctxt->gs_base);
wrmsrl(MSR_KERNEL_GS_BASE, ctxt->gs_kernel_base);
#endif
/*
* restore XCR0 for xsave capable cpu's.
*/
if (cpu_has_xsave)
xsetbv(XCR_XFEATURE_ENABLED_MASK, pcntxt_mask);
fix_processor_context();
do_fpu_end();
x86_platform.restore_sched_clock_state();
mtrr_bp_restore();
}
/* Needed by apm.c */
void restore_processor_state(void)
{
__restore_processor_state(&saved_context);
}
#ifdef CONFIG_X86_32
EXPORT_SYMBOL(restore_processor_state);
#endif
/*
* When bsp_check() is called in hibernate and suspend, cpu hotplug
* is disabled already. So it's unnessary to handle race condition between
* cpumask query and cpu hotplug.
*/
static int bsp_check(void)
{
if (cpumask_first(cpu_online_mask) != 0) {
pr_warn("CPU0 is offline.\n");
return -ENODEV;
}
return 0;
}
static int bsp_pm_callback(struct notifier_block *nb, unsigned long action,
void *ptr)
{
int ret = 0;
switch (action) {
case PM_SUSPEND_PREPARE:
case PM_HIBERNATION_PREPARE:
ret = bsp_check();
break;
#ifdef CONFIG_DEBUG_HOTPLUG_CPU0
case PM_RESTORE_PREPARE:
/*
* When system resumes from hibernation, online CPU0 because
* 1. it's required for resume and
* 2. the CPU was online before hibernation
*/
if (!cpu_online(0))
_debug_hotplug_cpu(0, 1);
break;
case PM_POST_RESTORE:
/*
* When a resume really happens, this code won't be called.
*
* This code is called only when user space hibernation software
* prepares for snapshot device during boot time. So we just
* call _debug_hotplug_cpu() to restore to CPU0's state prior to
* preparing the snapshot device.
*
* This works for normal boot case in our CPU0 hotplug debug
* mode, i.e. CPU0 is offline and user mode hibernation
* software initializes during boot time.
*
* If CPU0 is online and user application accesses snapshot
* device after boot time, this will offline CPU0 and user may
* see different CPU0 state before and after accessing
* the snapshot device. But hopefully this is not a case when
* user debugging CPU0 hotplug. Even if users hit this case,
* they can easily online CPU0 back.
*
* To simplify this debug code, we only consider normal boot
* case. Otherwise we need to remember CPU0's state and restore
* to that state and resolve racy conditions etc.
*/
_debug_hotplug_cpu(0, 0);
break;
#endif
default:
break;
}
return notifier_from_errno(ret);
}
static int __init bsp_pm_check_init(void)
{
/*
* Set this bsp_pm_callback as lower priority than
* cpu_hotplug_pm_callback. So cpu_hotplug_pm_callback will be called
* earlier to disable cpu hotplug before bsp online check.
*/
pm_notifier(bsp_pm_callback, -INT_MAX);
return 0;
}
core_initcall(bsp_pm_check_init);