linux/drivers/net/wireless/brcm80211/brcmfmac/bcmsdh.c
Franky Lin b05e92545d brcmfmac: abstract tx packet processing functions
Abstract brcmf_sdio_txpkt_prep and brcmf_sdio_txpkt_postp as a preparation
of chained tx packets for host side tx glomming.

Reviewed-by: Hante Meuleman <meuleman@broadcom.com>
Reviewed-by: Pieter-Paul Giesberts <pieterpg@broadcom.com>
Reviewed-by: Arend van Spriel <arend@broadcom.com>
Signed-off-by: Franky Lin <frankyl@broadcom.com>
Signed-off-by: Arend van Spriel <arend@broadcom.com>
Signed-off-by: John W. Linville <linville@tuxdriver.com>
2013-08-15 16:07:55 -04:00

777 lines
19 KiB
C

/*
* Copyright (c) 2010 Broadcom Corporation
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
* SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
* OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
* CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
/* ****************** SDIO CARD Interface Functions **************************/
#include <linux/types.h>
#include <linux/netdevice.h>
#include <linux/export.h>
#include <linux/pci.h>
#include <linux/pci_ids.h>
#include <linux/sched.h>
#include <linux/completion.h>
#include <linux/scatterlist.h>
#include <linux/mmc/sdio.h>
#include <linux/mmc/sdio_func.h>
#include <linux/mmc/card.h>
#include <linux/mmc/host.h>
#include <linux/platform_data/brcmfmac-sdio.h>
#include <defs.h>
#include <brcm_hw_ids.h>
#include <brcmu_utils.h>
#include <brcmu_wifi.h>
#include <soc.h>
#include "dhd_bus.h"
#include "dhd_dbg.h"
#include "sdio_host.h"
#define SDIOH_API_ACCESS_RETRY_LIMIT 2
static irqreturn_t brcmf_sdio_oob_irqhandler(int irq, void *dev_id)
{
struct brcmf_bus *bus_if = dev_get_drvdata(dev_id);
struct brcmf_sdio_dev *sdiodev = bus_if->bus_priv.sdio;
brcmf_dbg(INTR, "OOB intr triggered\n");
/* out-of-band interrupt is level-triggered which won't
* be cleared until dpc
*/
if (sdiodev->irq_en) {
disable_irq_nosync(irq);
sdiodev->irq_en = false;
}
brcmf_sdbrcm_isr(sdiodev->bus);
return IRQ_HANDLED;
}
static void brcmf_sdio_ib_irqhandler(struct sdio_func *func)
{
struct brcmf_bus *bus_if = dev_get_drvdata(&func->dev);
struct brcmf_sdio_dev *sdiodev = bus_if->bus_priv.sdio;
brcmf_dbg(INTR, "IB intr triggered\n");
brcmf_sdbrcm_isr(sdiodev->bus);
}
/* dummy handler for SDIO function 2 interrupt */
static void brcmf_sdio_dummy_irqhandler(struct sdio_func *func)
{
}
int brcmf_sdio_intr_register(struct brcmf_sdio_dev *sdiodev)
{
int ret = 0;
u8 data;
unsigned long flags;
if ((sdiodev->pdata) && (sdiodev->pdata->oob_irq_supported)) {
brcmf_dbg(SDIO, "Enter, register OOB IRQ %d\n",
sdiodev->pdata->oob_irq_nr);
ret = request_irq(sdiodev->pdata->oob_irq_nr,
brcmf_sdio_oob_irqhandler,
sdiodev->pdata->oob_irq_flags,
"brcmf_oob_intr",
&sdiodev->func[1]->dev);
if (ret != 0) {
brcmf_err("request_irq failed %d\n", ret);
return ret;
}
sdiodev->oob_irq_requested = true;
spin_lock_init(&sdiodev->irq_en_lock);
spin_lock_irqsave(&sdiodev->irq_en_lock, flags);
sdiodev->irq_en = true;
spin_unlock_irqrestore(&sdiodev->irq_en_lock, flags);
ret = enable_irq_wake(sdiodev->pdata->oob_irq_nr);
if (ret != 0) {
brcmf_err("enable_irq_wake failed %d\n", ret);
return ret;
}
sdiodev->irq_wake = true;
sdio_claim_host(sdiodev->func[1]);
/* must configure SDIO_CCCR_IENx to enable irq */
data = brcmf_sdio_regrb(sdiodev, SDIO_CCCR_IENx, &ret);
data |= 1 << SDIO_FUNC_1 | 1 << SDIO_FUNC_2 | 1;
brcmf_sdio_regwb(sdiodev, SDIO_CCCR_IENx, data, &ret);
/* redirect, configure and enable io for interrupt signal */
data = SDIO_SEPINT_MASK | SDIO_SEPINT_OE;
if (sdiodev->pdata->oob_irq_flags & IRQF_TRIGGER_HIGH)
data |= SDIO_SEPINT_ACT_HI;
brcmf_sdio_regwb(sdiodev, SDIO_CCCR_BRCM_SEPINT, data, &ret);
sdio_release_host(sdiodev->func[1]);
} else {
brcmf_dbg(SDIO, "Entering\n");
sdio_claim_host(sdiodev->func[1]);
sdio_claim_irq(sdiodev->func[1], brcmf_sdio_ib_irqhandler);
sdio_claim_irq(sdiodev->func[2], brcmf_sdio_dummy_irqhandler);
sdio_release_host(sdiodev->func[1]);
}
return 0;
}
int brcmf_sdio_intr_unregister(struct brcmf_sdio_dev *sdiodev)
{
brcmf_dbg(SDIO, "Entering\n");
if ((sdiodev->pdata) && (sdiodev->pdata->oob_irq_supported)) {
sdio_claim_host(sdiodev->func[1]);
brcmf_sdio_regwb(sdiodev, SDIO_CCCR_BRCM_SEPINT, 0, NULL);
brcmf_sdio_regwb(sdiodev, SDIO_CCCR_IENx, 0, NULL);
sdio_release_host(sdiodev->func[1]);
if (sdiodev->oob_irq_requested) {
sdiodev->oob_irq_requested = false;
if (sdiodev->irq_wake) {
disable_irq_wake(sdiodev->pdata->oob_irq_nr);
sdiodev->irq_wake = false;
}
free_irq(sdiodev->pdata->oob_irq_nr,
&sdiodev->func[1]->dev);
sdiodev->irq_en = false;
}
} else {
sdio_claim_host(sdiodev->func[1]);
sdio_release_irq(sdiodev->func[2]);
sdio_release_irq(sdiodev->func[1]);
sdio_release_host(sdiodev->func[1]);
}
return 0;
}
static int
brcmf_sdcard_set_sbaddr_window(struct brcmf_sdio_dev *sdiodev, u32 address)
{
int err = 0, i;
u8 addr[3];
s32 retry;
addr[0] = (address >> 8) & SBSDIO_SBADDRLOW_MASK;
addr[1] = (address >> 16) & SBSDIO_SBADDRMID_MASK;
addr[2] = (address >> 24) & SBSDIO_SBADDRHIGH_MASK;
for (i = 0; i < 3; i++) {
retry = 0;
do {
if (retry)
usleep_range(1000, 2000);
err = brcmf_sdioh_request_byte(sdiodev, SDIOH_WRITE,
SDIO_FUNC_1, SBSDIO_FUNC1_SBADDRLOW + i,
&addr[i]);
} while (err != 0 && retry++ < SDIOH_API_ACCESS_RETRY_LIMIT);
if (err) {
brcmf_err("failed at addr:0x%0x\n",
SBSDIO_FUNC1_SBADDRLOW + i);
break;
}
}
return err;
}
static int
brcmf_sdio_addrprep(struct brcmf_sdio_dev *sdiodev, uint width, u32 *addr)
{
uint bar0 = *addr & ~SBSDIO_SB_OFT_ADDR_MASK;
int err = 0;
if (bar0 != sdiodev->sbwad) {
err = brcmf_sdcard_set_sbaddr_window(sdiodev, bar0);
if (err)
return err;
sdiodev->sbwad = bar0;
}
*addr &= SBSDIO_SB_OFT_ADDR_MASK;
if (width == 4)
*addr |= SBSDIO_SB_ACCESS_2_4B_FLAG;
return 0;
}
int
brcmf_sdio_regrw_helper(struct brcmf_sdio_dev *sdiodev, u32 addr,
void *data, bool write)
{
u8 func_num, reg_size;
s32 retry = 0;
int ret;
/*
* figure out how to read the register based on address range
* 0x00 ~ 0x7FF: function 0 CCCR and FBR
* 0x10000 ~ 0x1FFFF: function 1 miscellaneous registers
* The rest: function 1 silicon backplane core registers
*/
if ((addr & ~REG_F0_REG_MASK) == 0) {
func_num = SDIO_FUNC_0;
reg_size = 1;
} else if ((addr & ~REG_F1_MISC_MASK) == 0) {
func_num = SDIO_FUNC_1;
reg_size = 1;
} else {
func_num = SDIO_FUNC_1;
reg_size = 4;
brcmf_sdio_addrprep(sdiodev, reg_size, &addr);
}
do {
if (!write)
memset(data, 0, reg_size);
if (retry) /* wait for 1 ms till bus get settled down */
usleep_range(1000, 2000);
if (reg_size == 1)
ret = brcmf_sdioh_request_byte(sdiodev, write,
func_num, addr, data);
else
ret = brcmf_sdioh_request_word(sdiodev, write,
func_num, addr, data, 4);
} while (ret != 0 && retry++ < SDIOH_API_ACCESS_RETRY_LIMIT);
if (ret != 0)
brcmf_err("failed with %d\n", ret);
return ret;
}
u8 brcmf_sdio_regrb(struct brcmf_sdio_dev *sdiodev, u32 addr, int *ret)
{
u8 data;
int retval;
brcmf_dbg(SDIO, "addr:0x%08x\n", addr);
retval = brcmf_sdio_regrw_helper(sdiodev, addr, &data, false);
brcmf_dbg(SDIO, "data:0x%02x\n", data);
if (ret)
*ret = retval;
return data;
}
u32 brcmf_sdio_regrl(struct brcmf_sdio_dev *sdiodev, u32 addr, int *ret)
{
u32 data;
int retval;
brcmf_dbg(SDIO, "addr:0x%08x\n", addr);
retval = brcmf_sdio_regrw_helper(sdiodev, addr, &data, false);
brcmf_dbg(SDIO, "data:0x%08x\n", data);
if (ret)
*ret = retval;
return data;
}
void brcmf_sdio_regwb(struct brcmf_sdio_dev *sdiodev, u32 addr,
u8 data, int *ret)
{
int retval;
brcmf_dbg(SDIO, "addr:0x%08x, data:0x%02x\n", addr, data);
retval = brcmf_sdio_regrw_helper(sdiodev, addr, &data, true);
if (ret)
*ret = retval;
}
void brcmf_sdio_regwl(struct brcmf_sdio_dev *sdiodev, u32 addr,
u32 data, int *ret)
{
int retval;
brcmf_dbg(SDIO, "addr:0x%08x, data:0x%08x\n", addr, data);
retval = brcmf_sdio_regrw_helper(sdiodev, addr, &data, true);
if (ret)
*ret = retval;
}
/**
* brcmf_sdio_buffrw - SDIO interface function for block data access
* @sdiodev: brcmfmac sdio device
* @fn: SDIO function number
* @write: direction flag
* @addr: dongle memory address as source/destination
* @pkt: skb pointer
*
* This function takes the respbonsibility as the interface function to MMC
* stack for block data access. It assumes that the skb passed down by the
* caller has already been padded and aligned.
*/
static int brcmf_sdio_buffrw(struct brcmf_sdio_dev *sdiodev, uint fn,
bool write, u32 addr, struct sk_buff_head *pktlist)
{
unsigned int req_sz, func_blk_sz, sg_cnt, sg_data_sz, pkt_offset;
unsigned int max_blks, max_req_sz, orig_offset, dst_offset;
unsigned short max_seg_sz, seg_sz;
unsigned char *pkt_data, *orig_data, *dst_data;
struct sk_buff *pkt_next = NULL, *local_pkt_next;
struct sk_buff_head local_list, *target_list;
struct mmc_request mmc_req;
struct mmc_command mmc_cmd;
struct mmc_data mmc_dat;
struct sg_table st;
struct scatterlist *sgl;
struct mmc_host *host;
int ret = 0;
if (!pktlist->qlen)
return -EINVAL;
brcmf_pm_resume_wait(sdiodev, &sdiodev->request_buffer_wait);
if (brcmf_pm_resume_error(sdiodev))
return -EIO;
/* Single skb use the standard mmc interface */
if (pktlist->qlen == 1) {
pkt_next = pktlist->next;
req_sz = pkt_next->len + 3;
req_sz &= (uint)~3;
if (write)
return sdio_memcpy_toio(sdiodev->func[fn], addr,
((u8 *)(pkt_next->data)),
req_sz);
else if (fn == 1)
return sdio_memcpy_fromio(sdiodev->func[fn],
((u8 *)(pkt_next->data)),
addr, req_sz);
else
/* function 2 read is FIFO operation */
return sdio_readsb(sdiodev->func[fn],
((u8 *)(pkt_next->data)), addr,
req_sz);
}
target_list = pktlist;
/* for host with broken sg support, prepare a page aligned list */
__skb_queue_head_init(&local_list);
if (sdiodev->pdata && sdiodev->pdata->broken_sg_support && !write) {
req_sz = 0;
skb_queue_walk(pktlist, pkt_next)
req_sz += pkt_next->len;
req_sz = ALIGN(req_sz, sdiodev->func[fn]->cur_blksize);
while (req_sz > PAGE_SIZE) {
pkt_next = brcmu_pkt_buf_get_skb(PAGE_SIZE);
if (pkt_next == NULL) {
ret = -ENOMEM;
goto exit;
}
__skb_queue_tail(&local_list, pkt_next);
req_sz -= PAGE_SIZE;
}
pkt_next = brcmu_pkt_buf_get_skb(req_sz);
if (pkt_next == NULL) {
ret = -ENOMEM;
goto exit;
}
__skb_queue_tail(&local_list, pkt_next);
target_list = &local_list;
}
host = sdiodev->func[fn]->card->host;
func_blk_sz = sdiodev->func[fn]->cur_blksize;
/* Blocks per command is limited by host count, host transfer
* size and the maximum for IO_RW_EXTENDED of 511 blocks.
*/
max_blks = min_t(unsigned int, host->max_blk_count, 511u);
max_req_sz = min_t(unsigned int, host->max_req_size,
max_blks * func_blk_sz);
max_seg_sz = min_t(unsigned short, host->max_segs, SG_MAX_SINGLE_ALLOC);
max_seg_sz = min_t(unsigned short, max_seg_sz, target_list->qlen);
seg_sz = target_list->qlen;
pkt_offset = 0;
pkt_next = target_list->next;
if (sg_alloc_table(&st, max_seg_sz, GFP_KERNEL)) {
ret = -ENOMEM;
goto exit;
}
while (seg_sz) {
req_sz = 0;
sg_cnt = 0;
memset(&mmc_req, 0, sizeof(struct mmc_request));
memset(&mmc_cmd, 0, sizeof(struct mmc_command));
memset(&mmc_dat, 0, sizeof(struct mmc_data));
sgl = st.sgl;
/* prep sg table */
while (pkt_next != (struct sk_buff *)target_list) {
pkt_data = pkt_next->data + pkt_offset;
sg_data_sz = pkt_next->len - pkt_offset;
if (sg_data_sz > host->max_seg_size)
sg_data_sz = host->max_seg_size;
if (sg_data_sz > max_req_sz - req_sz)
sg_data_sz = max_req_sz - req_sz;
sg_set_buf(sgl, pkt_data, sg_data_sz);
sg_cnt++;
sgl = sg_next(sgl);
req_sz += sg_data_sz;
pkt_offset += sg_data_sz;
if (pkt_offset == pkt_next->len) {
pkt_offset = 0;
pkt_next = pkt_next->next;
}
if (req_sz >= max_req_sz || sg_cnt >= max_seg_sz)
break;
}
seg_sz -= sg_cnt;
if (req_sz % func_blk_sz != 0) {
brcmf_err("sg request length %u is not %u aligned\n",
req_sz, func_blk_sz);
ret = -ENOTBLK;
goto exit;
}
mmc_dat.sg = st.sgl;
mmc_dat.sg_len = sg_cnt;
mmc_dat.blksz = func_blk_sz;
mmc_dat.blocks = req_sz / func_blk_sz;
mmc_dat.flags = write ? MMC_DATA_WRITE : MMC_DATA_READ;
mmc_cmd.opcode = SD_IO_RW_EXTENDED;
mmc_cmd.arg = write ? 1<<31 : 0; /* write flag */
mmc_cmd.arg |= (fn & 0x7) << 28; /* SDIO func num */
mmc_cmd.arg |= 1<<27; /* block mode */
/* incrementing addr for function 1 */
mmc_cmd.arg |= (fn == 1) ? 1<<26 : 0;
mmc_cmd.arg |= (addr & 0x1FFFF) << 9; /* address */
mmc_cmd.arg |= mmc_dat.blocks & 0x1FF; /* block count */
mmc_cmd.flags = MMC_RSP_SPI_R5 | MMC_RSP_R5 | MMC_CMD_ADTC;
mmc_req.cmd = &mmc_cmd;
mmc_req.data = &mmc_dat;
if (fn == 1)
addr += req_sz;
mmc_set_data_timeout(&mmc_dat, sdiodev->func[fn]->card);
mmc_wait_for_req(host, &mmc_req);
ret = mmc_cmd.error ? mmc_cmd.error : mmc_dat.error;
if (ret != 0) {
brcmf_err("CMD53 sg block %s failed %d\n",
write ? "write" : "read", ret);
ret = -EIO;
break;
}
}
if (sdiodev->pdata && sdiodev->pdata->broken_sg_support && !write) {
local_pkt_next = local_list.next;
orig_offset = 0;
skb_queue_walk(pktlist, pkt_next) {
dst_offset = 0;
do {
req_sz = local_pkt_next->len - orig_offset;
req_sz = min_t(uint, pkt_next->len - dst_offset,
req_sz);
orig_data = local_pkt_next->data + orig_offset;
dst_data = pkt_next->data + dst_offset;
memcpy(dst_data, orig_data, req_sz);
orig_offset += req_sz;
dst_offset += req_sz;
if (orig_offset == local_pkt_next->len) {
orig_offset = 0;
local_pkt_next = local_pkt_next->next;
}
if (dst_offset == pkt_next->len)
break;
} while (!skb_queue_empty(&local_list));
}
}
exit:
sg_free_table(&st);
while ((pkt_next = __skb_dequeue(&local_list)) != NULL)
brcmu_pkt_buf_free_skb(pkt_next);
return ret;
}
int
brcmf_sdcard_recv_buf(struct brcmf_sdio_dev *sdiodev, u32 addr, uint fn,
uint flags, u8 *buf, uint nbytes)
{
struct sk_buff *mypkt;
int err;
mypkt = brcmu_pkt_buf_get_skb(nbytes);
if (!mypkt) {
brcmf_err("brcmu_pkt_buf_get_skb failed: len %d\n",
nbytes);
return -EIO;
}
err = brcmf_sdcard_recv_pkt(sdiodev, addr, fn, flags, mypkt);
if (!err)
memcpy(buf, mypkt->data, nbytes);
brcmu_pkt_buf_free_skb(mypkt);
return err;
}
int
brcmf_sdcard_recv_pkt(struct brcmf_sdio_dev *sdiodev, u32 addr, uint fn,
uint flags, struct sk_buff *pkt)
{
uint width;
int err = 0;
struct sk_buff_head pkt_list;
brcmf_dbg(SDIO, "fun = %d, addr = 0x%x, size = %d\n",
fn, addr, pkt->len);
width = (flags & SDIO_REQ_4BYTE) ? 4 : 2;
err = brcmf_sdio_addrprep(sdiodev, width, &addr);
if (err)
goto done;
skb_queue_head_init(&pkt_list);
skb_queue_tail(&pkt_list, pkt);
err = brcmf_sdio_buffrw(sdiodev, fn, false, addr, &pkt_list);
skb_dequeue_tail(&pkt_list);
done:
return err;
}
int brcmf_sdcard_recv_chain(struct brcmf_sdio_dev *sdiodev, u32 addr, uint fn,
uint flags, struct sk_buff_head *pktq)
{
uint incr_fix;
uint width;
int err = 0;
brcmf_dbg(SDIO, "fun = %d, addr = 0x%x, size = %d\n",
fn, addr, pktq->qlen);
width = (flags & SDIO_REQ_4BYTE) ? 4 : 2;
err = brcmf_sdio_addrprep(sdiodev, width, &addr);
if (err)
goto done;
incr_fix = (flags & SDIO_REQ_FIXED) ? SDIOH_DATA_FIX : SDIOH_DATA_INC;
err = brcmf_sdio_buffrw(sdiodev, fn, false, addr, pktq);
done:
return err;
}
int
brcmf_sdcard_send_buf(struct brcmf_sdio_dev *sdiodev, u32 addr, uint fn,
uint flags, u8 *buf, uint nbytes)
{
struct sk_buff *mypkt;
struct sk_buff_head pktq;
int err;
mypkt = brcmu_pkt_buf_get_skb(nbytes);
if (!mypkt) {
brcmf_err("brcmu_pkt_buf_get_skb failed: len %d\n",
nbytes);
return -EIO;
}
memcpy(mypkt->data, buf, nbytes);
__skb_queue_head_init(&pktq);
__skb_queue_tail(&pktq, mypkt);
err = brcmf_sdcard_send_pkt(sdiodev, addr, fn, flags, &pktq);
__skb_dequeue_tail(&pktq);
brcmu_pkt_buf_free_skb(mypkt);
return err;
}
int
brcmf_sdcard_send_pkt(struct brcmf_sdio_dev *sdiodev, u32 addr, uint fn,
uint flags, struct sk_buff_head *pktq)
{
uint width;
int err = 0;
brcmf_dbg(SDIO, "fun = %d, addr = 0x%x, size = %d\n",
fn, addr, pktq->qlen);
width = (flags & SDIO_REQ_4BYTE) ? 4 : 2;
brcmf_sdio_addrprep(sdiodev, width, &addr);
err = brcmf_sdio_buffrw(sdiodev, fn, true, addr, pktq);
return err;
}
int
brcmf_sdio_ramrw(struct brcmf_sdio_dev *sdiodev, bool write, u32 address,
u8 *data, uint size)
{
int bcmerror = 0;
struct sk_buff *pkt;
u32 sdaddr;
uint dsize;
struct sk_buff_head pkt_list;
dsize = min_t(uint, SBSDIO_SB_OFT_ADDR_LIMIT, size);
pkt = dev_alloc_skb(dsize);
if (!pkt) {
brcmf_err("dev_alloc_skb failed: len %d\n", dsize);
return -EIO;
}
pkt->priority = 0;
skb_queue_head_init(&pkt_list);
/* Determine initial transfer parameters */
sdaddr = address & SBSDIO_SB_OFT_ADDR_MASK;
if ((sdaddr + size) & SBSDIO_SBWINDOW_MASK)
dsize = (SBSDIO_SB_OFT_ADDR_LIMIT - sdaddr);
else
dsize = size;
sdio_claim_host(sdiodev->func[1]);
/* Do the transfer(s) */
while (size) {
/* Set the backplane window to include the start address */
bcmerror = brcmf_sdcard_set_sbaddr_window(sdiodev, address);
if (bcmerror)
break;
brcmf_dbg(SDIO, "%s %d bytes at offset 0x%08x in window 0x%08x\n",
write ? "write" : "read", dsize,
sdaddr, address & SBSDIO_SBWINDOW_MASK);
sdaddr &= SBSDIO_SB_OFT_ADDR_MASK;
sdaddr |= SBSDIO_SB_ACCESS_2_4B_FLAG;
skb_put(pkt, dsize);
if (write)
memcpy(pkt->data, data, dsize);
skb_queue_tail(&pkt_list, pkt);
bcmerror = brcmf_sdio_buffrw(sdiodev, SDIO_FUNC_1, write,
sdaddr, &pkt_list);
skb_dequeue_tail(&pkt_list);
if (bcmerror) {
brcmf_err("membytes transfer failed\n");
break;
}
if (!write)
memcpy(data, pkt->data, dsize);
skb_trim(pkt, dsize);
/* Adjust for next transfer (if any) */
size -= dsize;
if (size) {
data += dsize;
address += dsize;
sdaddr = 0;
dsize = min_t(uint, SBSDIO_SB_OFT_ADDR_LIMIT, size);
}
}
dev_kfree_skb(pkt);
/* Return the window to backplane enumeration space for core access */
if (brcmf_sdcard_set_sbaddr_window(sdiodev, sdiodev->sbwad))
brcmf_err("FAILED to set window back to 0x%x\n",
sdiodev->sbwad);
sdio_release_host(sdiodev->func[1]);
return bcmerror;
}
int brcmf_sdcard_abort(struct brcmf_sdio_dev *sdiodev, uint fn)
{
char t_func = (char)fn;
brcmf_dbg(SDIO, "Enter\n");
/* issue abort cmd52 command through F0 */
brcmf_sdioh_request_byte(sdiodev, SDIOH_WRITE, SDIO_FUNC_0,
SDIO_CCCR_ABORT, &t_func);
brcmf_dbg(SDIO, "Exit\n");
return 0;
}
int brcmf_sdio_probe(struct brcmf_sdio_dev *sdiodev)
{
u32 regs = 0;
int ret = 0;
ret = brcmf_sdioh_attach(sdiodev);
if (ret)
goto out;
regs = SI_ENUM_BASE;
/* try to attach to the target device */
sdiodev->bus = brcmf_sdbrcm_probe(regs, sdiodev);
if (!sdiodev->bus) {
brcmf_err("device attach failed\n");
ret = -ENODEV;
goto out;
}
out:
if (ret)
brcmf_sdio_remove(sdiodev);
return ret;
}
EXPORT_SYMBOL(brcmf_sdio_probe);
int brcmf_sdio_remove(struct brcmf_sdio_dev *sdiodev)
{
sdiodev->bus_if->state = BRCMF_BUS_DOWN;
if (sdiodev->bus) {
brcmf_sdbrcm_disconnect(sdiodev->bus);
sdiodev->bus = NULL;
}
brcmf_sdioh_detach(sdiodev);
sdiodev->sbwad = 0;
return 0;
}
EXPORT_SYMBOL(brcmf_sdio_remove);
void brcmf_sdio_wdtmr_enable(struct brcmf_sdio_dev *sdiodev, bool enable)
{
if (enable)
brcmf_sdbrcm_wd_timer(sdiodev->bus, BRCMF_WD_POLL_MS);
else
brcmf_sdbrcm_wd_timer(sdiodev->bus, 0);
}