forked from Minki/linux
729e8b87ba
The worker may now dequeue work items in batches. This should reduce lock contention during busy periods. Signed-off-by: Philipp Reisner <philipp.reisner@linbit.com> Signed-off-by: Lars Ellenberg <lars.ellenberg@linbit.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2154 lines
62 KiB
C
2154 lines
62 KiB
C
/*
|
|
drbd_worker.c
|
|
|
|
This file is part of DRBD by Philipp Reisner and Lars Ellenberg.
|
|
|
|
Copyright (C) 2001-2008, LINBIT Information Technologies GmbH.
|
|
Copyright (C) 1999-2008, Philipp Reisner <philipp.reisner@linbit.com>.
|
|
Copyright (C) 2002-2008, Lars Ellenberg <lars.ellenberg@linbit.com>.
|
|
|
|
drbd is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 2, or (at your option)
|
|
any later version.
|
|
|
|
drbd is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with drbd; see the file COPYING. If not, write to
|
|
the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
|
|
|
|
*/
|
|
|
|
#include <linux/module.h>
|
|
#include <linux/drbd.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/wait.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/memcontrol.h>
|
|
#include <linux/mm_inline.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/random.h>
|
|
#include <linux/string.h>
|
|
#include <linux/scatterlist.h>
|
|
|
|
#include "drbd_int.h"
|
|
#include "drbd_protocol.h"
|
|
#include "drbd_req.h"
|
|
|
|
static int make_ov_request(struct drbd_device *, int);
|
|
static int make_resync_request(struct drbd_device *, int);
|
|
|
|
/* endio handlers:
|
|
* drbd_md_endio (defined here)
|
|
* drbd_request_endio (defined here)
|
|
* drbd_peer_request_endio (defined here)
|
|
* drbd_bm_endio (defined in drbd_bitmap.c)
|
|
*
|
|
* For all these callbacks, note the following:
|
|
* The callbacks will be called in irq context by the IDE drivers,
|
|
* and in Softirqs/Tasklets/BH context by the SCSI drivers.
|
|
* Try to get the locking right :)
|
|
*
|
|
*/
|
|
|
|
|
|
/* About the global_state_lock
|
|
Each state transition on an device holds a read lock. In case we have
|
|
to evaluate the resync after dependencies, we grab a write lock, because
|
|
we need stable states on all devices for that. */
|
|
rwlock_t global_state_lock;
|
|
|
|
/* used for synchronous meta data and bitmap IO
|
|
* submitted by drbd_md_sync_page_io()
|
|
*/
|
|
void drbd_md_endio(struct bio *bio, int error)
|
|
{
|
|
struct drbd_device *device;
|
|
|
|
device = bio->bi_private;
|
|
device->md_io.error = error;
|
|
|
|
/* We grabbed an extra reference in _drbd_md_sync_page_io() to be able
|
|
* to timeout on the lower level device, and eventually detach from it.
|
|
* If this io completion runs after that timeout expired, this
|
|
* drbd_md_put_buffer() may allow us to finally try and re-attach.
|
|
* During normal operation, this only puts that extra reference
|
|
* down to 1 again.
|
|
* Make sure we first drop the reference, and only then signal
|
|
* completion, or we may (in drbd_al_read_log()) cycle so fast into the
|
|
* next drbd_md_sync_page_io(), that we trigger the
|
|
* ASSERT(atomic_read(&device->md_io_in_use) == 1) there.
|
|
*/
|
|
drbd_md_put_buffer(device);
|
|
device->md_io.done = 1;
|
|
wake_up(&device->misc_wait);
|
|
bio_put(bio);
|
|
if (device->ldev) /* special case: drbd_md_read() during drbd_adm_attach() */
|
|
put_ldev(device);
|
|
}
|
|
|
|
/* reads on behalf of the partner,
|
|
* "submitted" by the receiver
|
|
*/
|
|
static void drbd_endio_read_sec_final(struct drbd_peer_request *peer_req) __releases(local)
|
|
{
|
|
unsigned long flags = 0;
|
|
struct drbd_peer_device *peer_device = peer_req->peer_device;
|
|
struct drbd_device *device = peer_device->device;
|
|
|
|
spin_lock_irqsave(&device->resource->req_lock, flags);
|
|
device->read_cnt += peer_req->i.size >> 9;
|
|
list_del(&peer_req->w.list);
|
|
if (list_empty(&device->read_ee))
|
|
wake_up(&device->ee_wait);
|
|
if (test_bit(__EE_WAS_ERROR, &peer_req->flags))
|
|
__drbd_chk_io_error(device, DRBD_READ_ERROR);
|
|
spin_unlock_irqrestore(&device->resource->req_lock, flags);
|
|
|
|
drbd_queue_work(&peer_device->connection->sender_work, &peer_req->w);
|
|
put_ldev(device);
|
|
}
|
|
|
|
/* writes on behalf of the partner, or resync writes,
|
|
* "submitted" by the receiver, final stage. */
|
|
void drbd_endio_write_sec_final(struct drbd_peer_request *peer_req) __releases(local)
|
|
{
|
|
unsigned long flags = 0;
|
|
struct drbd_peer_device *peer_device = peer_req->peer_device;
|
|
struct drbd_device *device = peer_device->device;
|
|
struct drbd_interval i;
|
|
int do_wake;
|
|
u64 block_id;
|
|
int do_al_complete_io;
|
|
|
|
/* after we moved peer_req to done_ee,
|
|
* we may no longer access it,
|
|
* it may be freed/reused already!
|
|
* (as soon as we release the req_lock) */
|
|
i = peer_req->i;
|
|
do_al_complete_io = peer_req->flags & EE_CALL_AL_COMPLETE_IO;
|
|
block_id = peer_req->block_id;
|
|
peer_req->flags &= ~EE_CALL_AL_COMPLETE_IO;
|
|
|
|
spin_lock_irqsave(&device->resource->req_lock, flags);
|
|
device->writ_cnt += peer_req->i.size >> 9;
|
|
list_move_tail(&peer_req->w.list, &device->done_ee);
|
|
|
|
/*
|
|
* Do not remove from the write_requests tree here: we did not send the
|
|
* Ack yet and did not wake possibly waiting conflicting requests.
|
|
* Removed from the tree from "drbd_process_done_ee" within the
|
|
* appropriate dw.cb (e_end_block/e_end_resync_block) or from
|
|
* _drbd_clear_done_ee.
|
|
*/
|
|
|
|
do_wake = list_empty(block_id == ID_SYNCER ? &device->sync_ee : &device->active_ee);
|
|
|
|
/* FIXME do we want to detach for failed REQ_DISCARD?
|
|
* ((peer_req->flags & (EE_WAS_ERROR|EE_IS_TRIM)) == EE_WAS_ERROR) */
|
|
if (peer_req->flags & EE_WAS_ERROR)
|
|
__drbd_chk_io_error(device, DRBD_WRITE_ERROR);
|
|
spin_unlock_irqrestore(&device->resource->req_lock, flags);
|
|
|
|
if (block_id == ID_SYNCER)
|
|
drbd_rs_complete_io(device, i.sector);
|
|
|
|
if (do_wake)
|
|
wake_up(&device->ee_wait);
|
|
|
|
if (do_al_complete_io)
|
|
drbd_al_complete_io(device, &i);
|
|
|
|
wake_asender(peer_device->connection);
|
|
put_ldev(device);
|
|
}
|
|
|
|
/* writes on behalf of the partner, or resync writes,
|
|
* "submitted" by the receiver.
|
|
*/
|
|
void drbd_peer_request_endio(struct bio *bio, int error)
|
|
{
|
|
struct drbd_peer_request *peer_req = bio->bi_private;
|
|
struct drbd_device *device = peer_req->peer_device->device;
|
|
int uptodate = bio_flagged(bio, BIO_UPTODATE);
|
|
int is_write = bio_data_dir(bio) == WRITE;
|
|
int is_discard = !!(bio->bi_rw & REQ_DISCARD);
|
|
|
|
if (error && __ratelimit(&drbd_ratelimit_state))
|
|
drbd_warn(device, "%s: error=%d s=%llus\n",
|
|
is_write ? (is_discard ? "discard" : "write")
|
|
: "read", error,
|
|
(unsigned long long)peer_req->i.sector);
|
|
if (!error && !uptodate) {
|
|
if (__ratelimit(&drbd_ratelimit_state))
|
|
drbd_warn(device, "%s: setting error to -EIO s=%llus\n",
|
|
is_write ? "write" : "read",
|
|
(unsigned long long)peer_req->i.sector);
|
|
/* strange behavior of some lower level drivers...
|
|
* fail the request by clearing the uptodate flag,
|
|
* but do not return any error?! */
|
|
error = -EIO;
|
|
}
|
|
|
|
if (error)
|
|
set_bit(__EE_WAS_ERROR, &peer_req->flags);
|
|
|
|
bio_put(bio); /* no need for the bio anymore */
|
|
if (atomic_dec_and_test(&peer_req->pending_bios)) {
|
|
if (is_write)
|
|
drbd_endio_write_sec_final(peer_req);
|
|
else
|
|
drbd_endio_read_sec_final(peer_req);
|
|
}
|
|
}
|
|
|
|
/* read, readA or write requests on R_PRIMARY coming from drbd_make_request
|
|
*/
|
|
void drbd_request_endio(struct bio *bio, int error)
|
|
{
|
|
unsigned long flags;
|
|
struct drbd_request *req = bio->bi_private;
|
|
struct drbd_device *device = req->device;
|
|
struct bio_and_error m;
|
|
enum drbd_req_event what;
|
|
int uptodate = bio_flagged(bio, BIO_UPTODATE);
|
|
|
|
if (!error && !uptodate) {
|
|
drbd_warn(device, "p %s: setting error to -EIO\n",
|
|
bio_data_dir(bio) == WRITE ? "write" : "read");
|
|
/* strange behavior of some lower level drivers...
|
|
* fail the request by clearing the uptodate flag,
|
|
* but do not return any error?! */
|
|
error = -EIO;
|
|
}
|
|
|
|
|
|
/* If this request was aborted locally before,
|
|
* but now was completed "successfully",
|
|
* chances are that this caused arbitrary data corruption.
|
|
*
|
|
* "aborting" requests, or force-detaching the disk, is intended for
|
|
* completely blocked/hung local backing devices which do no longer
|
|
* complete requests at all, not even do error completions. In this
|
|
* situation, usually a hard-reset and failover is the only way out.
|
|
*
|
|
* By "aborting", basically faking a local error-completion,
|
|
* we allow for a more graceful swichover by cleanly migrating services.
|
|
* Still the affected node has to be rebooted "soon".
|
|
*
|
|
* By completing these requests, we allow the upper layers to re-use
|
|
* the associated data pages.
|
|
*
|
|
* If later the local backing device "recovers", and now DMAs some data
|
|
* from disk into the original request pages, in the best case it will
|
|
* just put random data into unused pages; but typically it will corrupt
|
|
* meanwhile completely unrelated data, causing all sorts of damage.
|
|
*
|
|
* Which means delayed successful completion,
|
|
* especially for READ requests,
|
|
* is a reason to panic().
|
|
*
|
|
* We assume that a delayed *error* completion is OK,
|
|
* though we still will complain noisily about it.
|
|
*/
|
|
if (unlikely(req->rq_state & RQ_LOCAL_ABORTED)) {
|
|
if (__ratelimit(&drbd_ratelimit_state))
|
|
drbd_emerg(device, "delayed completion of aborted local request; disk-timeout may be too aggressive\n");
|
|
|
|
if (!error)
|
|
panic("possible random memory corruption caused by delayed completion of aborted local request\n");
|
|
}
|
|
|
|
/* to avoid recursion in __req_mod */
|
|
if (unlikely(error)) {
|
|
if (bio->bi_rw & REQ_DISCARD)
|
|
what = (error == -EOPNOTSUPP)
|
|
? DISCARD_COMPLETED_NOTSUPP
|
|
: DISCARD_COMPLETED_WITH_ERROR;
|
|
else
|
|
what = (bio_data_dir(bio) == WRITE)
|
|
? WRITE_COMPLETED_WITH_ERROR
|
|
: (bio_rw(bio) == READ)
|
|
? READ_COMPLETED_WITH_ERROR
|
|
: READ_AHEAD_COMPLETED_WITH_ERROR;
|
|
} else
|
|
what = COMPLETED_OK;
|
|
|
|
bio_put(req->private_bio);
|
|
req->private_bio = ERR_PTR(error);
|
|
|
|
/* not req_mod(), we need irqsave here! */
|
|
spin_lock_irqsave(&device->resource->req_lock, flags);
|
|
__req_mod(req, what, &m);
|
|
spin_unlock_irqrestore(&device->resource->req_lock, flags);
|
|
put_ldev(device);
|
|
|
|
if (m.bio)
|
|
complete_master_bio(device, &m);
|
|
}
|
|
|
|
void drbd_csum_ee(struct crypto_hash *tfm, struct drbd_peer_request *peer_req, void *digest)
|
|
{
|
|
struct hash_desc desc;
|
|
struct scatterlist sg;
|
|
struct page *page = peer_req->pages;
|
|
struct page *tmp;
|
|
unsigned len;
|
|
|
|
desc.tfm = tfm;
|
|
desc.flags = 0;
|
|
|
|
sg_init_table(&sg, 1);
|
|
crypto_hash_init(&desc);
|
|
|
|
while ((tmp = page_chain_next(page))) {
|
|
/* all but the last page will be fully used */
|
|
sg_set_page(&sg, page, PAGE_SIZE, 0);
|
|
crypto_hash_update(&desc, &sg, sg.length);
|
|
page = tmp;
|
|
}
|
|
/* and now the last, possibly only partially used page */
|
|
len = peer_req->i.size & (PAGE_SIZE - 1);
|
|
sg_set_page(&sg, page, len ?: PAGE_SIZE, 0);
|
|
crypto_hash_update(&desc, &sg, sg.length);
|
|
crypto_hash_final(&desc, digest);
|
|
}
|
|
|
|
void drbd_csum_bio(struct crypto_hash *tfm, struct bio *bio, void *digest)
|
|
{
|
|
struct hash_desc desc;
|
|
struct scatterlist sg;
|
|
struct bio_vec bvec;
|
|
struct bvec_iter iter;
|
|
|
|
desc.tfm = tfm;
|
|
desc.flags = 0;
|
|
|
|
sg_init_table(&sg, 1);
|
|
crypto_hash_init(&desc);
|
|
|
|
bio_for_each_segment(bvec, bio, iter) {
|
|
sg_set_page(&sg, bvec.bv_page, bvec.bv_len, bvec.bv_offset);
|
|
crypto_hash_update(&desc, &sg, sg.length);
|
|
}
|
|
crypto_hash_final(&desc, digest);
|
|
}
|
|
|
|
/* MAYBE merge common code with w_e_end_ov_req */
|
|
static int w_e_send_csum(struct drbd_work *w, int cancel)
|
|
{
|
|
struct drbd_peer_request *peer_req = container_of(w, struct drbd_peer_request, w);
|
|
struct drbd_peer_device *peer_device = peer_req->peer_device;
|
|
struct drbd_device *device = peer_device->device;
|
|
int digest_size;
|
|
void *digest;
|
|
int err = 0;
|
|
|
|
if (unlikely(cancel))
|
|
goto out;
|
|
|
|
if (unlikely((peer_req->flags & EE_WAS_ERROR) != 0))
|
|
goto out;
|
|
|
|
digest_size = crypto_hash_digestsize(peer_device->connection->csums_tfm);
|
|
digest = kmalloc(digest_size, GFP_NOIO);
|
|
if (digest) {
|
|
sector_t sector = peer_req->i.sector;
|
|
unsigned int size = peer_req->i.size;
|
|
drbd_csum_ee(peer_device->connection->csums_tfm, peer_req, digest);
|
|
/* Free peer_req and pages before send.
|
|
* In case we block on congestion, we could otherwise run into
|
|
* some distributed deadlock, if the other side blocks on
|
|
* congestion as well, because our receiver blocks in
|
|
* drbd_alloc_pages due to pp_in_use > max_buffers. */
|
|
drbd_free_peer_req(device, peer_req);
|
|
peer_req = NULL;
|
|
inc_rs_pending(device);
|
|
err = drbd_send_drequest_csum(peer_device, sector, size,
|
|
digest, digest_size,
|
|
P_CSUM_RS_REQUEST);
|
|
kfree(digest);
|
|
} else {
|
|
drbd_err(device, "kmalloc() of digest failed.\n");
|
|
err = -ENOMEM;
|
|
}
|
|
|
|
out:
|
|
if (peer_req)
|
|
drbd_free_peer_req(device, peer_req);
|
|
|
|
if (unlikely(err))
|
|
drbd_err(device, "drbd_send_drequest(..., csum) failed\n");
|
|
return err;
|
|
}
|
|
|
|
#define GFP_TRY (__GFP_HIGHMEM | __GFP_NOWARN)
|
|
|
|
static int read_for_csum(struct drbd_peer_device *peer_device, sector_t sector, int size)
|
|
{
|
|
struct drbd_device *device = peer_device->device;
|
|
struct drbd_peer_request *peer_req;
|
|
|
|
if (!get_ldev(device))
|
|
return -EIO;
|
|
|
|
/* GFP_TRY, because if there is no memory available right now, this may
|
|
* be rescheduled for later. It is "only" background resync, after all. */
|
|
peer_req = drbd_alloc_peer_req(peer_device, ID_SYNCER /* unused */, sector,
|
|
size, true /* has real payload */, GFP_TRY);
|
|
if (!peer_req)
|
|
goto defer;
|
|
|
|
peer_req->w.cb = w_e_send_csum;
|
|
spin_lock_irq(&device->resource->req_lock);
|
|
list_add_tail(&peer_req->w.list, &device->read_ee);
|
|
spin_unlock_irq(&device->resource->req_lock);
|
|
|
|
atomic_add(size >> 9, &device->rs_sect_ev);
|
|
if (drbd_submit_peer_request(device, peer_req, READ, DRBD_FAULT_RS_RD) == 0)
|
|
return 0;
|
|
|
|
/* If it failed because of ENOMEM, retry should help. If it failed
|
|
* because bio_add_page failed (probably broken lower level driver),
|
|
* retry may or may not help.
|
|
* If it does not, you may need to force disconnect. */
|
|
spin_lock_irq(&device->resource->req_lock);
|
|
list_del(&peer_req->w.list);
|
|
spin_unlock_irq(&device->resource->req_lock);
|
|
|
|
drbd_free_peer_req(device, peer_req);
|
|
defer:
|
|
put_ldev(device);
|
|
return -EAGAIN;
|
|
}
|
|
|
|
int w_resync_timer(struct drbd_work *w, int cancel)
|
|
{
|
|
struct drbd_device *device =
|
|
container_of(w, struct drbd_device, resync_work);
|
|
|
|
switch (device->state.conn) {
|
|
case C_VERIFY_S:
|
|
make_ov_request(device, cancel);
|
|
break;
|
|
case C_SYNC_TARGET:
|
|
make_resync_request(device, cancel);
|
|
break;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
void resync_timer_fn(unsigned long data)
|
|
{
|
|
struct drbd_device *device = (struct drbd_device *) data;
|
|
|
|
drbd_queue_work_if_unqueued(
|
|
&first_peer_device(device)->connection->sender_work,
|
|
&device->resync_work);
|
|
}
|
|
|
|
static void fifo_set(struct fifo_buffer *fb, int value)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < fb->size; i++)
|
|
fb->values[i] = value;
|
|
}
|
|
|
|
static int fifo_push(struct fifo_buffer *fb, int value)
|
|
{
|
|
int ov;
|
|
|
|
ov = fb->values[fb->head_index];
|
|
fb->values[fb->head_index++] = value;
|
|
|
|
if (fb->head_index >= fb->size)
|
|
fb->head_index = 0;
|
|
|
|
return ov;
|
|
}
|
|
|
|
static void fifo_add_val(struct fifo_buffer *fb, int value)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < fb->size; i++)
|
|
fb->values[i] += value;
|
|
}
|
|
|
|
struct fifo_buffer *fifo_alloc(int fifo_size)
|
|
{
|
|
struct fifo_buffer *fb;
|
|
|
|
fb = kzalloc(sizeof(struct fifo_buffer) + sizeof(int) * fifo_size, GFP_NOIO);
|
|
if (!fb)
|
|
return NULL;
|
|
|
|
fb->head_index = 0;
|
|
fb->size = fifo_size;
|
|
fb->total = 0;
|
|
|
|
return fb;
|
|
}
|
|
|
|
static int drbd_rs_controller(struct drbd_device *device, unsigned int sect_in)
|
|
{
|
|
struct disk_conf *dc;
|
|
unsigned int want; /* The number of sectors we want in-flight */
|
|
int req_sect; /* Number of sectors to request in this turn */
|
|
int correction; /* Number of sectors more we need in-flight */
|
|
int cps; /* correction per invocation of drbd_rs_controller() */
|
|
int steps; /* Number of time steps to plan ahead */
|
|
int curr_corr;
|
|
int max_sect;
|
|
struct fifo_buffer *plan;
|
|
|
|
dc = rcu_dereference(device->ldev->disk_conf);
|
|
plan = rcu_dereference(device->rs_plan_s);
|
|
|
|
steps = plan->size; /* (dc->c_plan_ahead * 10 * SLEEP_TIME) / HZ; */
|
|
|
|
if (device->rs_in_flight + sect_in == 0) { /* At start of resync */
|
|
want = ((dc->resync_rate * 2 * SLEEP_TIME) / HZ) * steps;
|
|
} else { /* normal path */
|
|
want = dc->c_fill_target ? dc->c_fill_target :
|
|
sect_in * dc->c_delay_target * HZ / (SLEEP_TIME * 10);
|
|
}
|
|
|
|
correction = want - device->rs_in_flight - plan->total;
|
|
|
|
/* Plan ahead */
|
|
cps = correction / steps;
|
|
fifo_add_val(plan, cps);
|
|
plan->total += cps * steps;
|
|
|
|
/* What we do in this step */
|
|
curr_corr = fifo_push(plan, 0);
|
|
plan->total -= curr_corr;
|
|
|
|
req_sect = sect_in + curr_corr;
|
|
if (req_sect < 0)
|
|
req_sect = 0;
|
|
|
|
max_sect = (dc->c_max_rate * 2 * SLEEP_TIME) / HZ;
|
|
if (req_sect > max_sect)
|
|
req_sect = max_sect;
|
|
|
|
/*
|
|
drbd_warn(device, "si=%u if=%d wa=%u co=%d st=%d cps=%d pl=%d cc=%d rs=%d\n",
|
|
sect_in, device->rs_in_flight, want, correction,
|
|
steps, cps, device->rs_planed, curr_corr, req_sect);
|
|
*/
|
|
|
|
return req_sect;
|
|
}
|
|
|
|
static int drbd_rs_number_requests(struct drbd_device *device)
|
|
{
|
|
unsigned int sect_in; /* Number of sectors that came in since the last turn */
|
|
int number, mxb;
|
|
|
|
sect_in = atomic_xchg(&device->rs_sect_in, 0);
|
|
device->rs_in_flight -= sect_in;
|
|
|
|
rcu_read_lock();
|
|
mxb = drbd_get_max_buffers(device) / 2;
|
|
if (rcu_dereference(device->rs_plan_s)->size) {
|
|
number = drbd_rs_controller(device, sect_in) >> (BM_BLOCK_SHIFT - 9);
|
|
device->c_sync_rate = number * HZ * (BM_BLOCK_SIZE / 1024) / SLEEP_TIME;
|
|
} else {
|
|
device->c_sync_rate = rcu_dereference(device->ldev->disk_conf)->resync_rate;
|
|
number = SLEEP_TIME * device->c_sync_rate / ((BM_BLOCK_SIZE / 1024) * HZ);
|
|
}
|
|
rcu_read_unlock();
|
|
|
|
/* Don't have more than "max-buffers"/2 in-flight.
|
|
* Otherwise we may cause the remote site to stall on drbd_alloc_pages(),
|
|
* potentially causing a distributed deadlock on congestion during
|
|
* online-verify or (checksum-based) resync, if max-buffers,
|
|
* socket buffer sizes and resync rate settings are mis-configured. */
|
|
|
|
/* note that "number" is in units of "BM_BLOCK_SIZE" (which is 4k),
|
|
* mxb (as used here, and in drbd_alloc_pages on the peer) is
|
|
* "number of pages" (typically also 4k),
|
|
* but "rs_in_flight" is in "sectors" (512 Byte). */
|
|
if (mxb - device->rs_in_flight/8 < number)
|
|
number = mxb - device->rs_in_flight/8;
|
|
|
|
return number;
|
|
}
|
|
|
|
static int make_resync_request(struct drbd_device *const device, int cancel)
|
|
{
|
|
struct drbd_peer_device *const peer_device = first_peer_device(device);
|
|
struct drbd_connection *const connection = peer_device ? peer_device->connection : NULL;
|
|
unsigned long bit;
|
|
sector_t sector;
|
|
const sector_t capacity = drbd_get_capacity(device->this_bdev);
|
|
int max_bio_size;
|
|
int number, rollback_i, size;
|
|
int align, requeue = 0;
|
|
int i = 0;
|
|
|
|
if (unlikely(cancel))
|
|
return 0;
|
|
|
|
if (device->rs_total == 0) {
|
|
/* empty resync? */
|
|
drbd_resync_finished(device);
|
|
return 0;
|
|
}
|
|
|
|
if (!get_ldev(device)) {
|
|
/* Since we only need to access device->rsync a
|
|
get_ldev_if_state(device,D_FAILED) would be sufficient, but
|
|
to continue resync with a broken disk makes no sense at
|
|
all */
|
|
drbd_err(device, "Disk broke down during resync!\n");
|
|
return 0;
|
|
}
|
|
|
|
max_bio_size = queue_max_hw_sectors(device->rq_queue) << 9;
|
|
number = drbd_rs_number_requests(device);
|
|
if (number <= 0)
|
|
goto requeue;
|
|
|
|
for (i = 0; i < number; i++) {
|
|
/* Stop generating RS requests when half of the send buffer is filled,
|
|
* but notify TCP that we'd like to have more space. */
|
|
mutex_lock(&connection->data.mutex);
|
|
if (connection->data.socket) {
|
|
struct sock *sk = connection->data.socket->sk;
|
|
int queued = sk->sk_wmem_queued;
|
|
int sndbuf = sk->sk_sndbuf;
|
|
if (queued > sndbuf / 2) {
|
|
requeue = 1;
|
|
if (sk->sk_socket)
|
|
set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
|
|
}
|
|
} else
|
|
requeue = 1;
|
|
mutex_unlock(&connection->data.mutex);
|
|
if (requeue)
|
|
goto requeue;
|
|
|
|
next_sector:
|
|
size = BM_BLOCK_SIZE;
|
|
bit = drbd_bm_find_next(device, device->bm_resync_fo);
|
|
|
|
if (bit == DRBD_END_OF_BITMAP) {
|
|
device->bm_resync_fo = drbd_bm_bits(device);
|
|
put_ldev(device);
|
|
return 0;
|
|
}
|
|
|
|
sector = BM_BIT_TO_SECT(bit);
|
|
|
|
if (drbd_try_rs_begin_io(device, sector)) {
|
|
device->bm_resync_fo = bit;
|
|
goto requeue;
|
|
}
|
|
device->bm_resync_fo = bit + 1;
|
|
|
|
if (unlikely(drbd_bm_test_bit(device, bit) == 0)) {
|
|
drbd_rs_complete_io(device, sector);
|
|
goto next_sector;
|
|
}
|
|
|
|
#if DRBD_MAX_BIO_SIZE > BM_BLOCK_SIZE
|
|
/* try to find some adjacent bits.
|
|
* we stop if we have already the maximum req size.
|
|
*
|
|
* Additionally always align bigger requests, in order to
|
|
* be prepared for all stripe sizes of software RAIDs.
|
|
*/
|
|
align = 1;
|
|
rollback_i = i;
|
|
while (i < number) {
|
|
if (size + BM_BLOCK_SIZE > max_bio_size)
|
|
break;
|
|
|
|
/* Be always aligned */
|
|
if (sector & ((1<<(align+3))-1))
|
|
break;
|
|
|
|
/* do not cross extent boundaries */
|
|
if (((bit+1) & BM_BLOCKS_PER_BM_EXT_MASK) == 0)
|
|
break;
|
|
/* now, is it actually dirty, after all?
|
|
* caution, drbd_bm_test_bit is tri-state for some
|
|
* obscure reason; ( b == 0 ) would get the out-of-band
|
|
* only accidentally right because of the "oddly sized"
|
|
* adjustment below */
|
|
if (drbd_bm_test_bit(device, bit+1) != 1)
|
|
break;
|
|
bit++;
|
|
size += BM_BLOCK_SIZE;
|
|
if ((BM_BLOCK_SIZE << align) <= size)
|
|
align++;
|
|
i++;
|
|
}
|
|
/* if we merged some,
|
|
* reset the offset to start the next drbd_bm_find_next from */
|
|
if (size > BM_BLOCK_SIZE)
|
|
device->bm_resync_fo = bit + 1;
|
|
#endif
|
|
|
|
/* adjust very last sectors, in case we are oddly sized */
|
|
if (sector + (size>>9) > capacity)
|
|
size = (capacity-sector)<<9;
|
|
|
|
if (device->use_csums) {
|
|
switch (read_for_csum(peer_device, sector, size)) {
|
|
case -EIO: /* Disk failure */
|
|
put_ldev(device);
|
|
return -EIO;
|
|
case -EAGAIN: /* allocation failed, or ldev busy */
|
|
drbd_rs_complete_io(device, sector);
|
|
device->bm_resync_fo = BM_SECT_TO_BIT(sector);
|
|
i = rollback_i;
|
|
goto requeue;
|
|
case 0:
|
|
/* everything ok */
|
|
break;
|
|
default:
|
|
BUG();
|
|
}
|
|
} else {
|
|
int err;
|
|
|
|
inc_rs_pending(device);
|
|
err = drbd_send_drequest(peer_device, P_RS_DATA_REQUEST,
|
|
sector, size, ID_SYNCER);
|
|
if (err) {
|
|
drbd_err(device, "drbd_send_drequest() failed, aborting...\n");
|
|
dec_rs_pending(device);
|
|
put_ldev(device);
|
|
return err;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (device->bm_resync_fo >= drbd_bm_bits(device)) {
|
|
/* last syncer _request_ was sent,
|
|
* but the P_RS_DATA_REPLY not yet received. sync will end (and
|
|
* next sync group will resume), as soon as we receive the last
|
|
* resync data block, and the last bit is cleared.
|
|
* until then resync "work" is "inactive" ...
|
|
*/
|
|
put_ldev(device);
|
|
return 0;
|
|
}
|
|
|
|
requeue:
|
|
device->rs_in_flight += (i << (BM_BLOCK_SHIFT - 9));
|
|
mod_timer(&device->resync_timer, jiffies + SLEEP_TIME);
|
|
put_ldev(device);
|
|
return 0;
|
|
}
|
|
|
|
static int make_ov_request(struct drbd_device *device, int cancel)
|
|
{
|
|
int number, i, size;
|
|
sector_t sector;
|
|
const sector_t capacity = drbd_get_capacity(device->this_bdev);
|
|
bool stop_sector_reached = false;
|
|
|
|
if (unlikely(cancel))
|
|
return 1;
|
|
|
|
number = drbd_rs_number_requests(device);
|
|
|
|
sector = device->ov_position;
|
|
for (i = 0; i < number; i++) {
|
|
if (sector >= capacity)
|
|
return 1;
|
|
|
|
/* We check for "finished" only in the reply path:
|
|
* w_e_end_ov_reply().
|
|
* We need to send at least one request out. */
|
|
stop_sector_reached = i > 0
|
|
&& verify_can_do_stop_sector(device)
|
|
&& sector >= device->ov_stop_sector;
|
|
if (stop_sector_reached)
|
|
break;
|
|
|
|
size = BM_BLOCK_SIZE;
|
|
|
|
if (drbd_try_rs_begin_io(device, sector)) {
|
|
device->ov_position = sector;
|
|
goto requeue;
|
|
}
|
|
|
|
if (sector + (size>>9) > capacity)
|
|
size = (capacity-sector)<<9;
|
|
|
|
inc_rs_pending(device);
|
|
if (drbd_send_ov_request(first_peer_device(device), sector, size)) {
|
|
dec_rs_pending(device);
|
|
return 0;
|
|
}
|
|
sector += BM_SECT_PER_BIT;
|
|
}
|
|
device->ov_position = sector;
|
|
|
|
requeue:
|
|
device->rs_in_flight += (i << (BM_BLOCK_SHIFT - 9));
|
|
if (i == 0 || !stop_sector_reached)
|
|
mod_timer(&device->resync_timer, jiffies + SLEEP_TIME);
|
|
return 1;
|
|
}
|
|
|
|
int w_ov_finished(struct drbd_work *w, int cancel)
|
|
{
|
|
struct drbd_device_work *dw =
|
|
container_of(w, struct drbd_device_work, w);
|
|
struct drbd_device *device = dw->device;
|
|
kfree(dw);
|
|
ov_out_of_sync_print(device);
|
|
drbd_resync_finished(device);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int w_resync_finished(struct drbd_work *w, int cancel)
|
|
{
|
|
struct drbd_device_work *dw =
|
|
container_of(w, struct drbd_device_work, w);
|
|
struct drbd_device *device = dw->device;
|
|
kfree(dw);
|
|
|
|
drbd_resync_finished(device);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void ping_peer(struct drbd_device *device)
|
|
{
|
|
struct drbd_connection *connection = first_peer_device(device)->connection;
|
|
|
|
clear_bit(GOT_PING_ACK, &connection->flags);
|
|
request_ping(connection);
|
|
wait_event(connection->ping_wait,
|
|
test_bit(GOT_PING_ACK, &connection->flags) || device->state.conn < C_CONNECTED);
|
|
}
|
|
|
|
int drbd_resync_finished(struct drbd_device *device)
|
|
{
|
|
unsigned long db, dt, dbdt;
|
|
unsigned long n_oos;
|
|
union drbd_state os, ns;
|
|
struct drbd_device_work *dw;
|
|
char *khelper_cmd = NULL;
|
|
int verify_done = 0;
|
|
|
|
/* Remove all elements from the resync LRU. Since future actions
|
|
* might set bits in the (main) bitmap, then the entries in the
|
|
* resync LRU would be wrong. */
|
|
if (drbd_rs_del_all(device)) {
|
|
/* In case this is not possible now, most probably because
|
|
* there are P_RS_DATA_REPLY Packets lingering on the worker's
|
|
* queue (or even the read operations for those packets
|
|
* is not finished by now). Retry in 100ms. */
|
|
|
|
schedule_timeout_interruptible(HZ / 10);
|
|
dw = kmalloc(sizeof(struct drbd_device_work), GFP_ATOMIC);
|
|
if (dw) {
|
|
dw->w.cb = w_resync_finished;
|
|
dw->device = device;
|
|
drbd_queue_work(&first_peer_device(device)->connection->sender_work,
|
|
&dw->w);
|
|
return 1;
|
|
}
|
|
drbd_err(device, "Warn failed to drbd_rs_del_all() and to kmalloc(dw).\n");
|
|
}
|
|
|
|
dt = (jiffies - device->rs_start - device->rs_paused) / HZ;
|
|
if (dt <= 0)
|
|
dt = 1;
|
|
|
|
db = device->rs_total;
|
|
/* adjust for verify start and stop sectors, respective reached position */
|
|
if (device->state.conn == C_VERIFY_S || device->state.conn == C_VERIFY_T)
|
|
db -= device->ov_left;
|
|
|
|
dbdt = Bit2KB(db/dt);
|
|
device->rs_paused /= HZ;
|
|
|
|
if (!get_ldev(device))
|
|
goto out;
|
|
|
|
ping_peer(device);
|
|
|
|
spin_lock_irq(&device->resource->req_lock);
|
|
os = drbd_read_state(device);
|
|
|
|
verify_done = (os.conn == C_VERIFY_S || os.conn == C_VERIFY_T);
|
|
|
|
/* This protects us against multiple calls (that can happen in the presence
|
|
of application IO), and against connectivity loss just before we arrive here. */
|
|
if (os.conn <= C_CONNECTED)
|
|
goto out_unlock;
|
|
|
|
ns = os;
|
|
ns.conn = C_CONNECTED;
|
|
|
|
drbd_info(device, "%s done (total %lu sec; paused %lu sec; %lu K/sec)\n",
|
|
verify_done ? "Online verify" : "Resync",
|
|
dt + device->rs_paused, device->rs_paused, dbdt);
|
|
|
|
n_oos = drbd_bm_total_weight(device);
|
|
|
|
if (os.conn == C_VERIFY_S || os.conn == C_VERIFY_T) {
|
|
if (n_oos) {
|
|
drbd_alert(device, "Online verify found %lu %dk block out of sync!\n",
|
|
n_oos, Bit2KB(1));
|
|
khelper_cmd = "out-of-sync";
|
|
}
|
|
} else {
|
|
D_ASSERT(device, (n_oos - device->rs_failed) == 0);
|
|
|
|
if (os.conn == C_SYNC_TARGET || os.conn == C_PAUSED_SYNC_T)
|
|
khelper_cmd = "after-resync-target";
|
|
|
|
if (device->use_csums && device->rs_total) {
|
|
const unsigned long s = device->rs_same_csum;
|
|
const unsigned long t = device->rs_total;
|
|
const int ratio =
|
|
(t == 0) ? 0 :
|
|
(t < 100000) ? ((s*100)/t) : (s/(t/100));
|
|
drbd_info(device, "%u %% had equal checksums, eliminated: %luK; "
|
|
"transferred %luK total %luK\n",
|
|
ratio,
|
|
Bit2KB(device->rs_same_csum),
|
|
Bit2KB(device->rs_total - device->rs_same_csum),
|
|
Bit2KB(device->rs_total));
|
|
}
|
|
}
|
|
|
|
if (device->rs_failed) {
|
|
drbd_info(device, " %lu failed blocks\n", device->rs_failed);
|
|
|
|
if (os.conn == C_SYNC_TARGET || os.conn == C_PAUSED_SYNC_T) {
|
|
ns.disk = D_INCONSISTENT;
|
|
ns.pdsk = D_UP_TO_DATE;
|
|
} else {
|
|
ns.disk = D_UP_TO_DATE;
|
|
ns.pdsk = D_INCONSISTENT;
|
|
}
|
|
} else {
|
|
ns.disk = D_UP_TO_DATE;
|
|
ns.pdsk = D_UP_TO_DATE;
|
|
|
|
if (os.conn == C_SYNC_TARGET || os.conn == C_PAUSED_SYNC_T) {
|
|
if (device->p_uuid) {
|
|
int i;
|
|
for (i = UI_BITMAP ; i <= UI_HISTORY_END ; i++)
|
|
_drbd_uuid_set(device, i, device->p_uuid[i]);
|
|
drbd_uuid_set(device, UI_BITMAP, device->ldev->md.uuid[UI_CURRENT]);
|
|
_drbd_uuid_set(device, UI_CURRENT, device->p_uuid[UI_CURRENT]);
|
|
} else {
|
|
drbd_err(device, "device->p_uuid is NULL! BUG\n");
|
|
}
|
|
}
|
|
|
|
if (!(os.conn == C_VERIFY_S || os.conn == C_VERIFY_T)) {
|
|
/* for verify runs, we don't update uuids here,
|
|
* so there would be nothing to report. */
|
|
drbd_uuid_set_bm(device, 0UL);
|
|
drbd_print_uuids(device, "updated UUIDs");
|
|
if (device->p_uuid) {
|
|
/* Now the two UUID sets are equal, update what we
|
|
* know of the peer. */
|
|
int i;
|
|
for (i = UI_CURRENT ; i <= UI_HISTORY_END ; i++)
|
|
device->p_uuid[i] = device->ldev->md.uuid[i];
|
|
}
|
|
}
|
|
}
|
|
|
|
_drbd_set_state(device, ns, CS_VERBOSE, NULL);
|
|
out_unlock:
|
|
spin_unlock_irq(&device->resource->req_lock);
|
|
put_ldev(device);
|
|
out:
|
|
device->rs_total = 0;
|
|
device->rs_failed = 0;
|
|
device->rs_paused = 0;
|
|
|
|
/* reset start sector, if we reached end of device */
|
|
if (verify_done && device->ov_left == 0)
|
|
device->ov_start_sector = 0;
|
|
|
|
drbd_md_sync(device);
|
|
|
|
if (khelper_cmd)
|
|
drbd_khelper(device, khelper_cmd);
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* helper */
|
|
static void move_to_net_ee_or_free(struct drbd_device *device, struct drbd_peer_request *peer_req)
|
|
{
|
|
if (drbd_peer_req_has_active_page(peer_req)) {
|
|
/* This might happen if sendpage() has not finished */
|
|
int i = (peer_req->i.size + PAGE_SIZE -1) >> PAGE_SHIFT;
|
|
atomic_add(i, &device->pp_in_use_by_net);
|
|
atomic_sub(i, &device->pp_in_use);
|
|
spin_lock_irq(&device->resource->req_lock);
|
|
list_add_tail(&peer_req->w.list, &device->net_ee);
|
|
spin_unlock_irq(&device->resource->req_lock);
|
|
wake_up(&drbd_pp_wait);
|
|
} else
|
|
drbd_free_peer_req(device, peer_req);
|
|
}
|
|
|
|
/**
|
|
* w_e_end_data_req() - Worker callback, to send a P_DATA_REPLY packet in response to a P_DATA_REQUEST
|
|
* @device: DRBD device.
|
|
* @w: work object.
|
|
* @cancel: The connection will be closed anyways
|
|
*/
|
|
int w_e_end_data_req(struct drbd_work *w, int cancel)
|
|
{
|
|
struct drbd_peer_request *peer_req = container_of(w, struct drbd_peer_request, w);
|
|
struct drbd_peer_device *peer_device = peer_req->peer_device;
|
|
struct drbd_device *device = peer_device->device;
|
|
int err;
|
|
|
|
if (unlikely(cancel)) {
|
|
drbd_free_peer_req(device, peer_req);
|
|
dec_unacked(device);
|
|
return 0;
|
|
}
|
|
|
|
if (likely((peer_req->flags & EE_WAS_ERROR) == 0)) {
|
|
err = drbd_send_block(peer_device, P_DATA_REPLY, peer_req);
|
|
} else {
|
|
if (__ratelimit(&drbd_ratelimit_state))
|
|
drbd_err(device, "Sending NegDReply. sector=%llus.\n",
|
|
(unsigned long long)peer_req->i.sector);
|
|
|
|
err = drbd_send_ack(peer_device, P_NEG_DREPLY, peer_req);
|
|
}
|
|
|
|
dec_unacked(device);
|
|
|
|
move_to_net_ee_or_free(device, peer_req);
|
|
|
|
if (unlikely(err))
|
|
drbd_err(device, "drbd_send_block() failed\n");
|
|
return err;
|
|
}
|
|
|
|
/**
|
|
* w_e_end_rsdata_req() - Worker callback to send a P_RS_DATA_REPLY packet in response to a P_RS_DATA_REQUEST
|
|
* @w: work object.
|
|
* @cancel: The connection will be closed anyways
|
|
*/
|
|
int w_e_end_rsdata_req(struct drbd_work *w, int cancel)
|
|
{
|
|
struct drbd_peer_request *peer_req = container_of(w, struct drbd_peer_request, w);
|
|
struct drbd_peer_device *peer_device = peer_req->peer_device;
|
|
struct drbd_device *device = peer_device->device;
|
|
int err;
|
|
|
|
if (unlikely(cancel)) {
|
|
drbd_free_peer_req(device, peer_req);
|
|
dec_unacked(device);
|
|
return 0;
|
|
}
|
|
|
|
if (get_ldev_if_state(device, D_FAILED)) {
|
|
drbd_rs_complete_io(device, peer_req->i.sector);
|
|
put_ldev(device);
|
|
}
|
|
|
|
if (device->state.conn == C_AHEAD) {
|
|
err = drbd_send_ack(peer_device, P_RS_CANCEL, peer_req);
|
|
} else if (likely((peer_req->flags & EE_WAS_ERROR) == 0)) {
|
|
if (likely(device->state.pdsk >= D_INCONSISTENT)) {
|
|
inc_rs_pending(device);
|
|
err = drbd_send_block(peer_device, P_RS_DATA_REPLY, peer_req);
|
|
} else {
|
|
if (__ratelimit(&drbd_ratelimit_state))
|
|
drbd_err(device, "Not sending RSDataReply, "
|
|
"partner DISKLESS!\n");
|
|
err = 0;
|
|
}
|
|
} else {
|
|
if (__ratelimit(&drbd_ratelimit_state))
|
|
drbd_err(device, "Sending NegRSDReply. sector %llus.\n",
|
|
(unsigned long long)peer_req->i.sector);
|
|
|
|
err = drbd_send_ack(peer_device, P_NEG_RS_DREPLY, peer_req);
|
|
|
|
/* update resync data with failure */
|
|
drbd_rs_failed_io(device, peer_req->i.sector, peer_req->i.size);
|
|
}
|
|
|
|
dec_unacked(device);
|
|
|
|
move_to_net_ee_or_free(device, peer_req);
|
|
|
|
if (unlikely(err))
|
|
drbd_err(device, "drbd_send_block() failed\n");
|
|
return err;
|
|
}
|
|
|
|
int w_e_end_csum_rs_req(struct drbd_work *w, int cancel)
|
|
{
|
|
struct drbd_peer_request *peer_req = container_of(w, struct drbd_peer_request, w);
|
|
struct drbd_peer_device *peer_device = peer_req->peer_device;
|
|
struct drbd_device *device = peer_device->device;
|
|
struct digest_info *di;
|
|
int digest_size;
|
|
void *digest = NULL;
|
|
int err, eq = 0;
|
|
|
|
if (unlikely(cancel)) {
|
|
drbd_free_peer_req(device, peer_req);
|
|
dec_unacked(device);
|
|
return 0;
|
|
}
|
|
|
|
if (get_ldev(device)) {
|
|
drbd_rs_complete_io(device, peer_req->i.sector);
|
|
put_ldev(device);
|
|
}
|
|
|
|
di = peer_req->digest;
|
|
|
|
if (likely((peer_req->flags & EE_WAS_ERROR) == 0)) {
|
|
/* quick hack to try to avoid a race against reconfiguration.
|
|
* a real fix would be much more involved,
|
|
* introducing more locking mechanisms */
|
|
if (peer_device->connection->csums_tfm) {
|
|
digest_size = crypto_hash_digestsize(peer_device->connection->csums_tfm);
|
|
D_ASSERT(device, digest_size == di->digest_size);
|
|
digest = kmalloc(digest_size, GFP_NOIO);
|
|
}
|
|
if (digest) {
|
|
drbd_csum_ee(peer_device->connection->csums_tfm, peer_req, digest);
|
|
eq = !memcmp(digest, di->digest, digest_size);
|
|
kfree(digest);
|
|
}
|
|
|
|
if (eq) {
|
|
drbd_set_in_sync(device, peer_req->i.sector, peer_req->i.size);
|
|
/* rs_same_csums unit is BM_BLOCK_SIZE */
|
|
device->rs_same_csum += peer_req->i.size >> BM_BLOCK_SHIFT;
|
|
err = drbd_send_ack(peer_device, P_RS_IS_IN_SYNC, peer_req);
|
|
} else {
|
|
inc_rs_pending(device);
|
|
peer_req->block_id = ID_SYNCER; /* By setting block_id, digest pointer becomes invalid! */
|
|
peer_req->flags &= ~EE_HAS_DIGEST; /* This peer request no longer has a digest pointer */
|
|
kfree(di);
|
|
err = drbd_send_block(peer_device, P_RS_DATA_REPLY, peer_req);
|
|
}
|
|
} else {
|
|
err = drbd_send_ack(peer_device, P_NEG_RS_DREPLY, peer_req);
|
|
if (__ratelimit(&drbd_ratelimit_state))
|
|
drbd_err(device, "Sending NegDReply. I guess it gets messy.\n");
|
|
}
|
|
|
|
dec_unacked(device);
|
|
move_to_net_ee_or_free(device, peer_req);
|
|
|
|
if (unlikely(err))
|
|
drbd_err(device, "drbd_send_block/ack() failed\n");
|
|
return err;
|
|
}
|
|
|
|
int w_e_end_ov_req(struct drbd_work *w, int cancel)
|
|
{
|
|
struct drbd_peer_request *peer_req = container_of(w, struct drbd_peer_request, w);
|
|
struct drbd_peer_device *peer_device = peer_req->peer_device;
|
|
struct drbd_device *device = peer_device->device;
|
|
sector_t sector = peer_req->i.sector;
|
|
unsigned int size = peer_req->i.size;
|
|
int digest_size;
|
|
void *digest;
|
|
int err = 0;
|
|
|
|
if (unlikely(cancel))
|
|
goto out;
|
|
|
|
digest_size = crypto_hash_digestsize(peer_device->connection->verify_tfm);
|
|
digest = kmalloc(digest_size, GFP_NOIO);
|
|
if (!digest) {
|
|
err = 1; /* terminate the connection in case the allocation failed */
|
|
goto out;
|
|
}
|
|
|
|
if (likely(!(peer_req->flags & EE_WAS_ERROR)))
|
|
drbd_csum_ee(peer_device->connection->verify_tfm, peer_req, digest);
|
|
else
|
|
memset(digest, 0, digest_size);
|
|
|
|
/* Free e and pages before send.
|
|
* In case we block on congestion, we could otherwise run into
|
|
* some distributed deadlock, if the other side blocks on
|
|
* congestion as well, because our receiver blocks in
|
|
* drbd_alloc_pages due to pp_in_use > max_buffers. */
|
|
drbd_free_peer_req(device, peer_req);
|
|
peer_req = NULL;
|
|
inc_rs_pending(device);
|
|
err = drbd_send_drequest_csum(peer_device, sector, size, digest, digest_size, P_OV_REPLY);
|
|
if (err)
|
|
dec_rs_pending(device);
|
|
kfree(digest);
|
|
|
|
out:
|
|
if (peer_req)
|
|
drbd_free_peer_req(device, peer_req);
|
|
dec_unacked(device);
|
|
return err;
|
|
}
|
|
|
|
void drbd_ov_out_of_sync_found(struct drbd_device *device, sector_t sector, int size)
|
|
{
|
|
if (device->ov_last_oos_start + device->ov_last_oos_size == sector) {
|
|
device->ov_last_oos_size += size>>9;
|
|
} else {
|
|
device->ov_last_oos_start = sector;
|
|
device->ov_last_oos_size = size>>9;
|
|
}
|
|
drbd_set_out_of_sync(device, sector, size);
|
|
}
|
|
|
|
int w_e_end_ov_reply(struct drbd_work *w, int cancel)
|
|
{
|
|
struct drbd_peer_request *peer_req = container_of(w, struct drbd_peer_request, w);
|
|
struct drbd_peer_device *peer_device = peer_req->peer_device;
|
|
struct drbd_device *device = peer_device->device;
|
|
struct digest_info *di;
|
|
void *digest;
|
|
sector_t sector = peer_req->i.sector;
|
|
unsigned int size = peer_req->i.size;
|
|
int digest_size;
|
|
int err, eq = 0;
|
|
bool stop_sector_reached = false;
|
|
|
|
if (unlikely(cancel)) {
|
|
drbd_free_peer_req(device, peer_req);
|
|
dec_unacked(device);
|
|
return 0;
|
|
}
|
|
|
|
/* after "cancel", because after drbd_disconnect/drbd_rs_cancel_all
|
|
* the resync lru has been cleaned up already */
|
|
if (get_ldev(device)) {
|
|
drbd_rs_complete_io(device, peer_req->i.sector);
|
|
put_ldev(device);
|
|
}
|
|
|
|
di = peer_req->digest;
|
|
|
|
if (likely((peer_req->flags & EE_WAS_ERROR) == 0)) {
|
|
digest_size = crypto_hash_digestsize(peer_device->connection->verify_tfm);
|
|
digest = kmalloc(digest_size, GFP_NOIO);
|
|
if (digest) {
|
|
drbd_csum_ee(peer_device->connection->verify_tfm, peer_req, digest);
|
|
|
|
D_ASSERT(device, digest_size == di->digest_size);
|
|
eq = !memcmp(digest, di->digest, digest_size);
|
|
kfree(digest);
|
|
}
|
|
}
|
|
|
|
/* Free peer_req and pages before send.
|
|
* In case we block on congestion, we could otherwise run into
|
|
* some distributed deadlock, if the other side blocks on
|
|
* congestion as well, because our receiver blocks in
|
|
* drbd_alloc_pages due to pp_in_use > max_buffers. */
|
|
drbd_free_peer_req(device, peer_req);
|
|
if (!eq)
|
|
drbd_ov_out_of_sync_found(device, sector, size);
|
|
else
|
|
ov_out_of_sync_print(device);
|
|
|
|
err = drbd_send_ack_ex(peer_device, P_OV_RESULT, sector, size,
|
|
eq ? ID_IN_SYNC : ID_OUT_OF_SYNC);
|
|
|
|
dec_unacked(device);
|
|
|
|
--device->ov_left;
|
|
|
|
/* let's advance progress step marks only for every other megabyte */
|
|
if ((device->ov_left & 0x200) == 0x200)
|
|
drbd_advance_rs_marks(device, device->ov_left);
|
|
|
|
stop_sector_reached = verify_can_do_stop_sector(device) &&
|
|
(sector + (size>>9)) >= device->ov_stop_sector;
|
|
|
|
if (device->ov_left == 0 || stop_sector_reached) {
|
|
ov_out_of_sync_print(device);
|
|
drbd_resync_finished(device);
|
|
}
|
|
|
|
return err;
|
|
}
|
|
|
|
/* FIXME
|
|
* We need to track the number of pending barrier acks,
|
|
* and to be able to wait for them.
|
|
* See also comment in drbd_adm_attach before drbd_suspend_io.
|
|
*/
|
|
static int drbd_send_barrier(struct drbd_connection *connection)
|
|
{
|
|
struct p_barrier *p;
|
|
struct drbd_socket *sock;
|
|
|
|
sock = &connection->data;
|
|
p = conn_prepare_command(connection, sock);
|
|
if (!p)
|
|
return -EIO;
|
|
p->barrier = connection->send.current_epoch_nr;
|
|
p->pad = 0;
|
|
connection->send.current_epoch_writes = 0;
|
|
|
|
return conn_send_command(connection, sock, P_BARRIER, sizeof(*p), NULL, 0);
|
|
}
|
|
|
|
int w_send_write_hint(struct drbd_work *w, int cancel)
|
|
{
|
|
struct drbd_device *device =
|
|
container_of(w, struct drbd_device, unplug_work);
|
|
struct drbd_socket *sock;
|
|
|
|
if (cancel)
|
|
return 0;
|
|
sock = &first_peer_device(device)->connection->data;
|
|
if (!drbd_prepare_command(first_peer_device(device), sock))
|
|
return -EIO;
|
|
return drbd_send_command(first_peer_device(device), sock, P_UNPLUG_REMOTE, 0, NULL, 0);
|
|
}
|
|
|
|
static void re_init_if_first_write(struct drbd_connection *connection, unsigned int epoch)
|
|
{
|
|
if (!connection->send.seen_any_write_yet) {
|
|
connection->send.seen_any_write_yet = true;
|
|
connection->send.current_epoch_nr = epoch;
|
|
connection->send.current_epoch_writes = 0;
|
|
}
|
|
}
|
|
|
|
static void maybe_send_barrier(struct drbd_connection *connection, unsigned int epoch)
|
|
{
|
|
/* re-init if first write on this connection */
|
|
if (!connection->send.seen_any_write_yet)
|
|
return;
|
|
if (connection->send.current_epoch_nr != epoch) {
|
|
if (connection->send.current_epoch_writes)
|
|
drbd_send_barrier(connection);
|
|
connection->send.current_epoch_nr = epoch;
|
|
}
|
|
}
|
|
|
|
int w_send_out_of_sync(struct drbd_work *w, int cancel)
|
|
{
|
|
struct drbd_request *req = container_of(w, struct drbd_request, w);
|
|
struct drbd_device *device = req->device;
|
|
struct drbd_peer_device *const peer_device = first_peer_device(device);
|
|
struct drbd_connection *const connection = peer_device->connection;
|
|
int err;
|
|
|
|
if (unlikely(cancel)) {
|
|
req_mod(req, SEND_CANCELED);
|
|
return 0;
|
|
}
|
|
req->pre_send_jif = jiffies;
|
|
|
|
/* this time, no connection->send.current_epoch_writes++;
|
|
* If it was sent, it was the closing barrier for the last
|
|
* replicated epoch, before we went into AHEAD mode.
|
|
* No more barriers will be sent, until we leave AHEAD mode again. */
|
|
maybe_send_barrier(connection, req->epoch);
|
|
|
|
err = drbd_send_out_of_sync(peer_device, req);
|
|
req_mod(req, OOS_HANDED_TO_NETWORK);
|
|
|
|
return err;
|
|
}
|
|
|
|
/**
|
|
* w_send_dblock() - Worker callback to send a P_DATA packet in order to mirror a write request
|
|
* @w: work object.
|
|
* @cancel: The connection will be closed anyways
|
|
*/
|
|
int w_send_dblock(struct drbd_work *w, int cancel)
|
|
{
|
|
struct drbd_request *req = container_of(w, struct drbd_request, w);
|
|
struct drbd_device *device = req->device;
|
|
struct drbd_peer_device *const peer_device = first_peer_device(device);
|
|
struct drbd_connection *connection = peer_device->connection;
|
|
int err;
|
|
|
|
if (unlikely(cancel)) {
|
|
req_mod(req, SEND_CANCELED);
|
|
return 0;
|
|
}
|
|
req->pre_send_jif = jiffies;
|
|
|
|
re_init_if_first_write(connection, req->epoch);
|
|
maybe_send_barrier(connection, req->epoch);
|
|
connection->send.current_epoch_writes++;
|
|
|
|
err = drbd_send_dblock(peer_device, req);
|
|
req_mod(req, err ? SEND_FAILED : HANDED_OVER_TO_NETWORK);
|
|
|
|
return err;
|
|
}
|
|
|
|
/**
|
|
* w_send_read_req() - Worker callback to send a read request (P_DATA_REQUEST) packet
|
|
* @w: work object.
|
|
* @cancel: The connection will be closed anyways
|
|
*/
|
|
int w_send_read_req(struct drbd_work *w, int cancel)
|
|
{
|
|
struct drbd_request *req = container_of(w, struct drbd_request, w);
|
|
struct drbd_device *device = req->device;
|
|
struct drbd_peer_device *const peer_device = first_peer_device(device);
|
|
struct drbd_connection *connection = peer_device->connection;
|
|
int err;
|
|
|
|
if (unlikely(cancel)) {
|
|
req_mod(req, SEND_CANCELED);
|
|
return 0;
|
|
}
|
|
req->pre_send_jif = jiffies;
|
|
|
|
/* Even read requests may close a write epoch,
|
|
* if there was any yet. */
|
|
maybe_send_barrier(connection, req->epoch);
|
|
|
|
err = drbd_send_drequest(peer_device, P_DATA_REQUEST, req->i.sector, req->i.size,
|
|
(unsigned long)req);
|
|
|
|
req_mod(req, err ? SEND_FAILED : HANDED_OVER_TO_NETWORK);
|
|
|
|
return err;
|
|
}
|
|
|
|
int w_restart_disk_io(struct drbd_work *w, int cancel)
|
|
{
|
|
struct drbd_request *req = container_of(w, struct drbd_request, w);
|
|
struct drbd_device *device = req->device;
|
|
|
|
if (bio_data_dir(req->master_bio) == WRITE && req->rq_state & RQ_IN_ACT_LOG)
|
|
drbd_al_begin_io(device, &req->i);
|
|
|
|
drbd_req_make_private_bio(req, req->master_bio);
|
|
req->private_bio->bi_bdev = device->ldev->backing_bdev;
|
|
generic_make_request(req->private_bio);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int _drbd_may_sync_now(struct drbd_device *device)
|
|
{
|
|
struct drbd_device *odev = device;
|
|
int resync_after;
|
|
|
|
while (1) {
|
|
if (!odev->ldev || odev->state.disk == D_DISKLESS)
|
|
return 1;
|
|
rcu_read_lock();
|
|
resync_after = rcu_dereference(odev->ldev->disk_conf)->resync_after;
|
|
rcu_read_unlock();
|
|
if (resync_after == -1)
|
|
return 1;
|
|
odev = minor_to_device(resync_after);
|
|
if (!odev)
|
|
return 1;
|
|
if ((odev->state.conn >= C_SYNC_SOURCE &&
|
|
odev->state.conn <= C_PAUSED_SYNC_T) ||
|
|
odev->state.aftr_isp || odev->state.peer_isp ||
|
|
odev->state.user_isp)
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* _drbd_pause_after() - Pause resync on all devices that may not resync now
|
|
* @device: DRBD device.
|
|
*
|
|
* Called from process context only (admin command and after_state_ch).
|
|
*/
|
|
static int _drbd_pause_after(struct drbd_device *device)
|
|
{
|
|
struct drbd_device *odev;
|
|
int i, rv = 0;
|
|
|
|
rcu_read_lock();
|
|
idr_for_each_entry(&drbd_devices, odev, i) {
|
|
if (odev->state.conn == C_STANDALONE && odev->state.disk == D_DISKLESS)
|
|
continue;
|
|
if (!_drbd_may_sync_now(odev))
|
|
rv |= (__drbd_set_state(_NS(odev, aftr_isp, 1), CS_HARD, NULL)
|
|
!= SS_NOTHING_TO_DO);
|
|
}
|
|
rcu_read_unlock();
|
|
|
|
return rv;
|
|
}
|
|
|
|
/**
|
|
* _drbd_resume_next() - Resume resync on all devices that may resync now
|
|
* @device: DRBD device.
|
|
*
|
|
* Called from process context only (admin command and worker).
|
|
*/
|
|
static int _drbd_resume_next(struct drbd_device *device)
|
|
{
|
|
struct drbd_device *odev;
|
|
int i, rv = 0;
|
|
|
|
rcu_read_lock();
|
|
idr_for_each_entry(&drbd_devices, odev, i) {
|
|
if (odev->state.conn == C_STANDALONE && odev->state.disk == D_DISKLESS)
|
|
continue;
|
|
if (odev->state.aftr_isp) {
|
|
if (_drbd_may_sync_now(odev))
|
|
rv |= (__drbd_set_state(_NS(odev, aftr_isp, 0),
|
|
CS_HARD, NULL)
|
|
!= SS_NOTHING_TO_DO) ;
|
|
}
|
|
}
|
|
rcu_read_unlock();
|
|
return rv;
|
|
}
|
|
|
|
void resume_next_sg(struct drbd_device *device)
|
|
{
|
|
write_lock_irq(&global_state_lock);
|
|
_drbd_resume_next(device);
|
|
write_unlock_irq(&global_state_lock);
|
|
}
|
|
|
|
void suspend_other_sg(struct drbd_device *device)
|
|
{
|
|
write_lock_irq(&global_state_lock);
|
|
_drbd_pause_after(device);
|
|
write_unlock_irq(&global_state_lock);
|
|
}
|
|
|
|
/* caller must hold global_state_lock */
|
|
enum drbd_ret_code drbd_resync_after_valid(struct drbd_device *device, int o_minor)
|
|
{
|
|
struct drbd_device *odev;
|
|
int resync_after;
|
|
|
|
if (o_minor == -1)
|
|
return NO_ERROR;
|
|
if (o_minor < -1 || o_minor > MINORMASK)
|
|
return ERR_RESYNC_AFTER;
|
|
|
|
/* check for loops */
|
|
odev = minor_to_device(o_minor);
|
|
while (1) {
|
|
if (odev == device)
|
|
return ERR_RESYNC_AFTER_CYCLE;
|
|
|
|
/* You are free to depend on diskless, non-existing,
|
|
* or not yet/no longer existing minors.
|
|
* We only reject dependency loops.
|
|
* We cannot follow the dependency chain beyond a detached or
|
|
* missing minor.
|
|
*/
|
|
if (!odev || !odev->ldev || odev->state.disk == D_DISKLESS)
|
|
return NO_ERROR;
|
|
|
|
rcu_read_lock();
|
|
resync_after = rcu_dereference(odev->ldev->disk_conf)->resync_after;
|
|
rcu_read_unlock();
|
|
/* dependency chain ends here, no cycles. */
|
|
if (resync_after == -1)
|
|
return NO_ERROR;
|
|
|
|
/* follow the dependency chain */
|
|
odev = minor_to_device(resync_after);
|
|
}
|
|
}
|
|
|
|
/* caller must hold global_state_lock */
|
|
void drbd_resync_after_changed(struct drbd_device *device)
|
|
{
|
|
int changes;
|
|
|
|
do {
|
|
changes = _drbd_pause_after(device);
|
|
changes |= _drbd_resume_next(device);
|
|
} while (changes);
|
|
}
|
|
|
|
void drbd_rs_controller_reset(struct drbd_device *device)
|
|
{
|
|
struct fifo_buffer *plan;
|
|
|
|
atomic_set(&device->rs_sect_in, 0);
|
|
atomic_set(&device->rs_sect_ev, 0);
|
|
device->rs_in_flight = 0;
|
|
|
|
/* Updating the RCU protected object in place is necessary since
|
|
this function gets called from atomic context.
|
|
It is valid since all other updates also lead to an completely
|
|
empty fifo */
|
|
rcu_read_lock();
|
|
plan = rcu_dereference(device->rs_plan_s);
|
|
plan->total = 0;
|
|
fifo_set(plan, 0);
|
|
rcu_read_unlock();
|
|
}
|
|
|
|
void start_resync_timer_fn(unsigned long data)
|
|
{
|
|
struct drbd_device *device = (struct drbd_device *) data;
|
|
drbd_device_post_work(device, RS_START);
|
|
}
|
|
|
|
static void do_start_resync(struct drbd_device *device)
|
|
{
|
|
if (atomic_read(&device->unacked_cnt) || atomic_read(&device->rs_pending_cnt)) {
|
|
drbd_warn(device, "postponing start_resync ...\n");
|
|
device->start_resync_timer.expires = jiffies + HZ/10;
|
|
add_timer(&device->start_resync_timer);
|
|
return;
|
|
}
|
|
|
|
drbd_start_resync(device, C_SYNC_SOURCE);
|
|
clear_bit(AHEAD_TO_SYNC_SOURCE, &device->flags);
|
|
}
|
|
|
|
static bool use_checksum_based_resync(struct drbd_connection *connection, struct drbd_device *device)
|
|
{
|
|
bool csums_after_crash_only;
|
|
rcu_read_lock();
|
|
csums_after_crash_only = rcu_dereference(connection->net_conf)->csums_after_crash_only;
|
|
rcu_read_unlock();
|
|
return connection->agreed_pro_version >= 89 && /* supported? */
|
|
connection->csums_tfm && /* configured? */
|
|
(csums_after_crash_only == 0 /* use for each resync? */
|
|
|| test_bit(CRASHED_PRIMARY, &device->flags)); /* or only after Primary crash? */
|
|
}
|
|
|
|
/**
|
|
* drbd_start_resync() - Start the resync process
|
|
* @device: DRBD device.
|
|
* @side: Either C_SYNC_SOURCE or C_SYNC_TARGET
|
|
*
|
|
* This function might bring you directly into one of the
|
|
* C_PAUSED_SYNC_* states.
|
|
*/
|
|
void drbd_start_resync(struct drbd_device *device, enum drbd_conns side)
|
|
{
|
|
struct drbd_peer_device *peer_device = first_peer_device(device);
|
|
struct drbd_connection *connection = peer_device ? peer_device->connection : NULL;
|
|
union drbd_state ns;
|
|
int r;
|
|
|
|
if (device->state.conn >= C_SYNC_SOURCE && device->state.conn < C_AHEAD) {
|
|
drbd_err(device, "Resync already running!\n");
|
|
return;
|
|
}
|
|
|
|
if (!test_bit(B_RS_H_DONE, &device->flags)) {
|
|
if (side == C_SYNC_TARGET) {
|
|
/* Since application IO was locked out during C_WF_BITMAP_T and
|
|
C_WF_SYNC_UUID we are still unmodified. Before going to C_SYNC_TARGET
|
|
we check that we might make the data inconsistent. */
|
|
r = drbd_khelper(device, "before-resync-target");
|
|
r = (r >> 8) & 0xff;
|
|
if (r > 0) {
|
|
drbd_info(device, "before-resync-target handler returned %d, "
|
|
"dropping connection.\n", r);
|
|
conn_request_state(connection, NS(conn, C_DISCONNECTING), CS_HARD);
|
|
return;
|
|
}
|
|
} else /* C_SYNC_SOURCE */ {
|
|
r = drbd_khelper(device, "before-resync-source");
|
|
r = (r >> 8) & 0xff;
|
|
if (r > 0) {
|
|
if (r == 3) {
|
|
drbd_info(device, "before-resync-source handler returned %d, "
|
|
"ignoring. Old userland tools?", r);
|
|
} else {
|
|
drbd_info(device, "before-resync-source handler returned %d, "
|
|
"dropping connection.\n", r);
|
|
conn_request_state(connection,
|
|
NS(conn, C_DISCONNECTING), CS_HARD);
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (current == connection->worker.task) {
|
|
/* The worker should not sleep waiting for state_mutex,
|
|
that can take long */
|
|
if (!mutex_trylock(device->state_mutex)) {
|
|
set_bit(B_RS_H_DONE, &device->flags);
|
|
device->start_resync_timer.expires = jiffies + HZ/5;
|
|
add_timer(&device->start_resync_timer);
|
|
return;
|
|
}
|
|
} else {
|
|
mutex_lock(device->state_mutex);
|
|
}
|
|
clear_bit(B_RS_H_DONE, &device->flags);
|
|
|
|
/* req_lock: serialize with drbd_send_and_submit() and others
|
|
* global_state_lock: for stable sync-after dependencies */
|
|
spin_lock_irq(&device->resource->req_lock);
|
|
write_lock(&global_state_lock);
|
|
/* Did some connection breakage or IO error race with us? */
|
|
if (device->state.conn < C_CONNECTED
|
|
|| !get_ldev_if_state(device, D_NEGOTIATING)) {
|
|
write_unlock(&global_state_lock);
|
|
spin_unlock_irq(&device->resource->req_lock);
|
|
mutex_unlock(device->state_mutex);
|
|
return;
|
|
}
|
|
|
|
ns = drbd_read_state(device);
|
|
|
|
ns.aftr_isp = !_drbd_may_sync_now(device);
|
|
|
|
ns.conn = side;
|
|
|
|
if (side == C_SYNC_TARGET)
|
|
ns.disk = D_INCONSISTENT;
|
|
else /* side == C_SYNC_SOURCE */
|
|
ns.pdsk = D_INCONSISTENT;
|
|
|
|
r = __drbd_set_state(device, ns, CS_VERBOSE, NULL);
|
|
ns = drbd_read_state(device);
|
|
|
|
if (ns.conn < C_CONNECTED)
|
|
r = SS_UNKNOWN_ERROR;
|
|
|
|
if (r == SS_SUCCESS) {
|
|
unsigned long tw = drbd_bm_total_weight(device);
|
|
unsigned long now = jiffies;
|
|
int i;
|
|
|
|
device->rs_failed = 0;
|
|
device->rs_paused = 0;
|
|
device->rs_same_csum = 0;
|
|
device->rs_last_events = 0;
|
|
device->rs_last_sect_ev = 0;
|
|
device->rs_total = tw;
|
|
device->rs_start = now;
|
|
for (i = 0; i < DRBD_SYNC_MARKS; i++) {
|
|
device->rs_mark_left[i] = tw;
|
|
device->rs_mark_time[i] = now;
|
|
}
|
|
_drbd_pause_after(device);
|
|
/* Forget potentially stale cached per resync extent bit-counts.
|
|
* Open coded drbd_rs_cancel_all(device), we already have IRQs
|
|
* disabled, and know the disk state is ok. */
|
|
spin_lock(&device->al_lock);
|
|
lc_reset(device->resync);
|
|
device->resync_locked = 0;
|
|
device->resync_wenr = LC_FREE;
|
|
spin_unlock(&device->al_lock);
|
|
}
|
|
write_unlock(&global_state_lock);
|
|
spin_unlock_irq(&device->resource->req_lock);
|
|
|
|
if (r == SS_SUCCESS) {
|
|
wake_up(&device->al_wait); /* for lc_reset() above */
|
|
/* reset rs_last_bcast when a resync or verify is started,
|
|
* to deal with potential jiffies wrap. */
|
|
device->rs_last_bcast = jiffies - HZ;
|
|
|
|
drbd_info(device, "Began resync as %s (will sync %lu KB [%lu bits set]).\n",
|
|
drbd_conn_str(ns.conn),
|
|
(unsigned long) device->rs_total << (BM_BLOCK_SHIFT-10),
|
|
(unsigned long) device->rs_total);
|
|
if (side == C_SYNC_TARGET) {
|
|
device->bm_resync_fo = 0;
|
|
device->use_csums = use_checksum_based_resync(connection, device);
|
|
} else {
|
|
device->use_csums = 0;
|
|
}
|
|
|
|
/* Since protocol 96, we must serialize drbd_gen_and_send_sync_uuid
|
|
* with w_send_oos, or the sync target will get confused as to
|
|
* how much bits to resync. We cannot do that always, because for an
|
|
* empty resync and protocol < 95, we need to do it here, as we call
|
|
* drbd_resync_finished from here in that case.
|
|
* We drbd_gen_and_send_sync_uuid here for protocol < 96,
|
|
* and from after_state_ch otherwise. */
|
|
if (side == C_SYNC_SOURCE && connection->agreed_pro_version < 96)
|
|
drbd_gen_and_send_sync_uuid(peer_device);
|
|
|
|
if (connection->agreed_pro_version < 95 && device->rs_total == 0) {
|
|
/* This still has a race (about when exactly the peers
|
|
* detect connection loss) that can lead to a full sync
|
|
* on next handshake. In 8.3.9 we fixed this with explicit
|
|
* resync-finished notifications, but the fix
|
|
* introduces a protocol change. Sleeping for some
|
|
* time longer than the ping interval + timeout on the
|
|
* SyncSource, to give the SyncTarget the chance to
|
|
* detect connection loss, then waiting for a ping
|
|
* response (implicit in drbd_resync_finished) reduces
|
|
* the race considerably, but does not solve it. */
|
|
if (side == C_SYNC_SOURCE) {
|
|
struct net_conf *nc;
|
|
int timeo;
|
|
|
|
rcu_read_lock();
|
|
nc = rcu_dereference(connection->net_conf);
|
|
timeo = nc->ping_int * HZ + nc->ping_timeo * HZ / 9;
|
|
rcu_read_unlock();
|
|
schedule_timeout_interruptible(timeo);
|
|
}
|
|
drbd_resync_finished(device);
|
|
}
|
|
|
|
drbd_rs_controller_reset(device);
|
|
/* ns.conn may already be != device->state.conn,
|
|
* we may have been paused in between, or become paused until
|
|
* the timer triggers.
|
|
* No matter, that is handled in resync_timer_fn() */
|
|
if (ns.conn == C_SYNC_TARGET)
|
|
mod_timer(&device->resync_timer, jiffies);
|
|
|
|
drbd_md_sync(device);
|
|
}
|
|
put_ldev(device);
|
|
mutex_unlock(device->state_mutex);
|
|
}
|
|
|
|
static void update_on_disk_bitmap(struct drbd_device *device, bool resync_done)
|
|
{
|
|
struct sib_info sib = { .sib_reason = SIB_SYNC_PROGRESS, };
|
|
device->rs_last_bcast = jiffies;
|
|
|
|
if (!get_ldev(device))
|
|
return;
|
|
|
|
drbd_bm_write_lazy(device, 0);
|
|
if (resync_done && is_sync_state(device->state.conn))
|
|
drbd_resync_finished(device);
|
|
|
|
drbd_bcast_event(device, &sib);
|
|
/* update timestamp, in case it took a while to write out stuff */
|
|
device->rs_last_bcast = jiffies;
|
|
put_ldev(device);
|
|
}
|
|
|
|
static void drbd_ldev_destroy(struct drbd_device *device)
|
|
{
|
|
lc_destroy(device->resync);
|
|
device->resync = NULL;
|
|
lc_destroy(device->act_log);
|
|
device->act_log = NULL;
|
|
|
|
__acquire(local);
|
|
drbd_free_ldev(device->ldev);
|
|
device->ldev = NULL;
|
|
__release(local);
|
|
|
|
clear_bit(GOING_DISKLESS, &device->flags);
|
|
wake_up(&device->misc_wait);
|
|
}
|
|
|
|
static void go_diskless(struct drbd_device *device)
|
|
{
|
|
D_ASSERT(device, device->state.disk == D_FAILED);
|
|
/* we cannot assert local_cnt == 0 here, as get_ldev_if_state will
|
|
* inc/dec it frequently. Once we are D_DISKLESS, no one will touch
|
|
* the protected members anymore, though, so once put_ldev reaches zero
|
|
* again, it will be safe to free them. */
|
|
|
|
/* Try to write changed bitmap pages, read errors may have just
|
|
* set some bits outside the area covered by the activity log.
|
|
*
|
|
* If we have an IO error during the bitmap writeout,
|
|
* we will want a full sync next time, just in case.
|
|
* (Do we want a specific meta data flag for this?)
|
|
*
|
|
* If that does not make it to stable storage either,
|
|
* we cannot do anything about that anymore.
|
|
*
|
|
* We still need to check if both bitmap and ldev are present, we may
|
|
* end up here after a failed attach, before ldev was even assigned.
|
|
*/
|
|
if (device->bitmap && device->ldev) {
|
|
/* An interrupted resync or similar is allowed to recounts bits
|
|
* while we detach.
|
|
* Any modifications would not be expected anymore, though.
|
|
*/
|
|
if (drbd_bitmap_io_from_worker(device, drbd_bm_write,
|
|
"detach", BM_LOCKED_TEST_ALLOWED)) {
|
|
if (test_bit(WAS_READ_ERROR, &device->flags)) {
|
|
drbd_md_set_flag(device, MDF_FULL_SYNC);
|
|
drbd_md_sync(device);
|
|
}
|
|
}
|
|
}
|
|
|
|
drbd_force_state(device, NS(disk, D_DISKLESS));
|
|
}
|
|
|
|
static int do_md_sync(struct drbd_device *device)
|
|
{
|
|
drbd_warn(device, "md_sync_timer expired! Worker calls drbd_md_sync().\n");
|
|
drbd_md_sync(device);
|
|
return 0;
|
|
}
|
|
|
|
/* only called from drbd_worker thread, no locking */
|
|
void __update_timing_details(
|
|
struct drbd_thread_timing_details *tdp,
|
|
unsigned int *cb_nr,
|
|
void *cb,
|
|
const char *fn, const unsigned int line)
|
|
{
|
|
unsigned int i = *cb_nr % DRBD_THREAD_DETAILS_HIST;
|
|
struct drbd_thread_timing_details *td = tdp + i;
|
|
|
|
td->start_jif = jiffies;
|
|
td->cb_addr = cb;
|
|
td->caller_fn = fn;
|
|
td->line = line;
|
|
td->cb_nr = *cb_nr;
|
|
|
|
i = (i+1) % DRBD_THREAD_DETAILS_HIST;
|
|
td = tdp + i;
|
|
memset(td, 0, sizeof(*td));
|
|
|
|
++(*cb_nr);
|
|
}
|
|
|
|
static void do_device_work(struct drbd_device *device, const unsigned long todo)
|
|
{
|
|
if (test_bit(MD_SYNC, &todo))
|
|
do_md_sync(device);
|
|
if (test_bit(RS_DONE, &todo) ||
|
|
test_bit(RS_PROGRESS, &todo))
|
|
update_on_disk_bitmap(device, test_bit(RS_DONE, &todo));
|
|
if (test_bit(GO_DISKLESS, &todo))
|
|
go_diskless(device);
|
|
if (test_bit(DESTROY_DISK, &todo))
|
|
drbd_ldev_destroy(device);
|
|
if (test_bit(RS_START, &todo))
|
|
do_start_resync(device);
|
|
}
|
|
|
|
#define DRBD_DEVICE_WORK_MASK \
|
|
((1UL << GO_DISKLESS) \
|
|
|(1UL << DESTROY_DISK) \
|
|
|(1UL << MD_SYNC) \
|
|
|(1UL << RS_START) \
|
|
|(1UL << RS_PROGRESS) \
|
|
|(1UL << RS_DONE) \
|
|
)
|
|
|
|
static unsigned long get_work_bits(unsigned long *flags)
|
|
{
|
|
unsigned long old, new;
|
|
do {
|
|
old = *flags;
|
|
new = old & ~DRBD_DEVICE_WORK_MASK;
|
|
} while (cmpxchg(flags, old, new) != old);
|
|
return old & DRBD_DEVICE_WORK_MASK;
|
|
}
|
|
|
|
static void do_unqueued_work(struct drbd_connection *connection)
|
|
{
|
|
struct drbd_peer_device *peer_device;
|
|
int vnr;
|
|
|
|
rcu_read_lock();
|
|
idr_for_each_entry(&connection->peer_devices, peer_device, vnr) {
|
|
struct drbd_device *device = peer_device->device;
|
|
unsigned long todo = get_work_bits(&device->flags);
|
|
if (!todo)
|
|
continue;
|
|
|
|
kref_get(&device->kref);
|
|
rcu_read_unlock();
|
|
do_device_work(device, todo);
|
|
kref_put(&device->kref, drbd_destroy_device);
|
|
rcu_read_lock();
|
|
}
|
|
rcu_read_unlock();
|
|
}
|
|
|
|
static bool dequeue_work_batch(struct drbd_work_queue *queue, struct list_head *work_list)
|
|
{
|
|
spin_lock_irq(&queue->q_lock);
|
|
list_splice_tail_init(&queue->q, work_list);
|
|
spin_unlock_irq(&queue->q_lock);
|
|
return !list_empty(work_list);
|
|
}
|
|
|
|
static void wait_for_work(struct drbd_connection *connection, struct list_head *work_list)
|
|
{
|
|
DEFINE_WAIT(wait);
|
|
struct net_conf *nc;
|
|
int uncork, cork;
|
|
|
|
dequeue_work_batch(&connection->sender_work, work_list);
|
|
if (!list_empty(work_list))
|
|
return;
|
|
|
|
/* Still nothing to do?
|
|
* Maybe we still need to close the current epoch,
|
|
* even if no new requests are queued yet.
|
|
*
|
|
* Also, poke TCP, just in case.
|
|
* Then wait for new work (or signal). */
|
|
rcu_read_lock();
|
|
nc = rcu_dereference(connection->net_conf);
|
|
uncork = nc ? nc->tcp_cork : 0;
|
|
rcu_read_unlock();
|
|
if (uncork) {
|
|
mutex_lock(&connection->data.mutex);
|
|
if (connection->data.socket)
|
|
drbd_tcp_uncork(connection->data.socket);
|
|
mutex_unlock(&connection->data.mutex);
|
|
}
|
|
|
|
for (;;) {
|
|
int send_barrier;
|
|
prepare_to_wait(&connection->sender_work.q_wait, &wait, TASK_INTERRUPTIBLE);
|
|
spin_lock_irq(&connection->resource->req_lock);
|
|
spin_lock(&connection->sender_work.q_lock); /* FIXME get rid of this one? */
|
|
if (!list_empty(&connection->sender_work.q))
|
|
list_splice_tail_init(&connection->sender_work.q, work_list);
|
|
spin_unlock(&connection->sender_work.q_lock); /* FIXME get rid of this one? */
|
|
if (!list_empty(work_list) || signal_pending(current)) {
|
|
spin_unlock_irq(&connection->resource->req_lock);
|
|
break;
|
|
}
|
|
|
|
/* We found nothing new to do, no to-be-communicated request,
|
|
* no other work item. We may still need to close the last
|
|
* epoch. Next incoming request epoch will be connection ->
|
|
* current transfer log epoch number. If that is different
|
|
* from the epoch of the last request we communicated, it is
|
|
* safe to send the epoch separating barrier now.
|
|
*/
|
|
send_barrier =
|
|
atomic_read(&connection->current_tle_nr) !=
|
|
connection->send.current_epoch_nr;
|
|
spin_unlock_irq(&connection->resource->req_lock);
|
|
|
|
if (send_barrier)
|
|
maybe_send_barrier(connection,
|
|
connection->send.current_epoch_nr + 1);
|
|
|
|
if (test_bit(DEVICE_WORK_PENDING, &connection->flags))
|
|
break;
|
|
|
|
/* drbd_send() may have called flush_signals() */
|
|
if (get_t_state(&connection->worker) != RUNNING)
|
|
break;
|
|
|
|
schedule();
|
|
/* may be woken up for other things but new work, too,
|
|
* e.g. if the current epoch got closed.
|
|
* In which case we send the barrier above. */
|
|
}
|
|
finish_wait(&connection->sender_work.q_wait, &wait);
|
|
|
|
/* someone may have changed the config while we have been waiting above. */
|
|
rcu_read_lock();
|
|
nc = rcu_dereference(connection->net_conf);
|
|
cork = nc ? nc->tcp_cork : 0;
|
|
rcu_read_unlock();
|
|
mutex_lock(&connection->data.mutex);
|
|
if (connection->data.socket) {
|
|
if (cork)
|
|
drbd_tcp_cork(connection->data.socket);
|
|
else if (!uncork)
|
|
drbd_tcp_uncork(connection->data.socket);
|
|
}
|
|
mutex_unlock(&connection->data.mutex);
|
|
}
|
|
|
|
int drbd_worker(struct drbd_thread *thi)
|
|
{
|
|
struct drbd_connection *connection = thi->connection;
|
|
struct drbd_work *w = NULL;
|
|
struct drbd_peer_device *peer_device;
|
|
LIST_HEAD(work_list);
|
|
int vnr;
|
|
|
|
while (get_t_state(thi) == RUNNING) {
|
|
drbd_thread_current_set_cpu(thi);
|
|
|
|
if (list_empty(&work_list)) {
|
|
update_worker_timing_details(connection, wait_for_work);
|
|
wait_for_work(connection, &work_list);
|
|
}
|
|
|
|
if (test_and_clear_bit(DEVICE_WORK_PENDING, &connection->flags)) {
|
|
update_worker_timing_details(connection, do_unqueued_work);
|
|
do_unqueued_work(connection);
|
|
}
|
|
|
|
if (signal_pending(current)) {
|
|
flush_signals(current);
|
|
if (get_t_state(thi) == RUNNING) {
|
|
drbd_warn(connection, "Worker got an unexpected signal\n");
|
|
continue;
|
|
}
|
|
break;
|
|
}
|
|
|
|
if (get_t_state(thi) != RUNNING)
|
|
break;
|
|
|
|
if (!list_empty(&work_list)) {
|
|
w = list_first_entry(&work_list, struct drbd_work, list);
|
|
list_del_init(&w->list);
|
|
update_worker_timing_details(connection, w->cb);
|
|
if (w->cb(w, connection->cstate < C_WF_REPORT_PARAMS) == 0)
|
|
continue;
|
|
if (connection->cstate >= C_WF_REPORT_PARAMS)
|
|
conn_request_state(connection, NS(conn, C_NETWORK_FAILURE), CS_HARD);
|
|
}
|
|
}
|
|
|
|
do {
|
|
if (test_and_clear_bit(DEVICE_WORK_PENDING, &connection->flags)) {
|
|
update_worker_timing_details(connection, do_unqueued_work);
|
|
do_unqueued_work(connection);
|
|
}
|
|
if (!list_empty(&work_list)) {
|
|
w = list_first_entry(&work_list, struct drbd_work, list);
|
|
list_del_init(&w->list);
|
|
update_worker_timing_details(connection, w->cb);
|
|
w->cb(w, 1);
|
|
} else
|
|
dequeue_work_batch(&connection->sender_work, &work_list);
|
|
} while (!list_empty(&work_list) || test_bit(DEVICE_WORK_PENDING, &connection->flags));
|
|
|
|
rcu_read_lock();
|
|
idr_for_each_entry(&connection->peer_devices, peer_device, vnr) {
|
|
struct drbd_device *device = peer_device->device;
|
|
D_ASSERT(device, device->state.disk == D_DISKLESS && device->state.conn == C_STANDALONE);
|
|
kref_get(&device->kref);
|
|
rcu_read_unlock();
|
|
drbd_device_cleanup(device);
|
|
kref_put(&device->kref, drbd_destroy_device);
|
|
rcu_read_lock();
|
|
}
|
|
rcu_read_unlock();
|
|
|
|
return 0;
|
|
}
|