45e241f8c5
Another one bites the dust. Signed-off-by: Christian König <christian.koenig@amd.com> Reviewed-by: Dave Airlie <airlied@redhat.com> Link: https://patchwork.freedesktop.org/patch/392325/
723 lines
21 KiB
C
723 lines
21 KiB
C
/**************************************************************************
|
|
*
|
|
* Copyright (c) 2006-2009 Vmware, Inc., Palo Alto, CA., USA
|
|
* All Rights Reserved.
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the
|
|
* "Software"), to deal in the Software without restriction, including
|
|
* without limitation the rights to use, copy, modify, merge, publish,
|
|
* distribute, sub license, and/or sell copies of the Software, and to
|
|
* permit persons to whom the Software is furnished to do so, subject to
|
|
* the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice (including the
|
|
* next paragraph) shall be included in all copies or substantial portions
|
|
* of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
|
|
* THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
|
|
* DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
|
|
* OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
|
|
* USE OR OTHER DEALINGS IN THE SOFTWARE.
|
|
*
|
|
**************************************************************************/
|
|
/*
|
|
* Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com>
|
|
*/
|
|
#ifndef _TTM_BO_DRIVER_H_
|
|
#define _TTM_BO_DRIVER_H_
|
|
|
|
#include <drm/drm_mm.h>
|
|
#include <drm/drm_vma_manager.h>
|
|
#include <linux/workqueue.h>
|
|
#include <linux/fs.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/dma-resv.h>
|
|
|
|
#include "ttm_bo_api.h"
|
|
#include "ttm_memory.h"
|
|
#include "ttm_module.h"
|
|
#include "ttm_placement.h"
|
|
#include "ttm_tt.h"
|
|
|
|
/**
|
|
* struct ttm_bo_driver
|
|
*
|
|
* @create_ttm_backend_entry: Callback to create a struct ttm_backend.
|
|
* @evict_flags: Callback to obtain placement flags when a buffer is evicted.
|
|
* @move: Callback for a driver to hook in accelerated functions to
|
|
* move a buffer.
|
|
* If set to NULL, a potentially slow memcpy() move is used.
|
|
*/
|
|
|
|
struct ttm_bo_driver {
|
|
/**
|
|
* ttm_tt_create
|
|
*
|
|
* @bo: The buffer object to create the ttm for.
|
|
* @page_flags: Page flags as identified by TTM_PAGE_FLAG_XX flags.
|
|
*
|
|
* Create a struct ttm_tt to back data with system memory pages.
|
|
* No pages are actually allocated.
|
|
* Returns:
|
|
* NULL: Out of memory.
|
|
*/
|
|
struct ttm_tt *(*ttm_tt_create)(struct ttm_buffer_object *bo,
|
|
uint32_t page_flags);
|
|
|
|
/**
|
|
* ttm_tt_populate
|
|
*
|
|
* @ttm: The struct ttm_tt to contain the backing pages.
|
|
*
|
|
* Allocate all backing pages
|
|
* Returns:
|
|
* -ENOMEM: Out of memory.
|
|
*/
|
|
int (*ttm_tt_populate)(struct ttm_bo_device *bdev,
|
|
struct ttm_tt *ttm,
|
|
struct ttm_operation_ctx *ctx);
|
|
|
|
/**
|
|
* ttm_tt_unpopulate
|
|
*
|
|
* @ttm: The struct ttm_tt to contain the backing pages.
|
|
*
|
|
* Free all backing page
|
|
*/
|
|
void (*ttm_tt_unpopulate)(struct ttm_bo_device *bdev, struct ttm_tt *ttm);
|
|
|
|
/**
|
|
* ttm_tt_bind
|
|
*
|
|
* @bdev: Pointer to a ttm device
|
|
* @ttm: Pointer to a struct ttm_tt.
|
|
* @bo_mem: Pointer to a struct ttm_resource describing the
|
|
* memory type and location for binding.
|
|
*
|
|
* Bind the backend pages into the aperture in the location
|
|
* indicated by @bo_mem. This function should be able to handle
|
|
* differences between aperture and system page sizes.
|
|
*/
|
|
int (*ttm_tt_bind)(struct ttm_bo_device *bdev, struct ttm_tt *ttm, struct ttm_resource *bo_mem);
|
|
|
|
/**
|
|
* ttm_tt_unbind
|
|
*
|
|
* @bdev: Pointer to a ttm device
|
|
* @ttm: Pointer to a struct ttm_tt.
|
|
*
|
|
* Unbind previously bound backend pages. This function should be
|
|
* able to handle differences between aperture and system page sizes.
|
|
*/
|
|
void (*ttm_tt_unbind)(struct ttm_bo_device *bdev, struct ttm_tt *ttm);
|
|
|
|
/**
|
|
* ttm_tt_destroy
|
|
*
|
|
* @bdev: Pointer to a ttm device
|
|
* @ttm: Pointer to a struct ttm_tt.
|
|
*
|
|
* Destroy the backend. This will be call back from ttm_tt_destroy so
|
|
* don't call ttm_tt_destroy from the callback or infinite loop.
|
|
*/
|
|
void (*ttm_tt_destroy)(struct ttm_bo_device *bdev, struct ttm_tt *ttm);
|
|
|
|
/**
|
|
* struct ttm_bo_driver member eviction_valuable
|
|
*
|
|
* @bo: the buffer object to be evicted
|
|
* @place: placement we need room for
|
|
*
|
|
* Check with the driver if it is valuable to evict a BO to make room
|
|
* for a certain placement.
|
|
*/
|
|
bool (*eviction_valuable)(struct ttm_buffer_object *bo,
|
|
const struct ttm_place *place);
|
|
/**
|
|
* struct ttm_bo_driver member evict_flags:
|
|
*
|
|
* @bo: the buffer object to be evicted
|
|
*
|
|
* Return the bo flags for a buffer which is not mapped to the hardware.
|
|
* These will be placed in proposed_flags so that when the move is
|
|
* finished, they'll end up in bo->mem.flags
|
|
*/
|
|
|
|
void (*evict_flags)(struct ttm_buffer_object *bo,
|
|
struct ttm_placement *placement);
|
|
|
|
/**
|
|
* struct ttm_bo_driver member move:
|
|
*
|
|
* @bo: the buffer to move
|
|
* @evict: whether this motion is evicting the buffer from
|
|
* the graphics address space
|
|
* @ctx: context for this move with parameters
|
|
* @new_mem: the new memory region receiving the buffer
|
|
*
|
|
* Move a buffer between two memory regions.
|
|
*/
|
|
int (*move)(struct ttm_buffer_object *bo, bool evict,
|
|
struct ttm_operation_ctx *ctx,
|
|
struct ttm_resource *new_mem);
|
|
|
|
/**
|
|
* struct ttm_bo_driver_member verify_access
|
|
*
|
|
* @bo: Pointer to a buffer object.
|
|
* @filp: Pointer to a struct file trying to access the object.
|
|
*
|
|
* Called from the map / write / read methods to verify that the
|
|
* caller is permitted to access the buffer object.
|
|
* This member may be set to NULL, which will refuse this kind of
|
|
* access for all buffer objects.
|
|
* This function should return 0 if access is granted, -EPERM otherwise.
|
|
*/
|
|
int (*verify_access)(struct ttm_buffer_object *bo,
|
|
struct file *filp);
|
|
|
|
/**
|
|
* Hook to notify driver about a driver move so it
|
|
* can do tiling things and book-keeping.
|
|
*
|
|
* @evict: whether this move is evicting the buffer from the graphics
|
|
* address space
|
|
*/
|
|
void (*move_notify)(struct ttm_buffer_object *bo,
|
|
bool evict,
|
|
struct ttm_resource *new_mem);
|
|
|
|
/**
|
|
* notify the driver that we're about to swap out this bo
|
|
*/
|
|
void (*swap_notify)(struct ttm_buffer_object *bo);
|
|
|
|
/**
|
|
* Driver callback on when mapping io memory (for bo_move_memcpy
|
|
* for instance). TTM will take care to call io_mem_free whenever
|
|
* the mapping is not use anymore. io_mem_reserve & io_mem_free
|
|
* are balanced.
|
|
*/
|
|
int (*io_mem_reserve)(struct ttm_bo_device *bdev,
|
|
struct ttm_resource *mem);
|
|
void (*io_mem_free)(struct ttm_bo_device *bdev,
|
|
struct ttm_resource *mem);
|
|
|
|
/**
|
|
* Return the pfn for a given page_offset inside the BO.
|
|
*
|
|
* @bo: the BO to look up the pfn for
|
|
* @page_offset: the offset to look up
|
|
*/
|
|
unsigned long (*io_mem_pfn)(struct ttm_buffer_object *bo,
|
|
unsigned long page_offset);
|
|
|
|
/**
|
|
* Read/write memory buffers for ptrace access
|
|
*
|
|
* @bo: the BO to access
|
|
* @offset: the offset from the start of the BO
|
|
* @buf: pointer to source/destination buffer
|
|
* @len: number of bytes to copy
|
|
* @write: whether to read (0) from or write (non-0) to BO
|
|
*
|
|
* If successful, this function should return the number of
|
|
* bytes copied, -EIO otherwise. If the number of bytes
|
|
* returned is < len, the function may be called again with
|
|
* the remainder of the buffer to copy.
|
|
*/
|
|
int (*access_memory)(struct ttm_buffer_object *bo, unsigned long offset,
|
|
void *buf, int len, int write);
|
|
|
|
/**
|
|
* struct ttm_bo_driver member del_from_lru_notify
|
|
*
|
|
* @bo: the buffer object deleted from lru
|
|
*
|
|
* notify driver that a BO was deleted from LRU.
|
|
*/
|
|
void (*del_from_lru_notify)(struct ttm_buffer_object *bo);
|
|
|
|
/**
|
|
* Notify the driver that we're about to release a BO
|
|
*
|
|
* @bo: BO that is about to be released
|
|
*
|
|
* Gives the driver a chance to do any cleanup, including
|
|
* adding fences that may force a delayed delete
|
|
*/
|
|
void (*release_notify)(struct ttm_buffer_object *bo);
|
|
};
|
|
|
|
/**
|
|
* struct ttm_bo_global - Buffer object driver global data.
|
|
*
|
|
* @dummy_read_page: Pointer to a dummy page used for mapping requests
|
|
* of unpopulated pages.
|
|
* @shrink: A shrink callback object used for buffer object swap.
|
|
* @device_list_mutex: Mutex protecting the device list.
|
|
* This mutex is held while traversing the device list for pm options.
|
|
* @lru_lock: Spinlock protecting the bo subsystem lru lists.
|
|
* @device_list: List of buffer object devices.
|
|
* @swap_lru: Lru list of buffer objects used for swapping.
|
|
*/
|
|
|
|
extern struct ttm_bo_global {
|
|
|
|
/**
|
|
* Constant after init.
|
|
*/
|
|
|
|
struct kobject kobj;
|
|
struct page *dummy_read_page;
|
|
spinlock_t lru_lock;
|
|
|
|
/**
|
|
* Protected by ttm_global_mutex.
|
|
*/
|
|
struct list_head device_list;
|
|
|
|
/**
|
|
* Protected by the lru_lock.
|
|
*/
|
|
struct list_head swap_lru[TTM_MAX_BO_PRIORITY];
|
|
|
|
/**
|
|
* Internal protection.
|
|
*/
|
|
atomic_t bo_count;
|
|
} ttm_bo_glob;
|
|
|
|
|
|
#define TTM_NUM_MEM_TYPES 8
|
|
|
|
/**
|
|
* struct ttm_bo_device - Buffer object driver device-specific data.
|
|
*
|
|
* @driver: Pointer to a struct ttm_bo_driver struct setup by the driver.
|
|
* @man: An array of resource_managers.
|
|
* @vma_manager: Address space manager (pointer)
|
|
* lru_lock: Spinlock that protects the buffer+device lru lists and
|
|
* ddestroy lists.
|
|
* @dev_mapping: A pointer to the struct address_space representing the
|
|
* device address space.
|
|
* @wq: Work queue structure for the delayed delete workqueue.
|
|
* @no_retry: Don't retry allocation if it fails
|
|
*
|
|
*/
|
|
|
|
struct ttm_bo_device {
|
|
|
|
/*
|
|
* Constant after bo device init / atomic.
|
|
*/
|
|
struct list_head device_list;
|
|
struct ttm_bo_driver *driver;
|
|
/*
|
|
* access via ttm_manager_type.
|
|
*/
|
|
struct ttm_resource_manager sysman;
|
|
struct ttm_resource_manager *man_drv[TTM_NUM_MEM_TYPES];
|
|
/*
|
|
* Protected by internal locks.
|
|
*/
|
|
struct drm_vma_offset_manager *vma_manager;
|
|
|
|
/*
|
|
* Protected by the global:lru lock.
|
|
*/
|
|
struct list_head ddestroy;
|
|
|
|
/*
|
|
* Protected by load / firstopen / lastclose /unload sync.
|
|
*/
|
|
|
|
struct address_space *dev_mapping;
|
|
|
|
/*
|
|
* Internal protection.
|
|
*/
|
|
|
|
struct delayed_work wq;
|
|
|
|
bool need_dma32;
|
|
|
|
bool no_retry;
|
|
};
|
|
|
|
static inline struct ttm_resource_manager *ttm_manager_type(struct ttm_bo_device *bdev,
|
|
int mem_type)
|
|
{
|
|
return bdev->man_drv[mem_type];
|
|
}
|
|
|
|
static inline void ttm_set_driver_manager(struct ttm_bo_device *bdev,
|
|
int type,
|
|
struct ttm_resource_manager *manager)
|
|
{
|
|
bdev->man_drv[type] = manager;
|
|
}
|
|
|
|
/**
|
|
* struct ttm_lru_bulk_move_pos
|
|
*
|
|
* @first: first BO in the bulk move range
|
|
* @last: last BO in the bulk move range
|
|
*
|
|
* Positions for a lru bulk move.
|
|
*/
|
|
struct ttm_lru_bulk_move_pos {
|
|
struct ttm_buffer_object *first;
|
|
struct ttm_buffer_object *last;
|
|
};
|
|
|
|
/**
|
|
* struct ttm_lru_bulk_move
|
|
*
|
|
* @tt: first/last lru entry for BOs in the TT domain
|
|
* @vram: first/last lru entry for BOs in the VRAM domain
|
|
* @swap: first/last lru entry for BOs on the swap list
|
|
*
|
|
* Helper structure for bulk moves on the LRU list.
|
|
*/
|
|
struct ttm_lru_bulk_move {
|
|
struct ttm_lru_bulk_move_pos tt[TTM_MAX_BO_PRIORITY];
|
|
struct ttm_lru_bulk_move_pos vram[TTM_MAX_BO_PRIORITY];
|
|
struct ttm_lru_bulk_move_pos swap[TTM_MAX_BO_PRIORITY];
|
|
};
|
|
|
|
/*
|
|
* ttm_bo.c
|
|
*/
|
|
|
|
/**
|
|
* ttm_bo_mem_space
|
|
*
|
|
* @bo: Pointer to a struct ttm_buffer_object. the data of which
|
|
* we want to allocate space for.
|
|
* @proposed_placement: Proposed new placement for the buffer object.
|
|
* @mem: A struct ttm_resource.
|
|
* @interruptible: Sleep interruptible when sliping.
|
|
* @no_wait_gpu: Return immediately if the GPU is busy.
|
|
*
|
|
* Allocate memory space for the buffer object pointed to by @bo, using
|
|
* the placement flags in @mem, potentially evicting other idle buffer objects.
|
|
* This function may sleep while waiting for space to become available.
|
|
* Returns:
|
|
* -EBUSY: No space available (only if no_wait == 1).
|
|
* -ENOMEM: Could not allocate memory for the buffer object, either due to
|
|
* fragmentation or concurrent allocators.
|
|
* -ERESTARTSYS: An interruptible sleep was interrupted by a signal.
|
|
*/
|
|
int ttm_bo_mem_space(struct ttm_buffer_object *bo,
|
|
struct ttm_placement *placement,
|
|
struct ttm_resource *mem,
|
|
struct ttm_operation_ctx *ctx);
|
|
|
|
int ttm_bo_device_release(struct ttm_bo_device *bdev);
|
|
|
|
/**
|
|
* ttm_bo_device_init
|
|
*
|
|
* @bdev: A pointer to a struct ttm_bo_device to initialize.
|
|
* @glob: A pointer to an initialized struct ttm_bo_global.
|
|
* @driver: A pointer to a struct ttm_bo_driver set up by the caller.
|
|
* @mapping: The address space to use for this bo.
|
|
* @vma_manager: A pointer to a vma manager.
|
|
* @file_page_offset: Offset into the device address space that is available
|
|
* for buffer data. This ensures compatibility with other users of the
|
|
* address space.
|
|
*
|
|
* Initializes a struct ttm_bo_device:
|
|
* Returns:
|
|
* !0: Failure.
|
|
*/
|
|
int ttm_bo_device_init(struct ttm_bo_device *bdev,
|
|
struct ttm_bo_driver *driver,
|
|
struct address_space *mapping,
|
|
struct drm_vma_offset_manager *vma_manager,
|
|
bool need_dma32);
|
|
|
|
/**
|
|
* ttm_bo_unmap_virtual
|
|
*
|
|
* @bo: tear down the virtual mappings for this BO
|
|
*/
|
|
void ttm_bo_unmap_virtual(struct ttm_buffer_object *bo);
|
|
|
|
/**
|
|
* ttm_bo_unmap_virtual
|
|
*
|
|
* @bo: tear down the virtual mappings for this BO
|
|
*
|
|
* The caller must take ttm_mem_io_lock before calling this function.
|
|
*/
|
|
void ttm_bo_unmap_virtual_locked(struct ttm_buffer_object *bo);
|
|
|
|
/**
|
|
* ttm_bo_reserve:
|
|
*
|
|
* @bo: A pointer to a struct ttm_buffer_object.
|
|
* @interruptible: Sleep interruptible if waiting.
|
|
* @no_wait: Don't sleep while trying to reserve, rather return -EBUSY.
|
|
* @ticket: ticket used to acquire the ww_mutex.
|
|
*
|
|
* Locks a buffer object for validation. (Or prevents other processes from
|
|
* locking it for validation), while taking a number of measures to prevent
|
|
* deadlocks.
|
|
*
|
|
* Returns:
|
|
* -EDEADLK: The reservation may cause a deadlock.
|
|
* Release all buffer reservations, wait for @bo to become unreserved and
|
|
* try again.
|
|
* -ERESTARTSYS: A wait for the buffer to become unreserved was interrupted by
|
|
* a signal. Release all buffer reservations and return to user-space.
|
|
* -EBUSY: The function needed to sleep, but @no_wait was true
|
|
* -EALREADY: Bo already reserved using @ticket. This error code will only
|
|
* be returned if @use_ticket is set to true.
|
|
*/
|
|
static inline int ttm_bo_reserve(struct ttm_buffer_object *bo,
|
|
bool interruptible, bool no_wait,
|
|
struct ww_acquire_ctx *ticket)
|
|
{
|
|
int ret = 0;
|
|
|
|
if (no_wait) {
|
|
bool success;
|
|
if (WARN_ON(ticket))
|
|
return -EBUSY;
|
|
|
|
success = dma_resv_trylock(bo->base.resv);
|
|
return success ? 0 : -EBUSY;
|
|
}
|
|
|
|
if (interruptible)
|
|
ret = dma_resv_lock_interruptible(bo->base.resv, ticket);
|
|
else
|
|
ret = dma_resv_lock(bo->base.resv, ticket);
|
|
if (ret == -EINTR)
|
|
return -ERESTARTSYS;
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* ttm_bo_reserve_slowpath:
|
|
* @bo: A pointer to a struct ttm_buffer_object.
|
|
* @interruptible: Sleep interruptible if waiting.
|
|
* @sequence: Set (@bo)->sequence to this value after lock
|
|
*
|
|
* This is called after ttm_bo_reserve returns -EAGAIN and we backed off
|
|
* from all our other reservations. Because there are no other reservations
|
|
* held by us, this function cannot deadlock any more.
|
|
*/
|
|
static inline int ttm_bo_reserve_slowpath(struct ttm_buffer_object *bo,
|
|
bool interruptible,
|
|
struct ww_acquire_ctx *ticket)
|
|
{
|
|
if (interruptible) {
|
|
int ret = dma_resv_lock_slow_interruptible(bo->base.resv,
|
|
ticket);
|
|
if (ret == -EINTR)
|
|
ret = -ERESTARTSYS;
|
|
return ret;
|
|
}
|
|
dma_resv_lock_slow(bo->base.resv, ticket);
|
|
return 0;
|
|
}
|
|
|
|
static inline void ttm_bo_move_to_lru_tail_unlocked(struct ttm_buffer_object *bo)
|
|
{
|
|
spin_lock(&ttm_bo_glob.lru_lock);
|
|
ttm_bo_move_to_lru_tail(bo, NULL);
|
|
spin_unlock(&ttm_bo_glob.lru_lock);
|
|
}
|
|
|
|
static inline void ttm_bo_assign_mem(struct ttm_buffer_object *bo,
|
|
struct ttm_resource *new_mem)
|
|
{
|
|
bo->mem = *new_mem;
|
|
new_mem->mm_node = NULL;
|
|
}
|
|
|
|
/**
|
|
* ttm_bo_move_null = assign memory for a buffer object.
|
|
* @bo: The bo to assign the memory to
|
|
* @new_mem: The memory to be assigned.
|
|
*
|
|
* Assign the memory from new_mem to the memory of the buffer object bo.
|
|
*/
|
|
static inline void ttm_bo_move_null(struct ttm_buffer_object *bo,
|
|
struct ttm_resource *new_mem)
|
|
{
|
|
struct ttm_resource *old_mem = &bo->mem;
|
|
|
|
WARN_ON(old_mem->mm_node != NULL);
|
|
ttm_bo_assign_mem(bo, new_mem);
|
|
}
|
|
|
|
/**
|
|
* ttm_bo_unreserve
|
|
*
|
|
* @bo: A pointer to a struct ttm_buffer_object.
|
|
*
|
|
* Unreserve a previous reservation of @bo.
|
|
*/
|
|
static inline void ttm_bo_unreserve(struct ttm_buffer_object *bo)
|
|
{
|
|
ttm_bo_move_to_lru_tail_unlocked(bo);
|
|
dma_resv_unlock(bo->base.resv);
|
|
}
|
|
|
|
/*
|
|
* ttm_bo_util.c
|
|
*/
|
|
|
|
int ttm_mem_io_reserve(struct ttm_bo_device *bdev,
|
|
struct ttm_resource *mem);
|
|
void ttm_mem_io_free(struct ttm_bo_device *bdev,
|
|
struct ttm_resource *mem);
|
|
/**
|
|
* ttm_bo_move_ttm
|
|
*
|
|
* @bo: A pointer to a struct ttm_buffer_object.
|
|
* @interruptible: Sleep interruptible if waiting.
|
|
* @no_wait_gpu: Return immediately if the GPU is busy.
|
|
* @new_mem: struct ttm_resource indicating where to move.
|
|
*
|
|
* Optimized move function for a buffer object with both old and
|
|
* new placement backed by a TTM. The function will, if successful,
|
|
* free any old aperture space, and set (@new_mem)->mm_node to NULL,
|
|
* and update the (@bo)->mem placement flags. If unsuccessful, the old
|
|
* data remains untouched, and it's up to the caller to free the
|
|
* memory space indicated by @new_mem.
|
|
* Returns:
|
|
* !0: Failure.
|
|
*/
|
|
|
|
int ttm_bo_move_ttm(struct ttm_buffer_object *bo,
|
|
struct ttm_operation_ctx *ctx,
|
|
struct ttm_resource *new_mem);
|
|
|
|
/**
|
|
* ttm_bo_move_memcpy
|
|
*
|
|
* @bo: A pointer to a struct ttm_buffer_object.
|
|
* @interruptible: Sleep interruptible if waiting.
|
|
* @no_wait_gpu: Return immediately if the GPU is busy.
|
|
* @new_mem: struct ttm_resource indicating where to move.
|
|
*
|
|
* Fallback move function for a mappable buffer object in mappable memory.
|
|
* The function will, if successful,
|
|
* free any old aperture space, and set (@new_mem)->mm_node to NULL,
|
|
* and update the (@bo)->mem placement flags. If unsuccessful, the old
|
|
* data remains untouched, and it's up to the caller to free the
|
|
* memory space indicated by @new_mem.
|
|
* Returns:
|
|
* !0: Failure.
|
|
*/
|
|
|
|
int ttm_bo_move_memcpy(struct ttm_buffer_object *bo,
|
|
struct ttm_operation_ctx *ctx,
|
|
struct ttm_resource *new_mem);
|
|
|
|
/**
|
|
* ttm_bo_free_old_node
|
|
*
|
|
* @bo: A pointer to a struct ttm_buffer_object.
|
|
*
|
|
* Utility function to free an old placement after a successful move.
|
|
*/
|
|
void ttm_bo_free_old_node(struct ttm_buffer_object *bo);
|
|
|
|
/**
|
|
* ttm_bo_move_accel_cleanup.
|
|
*
|
|
* @bo: A pointer to a struct ttm_buffer_object.
|
|
* @fence: A fence object that signals when moving is complete.
|
|
* @evict: This is an evict move. Don't return until the buffer is idle.
|
|
* @pipeline: evictions are to be pipelined.
|
|
* @new_mem: struct ttm_resource indicating where to move.
|
|
*
|
|
* Accelerated move function to be called when an accelerated move
|
|
* has been scheduled. The function will create a new temporary buffer object
|
|
* representing the old placement, and put the sync object on both buffer
|
|
* objects. After that the newly created buffer object is unref'd to be
|
|
* destroyed when the move is complete. This will help pipeline
|
|
* buffer moves.
|
|
*/
|
|
int ttm_bo_move_accel_cleanup(struct ttm_buffer_object *bo,
|
|
struct dma_fence *fence, bool evict,
|
|
bool pipeline,
|
|
struct ttm_resource *new_mem);
|
|
|
|
/**
|
|
* ttm_bo_pipeline_gutting.
|
|
*
|
|
* @bo: A pointer to a struct ttm_buffer_object.
|
|
*
|
|
* Pipelined gutting a BO of its backing store.
|
|
*/
|
|
int ttm_bo_pipeline_gutting(struct ttm_buffer_object *bo);
|
|
|
|
/**
|
|
* ttm_io_prot
|
|
*
|
|
* @c_state: Caching state.
|
|
* @tmp: Page protection flag for a normal, cached mapping.
|
|
*
|
|
* Utility function that returns the pgprot_t that should be used for
|
|
* setting up a PTE with the caching model indicated by @c_state.
|
|
*/
|
|
pgprot_t ttm_io_prot(uint32_t caching_flags, pgprot_t tmp);
|
|
|
|
/**
|
|
* ttm_bo_tt_bind
|
|
*
|
|
* Bind the object tt to a memory resource.
|
|
*/
|
|
int ttm_bo_tt_bind(struct ttm_buffer_object *bo, struct ttm_resource *mem);
|
|
|
|
/**
|
|
* ttm_bo_tt_bind
|
|
*
|
|
* Unbind the object tt from a memory resource.
|
|
*/
|
|
void ttm_bo_tt_unbind(struct ttm_buffer_object *bo);
|
|
|
|
/**
|
|
* ttm_bo_tt_destroy.
|
|
*/
|
|
void ttm_bo_tt_destroy(struct ttm_buffer_object *bo);
|
|
|
|
/**
|
|
* ttm_range_man_init
|
|
*
|
|
* @bdev: ttm device
|
|
* @type: memory manager type
|
|
* @use_tt: if the memory manager uses tt
|
|
* @p_size: size of area to be managed in pages.
|
|
*
|
|
* Initialise a generic range manager for the selected memory type.
|
|
* The range manager is installed for this device in the type slot.
|
|
*/
|
|
int ttm_range_man_init(struct ttm_bo_device *bdev,
|
|
unsigned type, bool use_tt,
|
|
unsigned long p_size);
|
|
|
|
/**
|
|
* ttm_range_man_fini
|
|
*
|
|
* @bdev: ttm device
|
|
* @type: memory manager type
|
|
*
|
|
* Remove the generic range manager from a slot and tear it down.
|
|
*/
|
|
int ttm_range_man_fini(struct ttm_bo_device *bdev,
|
|
unsigned type);
|
|
|
|
#endif
|