linux/fs/affs/super.c
Paul Jackson 4b6a9316fa [PATCH] cpuset memory spread: slab cache filesystems
Mark file system inode and similar slab caches subject to SLAB_MEM_SPREAD
memory spreading.

If a slab cache is marked SLAB_MEM_SPREAD, then anytime that a task that's
in a cpuset with the 'memory_spread_slab' option enabled goes to allocate
from such a slab cache, the allocations are spread evenly over all the
memory nodes (task->mems_allowed) allowed to that task, instead of favoring
allocation on the node local to the current cpu.

The following inode and similar caches are marked SLAB_MEM_SPREAD:

    file                               cache
    ====                               =====
    fs/adfs/super.c                    adfs_inode_cache
    fs/affs/super.c                    affs_inode_cache
    fs/befs/linuxvfs.c                 befs_inode_cache
    fs/bfs/inode.c                     bfs_inode_cache
    fs/block_dev.c                     bdev_cache
    fs/cifs/cifsfs.c                   cifs_inode_cache
    fs/coda/inode.c                    coda_inode_cache
    fs/dquot.c                         dquot
    fs/efs/super.c                     efs_inode_cache
    fs/ext2/super.c                    ext2_inode_cache
    fs/ext2/xattr.c (fs/mbcache.c)     ext2_xattr
    fs/ext3/super.c                    ext3_inode_cache
    fs/ext3/xattr.c (fs/mbcache.c)     ext3_xattr
    fs/fat/cache.c                     fat_cache
    fs/fat/inode.c                     fat_inode_cache
    fs/freevxfs/vxfs_super.c           vxfs_inode
    fs/hpfs/super.c                    hpfs_inode_cache
    fs/isofs/inode.c                   isofs_inode_cache
    fs/jffs/inode-v23.c                jffs_fm
    fs/jffs2/super.c                   jffs2_i
    fs/jfs/super.c                     jfs_ip
    fs/minix/inode.c                   minix_inode_cache
    fs/ncpfs/inode.c                   ncp_inode_cache
    fs/nfs/direct.c                    nfs_direct_cache
    fs/nfs/inode.c                     nfs_inode_cache
    fs/ntfs/super.c                    ntfs_big_inode_cache_name
    fs/ntfs/super.c                    ntfs_inode_cache
    fs/ocfs2/dlm/dlmfs.c               dlmfs_inode_cache
    fs/ocfs2/super.c                   ocfs2_inode_cache
    fs/proc/inode.c                    proc_inode_cache
    fs/qnx4/inode.c                    qnx4_inode_cache
    fs/reiserfs/super.c                reiser_inode_cache
    fs/romfs/inode.c                   romfs_inode_cache
    fs/smbfs/inode.c                   smb_inode_cache
    fs/sysv/inode.c                    sysv_inode_cache
    fs/udf/super.c                     udf_inode_cache
    fs/ufs/super.c                     ufs_inode_cache
    net/socket.c                       sock_inode_cache
    net/sunrpc/rpc_pipe.c              rpc_inode_cache

The choice of which slab caches to so mark was quite simple.  I marked
those already marked SLAB_RECLAIM_ACCOUNT, except for fs/xfs, dentry_cache,
inode_cache, and buffer_head, which were marked in a previous patch.  Even
though SLAB_RECLAIM_ACCOUNT is for a different purpose, it marks the same
potentially large file system i/o related slab caches as we need for memory
spreading.

Given that the rule now becomes "wherever you would have used a
SLAB_RECLAIM_ACCOUNT slab cache flag before (usually the inode cache), use
the SLAB_MEM_SPREAD flag too", this should be easy enough to maintain.
Future file system writers will just copy one of the existing file system
slab cache setups and tend to get it right without thinking.

Signed-off-by: Paul Jackson <pj@sgi.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-03-24 07:33:23 -08:00

566 lines
14 KiB
C

/*
* linux/fs/affs/inode.c
*
* (c) 1996 Hans-Joachim Widmaier - Rewritten
*
* (C) 1993 Ray Burr - Modified for Amiga FFS filesystem.
*
* (C) 1992 Eric Youngdale Modified for ISO 9660 filesystem.
*
* (C) 1991 Linus Torvalds - minix filesystem
*/
#include <linux/module.h>
#include <linux/init.h>
#include <linux/statfs.h>
#include <linux/parser.h>
#include "affs.h"
extern struct timezone sys_tz;
static int affs_statfs(struct super_block *sb, struct kstatfs *buf);
static int affs_remount (struct super_block *sb, int *flags, char *data);
static void
affs_put_super(struct super_block *sb)
{
struct affs_sb_info *sbi = AFFS_SB(sb);
pr_debug("AFFS: put_super()\n");
if (!(sb->s_flags & MS_RDONLY)) {
AFFS_ROOT_TAIL(sb, sbi->s_root_bh)->bm_flag = cpu_to_be32(1);
secs_to_datestamp(get_seconds(),
&AFFS_ROOT_TAIL(sb, sbi->s_root_bh)->disk_change);
affs_fix_checksum(sb, sbi->s_root_bh);
mark_buffer_dirty(sbi->s_root_bh);
}
kfree(sbi->s_prefix);
affs_free_bitmap(sb);
affs_brelse(sbi->s_root_bh);
kfree(sbi);
sb->s_fs_info = NULL;
return;
}
static void
affs_write_super(struct super_block *sb)
{
int clean = 2;
struct affs_sb_info *sbi = AFFS_SB(sb);
if (!(sb->s_flags & MS_RDONLY)) {
// if (sbi->s_bitmap[i].bm_bh) {
// if (buffer_dirty(sbi->s_bitmap[i].bm_bh)) {
// clean = 0;
AFFS_ROOT_TAIL(sb, sbi->s_root_bh)->bm_flag = cpu_to_be32(clean);
secs_to_datestamp(get_seconds(),
&AFFS_ROOT_TAIL(sb, sbi->s_root_bh)->disk_change);
affs_fix_checksum(sb, sbi->s_root_bh);
mark_buffer_dirty(sbi->s_root_bh);
sb->s_dirt = !clean; /* redo until bitmap synced */
} else
sb->s_dirt = 0;
pr_debug("AFFS: write_super() at %lu, clean=%d\n", get_seconds(), clean);
}
static kmem_cache_t * affs_inode_cachep;
static struct inode *affs_alloc_inode(struct super_block *sb)
{
struct affs_inode_info *ei;
ei = (struct affs_inode_info *)kmem_cache_alloc(affs_inode_cachep, SLAB_KERNEL);
if (!ei)
return NULL;
ei->vfs_inode.i_version = 1;
return &ei->vfs_inode;
}
static void affs_destroy_inode(struct inode *inode)
{
kmem_cache_free(affs_inode_cachep, AFFS_I(inode));
}
static void init_once(void * foo, kmem_cache_t * cachep, unsigned long flags)
{
struct affs_inode_info *ei = (struct affs_inode_info *) foo;
if ((flags & (SLAB_CTOR_VERIFY|SLAB_CTOR_CONSTRUCTOR)) ==
SLAB_CTOR_CONSTRUCTOR) {
init_MUTEX(&ei->i_link_lock);
init_MUTEX(&ei->i_ext_lock);
inode_init_once(&ei->vfs_inode);
}
}
static int init_inodecache(void)
{
affs_inode_cachep = kmem_cache_create("affs_inode_cache",
sizeof(struct affs_inode_info),
0, SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD,
init_once, NULL);
if (affs_inode_cachep == NULL)
return -ENOMEM;
return 0;
}
static void destroy_inodecache(void)
{
if (kmem_cache_destroy(affs_inode_cachep))
printk(KERN_INFO "affs_inode_cache: not all structures were freed\n");
}
static struct super_operations affs_sops = {
.alloc_inode = affs_alloc_inode,
.destroy_inode = affs_destroy_inode,
.read_inode = affs_read_inode,
.write_inode = affs_write_inode,
.put_inode = affs_put_inode,
.delete_inode = affs_delete_inode,
.clear_inode = affs_clear_inode,
.put_super = affs_put_super,
.write_super = affs_write_super,
.statfs = affs_statfs,
.remount_fs = affs_remount,
};
enum {
Opt_bs, Opt_mode, Opt_mufs, Opt_prefix, Opt_protect,
Opt_reserved, Opt_root, Opt_setgid, Opt_setuid,
Opt_verbose, Opt_volume, Opt_ignore, Opt_err,
};
static match_table_t tokens = {
{Opt_bs, "bs=%u"},
{Opt_mode, "mode=%o"},
{Opt_mufs, "mufs"},
{Opt_prefix, "prefix=%s"},
{Opt_protect, "protect"},
{Opt_reserved, "reserved=%u"},
{Opt_root, "root=%u"},
{Opt_setgid, "setgid=%u"},
{Opt_setuid, "setuid=%u"},
{Opt_verbose, "verbose"},
{Opt_volume, "volume=%s"},
{Opt_ignore, "grpquota"},
{Opt_ignore, "noquota"},
{Opt_ignore, "quota"},
{Opt_ignore, "usrquota"},
{Opt_err, NULL},
};
static int
parse_options(char *options, uid_t *uid, gid_t *gid, int *mode, int *reserved, s32 *root,
int *blocksize, char **prefix, char *volume, unsigned long *mount_opts)
{
char *p;
substring_t args[MAX_OPT_ARGS];
/* Fill in defaults */
*uid = current->uid;
*gid = current->gid;
*reserved = 2;
*root = -1;
*blocksize = -1;
volume[0] = ':';
volume[1] = 0;
*mount_opts = 0;
if (!options)
return 1;
while ((p = strsep(&options, ",")) != NULL) {
int token, n, option;
if (!*p)
continue;
token = match_token(p, tokens, args);
switch (token) {
case Opt_bs:
if (match_int(&args[0], &n))
return -EINVAL;
if (n != 512 && n != 1024 && n != 2048
&& n != 4096) {
printk ("AFFS: Invalid blocksize (512, 1024, 2048, 4096 allowed)\n");
return 0;
}
*blocksize = n;
break;
case Opt_mode:
if (match_octal(&args[0], &option))
return 1;
*mode = option & 0777;
*mount_opts |= SF_SETMODE;
break;
case Opt_mufs:
*mount_opts |= SF_MUFS;
break;
case Opt_prefix:
/* Free any previous prefix */
kfree(*prefix);
*prefix = NULL;
*prefix = match_strdup(&args[0]);
if (!*prefix)
return 0;
*mount_opts |= SF_PREFIX;
break;
case Opt_protect:
*mount_opts |= SF_IMMUTABLE;
break;
case Opt_reserved:
if (match_int(&args[0], reserved))
return 1;
break;
case Opt_root:
if (match_int(&args[0], root))
return 1;
break;
case Opt_setgid:
if (match_int(&args[0], &option))
return 1;
*gid = option;
*mount_opts |= SF_SETGID;
break;
case Opt_setuid:
if (match_int(&args[0], &option))
return -EINVAL;
*uid = option;
*mount_opts |= SF_SETUID;
break;
case Opt_verbose:
*mount_opts |= SF_VERBOSE;
break;
case Opt_volume: {
char *vol = match_strdup(&args[0]);
strlcpy(volume, vol, 32);
kfree(vol);
break;
}
case Opt_ignore:
/* Silently ignore the quota options */
break;
default:
printk("AFFS: Unrecognized mount option \"%s\" "
"or missing value\n", p);
return 0;
}
}
return 1;
}
/* This function definitely needs to be split up. Some fine day I'll
* hopefully have the guts to do so. Until then: sorry for the mess.
*/
static int affs_fill_super(struct super_block *sb, void *data, int silent)
{
struct affs_sb_info *sbi;
struct buffer_head *root_bh = NULL;
struct buffer_head *boot_bh;
struct inode *root_inode = NULL;
s32 root_block;
int size, blocksize;
u32 chksum;
int num_bm;
int i, j;
s32 key;
uid_t uid;
gid_t gid;
int reserved;
unsigned long mount_flags;
int tmp_flags; /* fix remount prototype... */
pr_debug("AFFS: read_super(%s)\n",data ? (const char *)data : "no options");
sb->s_magic = AFFS_SUPER_MAGIC;
sb->s_op = &affs_sops;
sb->s_flags |= MS_NODIRATIME;
sbi = kmalloc(sizeof(struct affs_sb_info), GFP_KERNEL);
if (!sbi)
return -ENOMEM;
sb->s_fs_info = sbi;
memset(sbi, 0, sizeof(*sbi));
init_MUTEX(&sbi->s_bmlock);
if (!parse_options(data,&uid,&gid,&i,&reserved,&root_block,
&blocksize,&sbi->s_prefix,
sbi->s_volume, &mount_flags)) {
printk(KERN_ERR "AFFS: Error parsing options\n");
return -EINVAL;
}
/* N.B. after this point s_prefix must be released */
sbi->s_flags = mount_flags;
sbi->s_mode = i;
sbi->s_uid = uid;
sbi->s_gid = gid;
sbi->s_reserved= reserved;
/* Get the size of the device in 512-byte blocks.
* If we later see that the partition uses bigger
* blocks, we will have to change it.
*/
size = sb->s_bdev->bd_inode->i_size >> 9;
pr_debug("AFFS: initial blocksize=%d, #blocks=%d\n", 512, size);
affs_set_blocksize(sb, PAGE_SIZE);
/* Try to find root block. Its location depends on the block size. */
i = 512;
j = 4096;
if (blocksize > 0) {
i = j = blocksize;
size = size / (blocksize / 512);
}
for (blocksize = i, key = 0; blocksize <= j; blocksize <<= 1, size >>= 1) {
sbi->s_root_block = root_block;
if (root_block < 0)
sbi->s_root_block = (reserved + size - 1) / 2;
pr_debug("AFFS: setting blocksize to %d\n", blocksize);
affs_set_blocksize(sb, blocksize);
sbi->s_partition_size = size;
/* The root block location that was calculated above is not
* correct if the partition size is an odd number of 512-
* byte blocks, which will be rounded down to a number of
* 1024-byte blocks, and if there were an even number of
* reserved blocks. Ideally, all partition checkers should
* report the real number of blocks of the real blocksize,
* but since this just cannot be done, we have to try to
* find the root block anyways. In the above case, it is one
* block behind the calculated one. So we check this one, too.
*/
for (num_bm = 0; num_bm < 2; num_bm++) {
pr_debug("AFFS: Dev %s, trying root=%u, bs=%d, "
"size=%d, reserved=%d\n",
sb->s_id,
sbi->s_root_block + num_bm,
blocksize, size, reserved);
root_bh = affs_bread(sb, sbi->s_root_block + num_bm);
if (!root_bh)
continue;
if (!affs_checksum_block(sb, root_bh) &&
be32_to_cpu(AFFS_ROOT_HEAD(root_bh)->ptype) == T_SHORT &&
be32_to_cpu(AFFS_ROOT_TAIL(sb, root_bh)->stype) == ST_ROOT) {
sbi->s_hashsize = blocksize / 4 - 56;
sbi->s_root_block += num_bm;
key = 1;
goto got_root;
}
affs_brelse(root_bh);
root_bh = NULL;
}
}
if (!silent)
printk(KERN_ERR "AFFS: No valid root block on device %s\n",
sb->s_id);
goto out_error;
/* N.B. after this point bh must be released */
got_root:
root_block = sbi->s_root_block;
/* Find out which kind of FS we have */
boot_bh = sb_bread(sb, 0);
if (!boot_bh) {
printk(KERN_ERR "AFFS: Cannot read boot block\n");
goto out_error;
}
chksum = be32_to_cpu(*(__be32 *)boot_bh->b_data);
brelse(boot_bh);
/* Dircache filesystems are compatible with non-dircache ones
* when reading. As long as they aren't supported, writing is
* not recommended.
*/
if ((chksum == FS_DCFFS || chksum == MUFS_DCFFS || chksum == FS_DCOFS
|| chksum == MUFS_DCOFS) && !(sb->s_flags & MS_RDONLY)) {
printk(KERN_NOTICE "AFFS: Dircache FS - mounting %s read only\n",
sb->s_id);
sb->s_flags |= MS_RDONLY;
}
switch (chksum) {
case MUFS_FS:
case MUFS_INTLFFS:
case MUFS_DCFFS:
sbi->s_flags |= SF_MUFS;
/* fall thru */
case FS_INTLFFS:
case FS_DCFFS:
sbi->s_flags |= SF_INTL;
break;
case MUFS_FFS:
sbi->s_flags |= SF_MUFS;
break;
case FS_FFS:
break;
case MUFS_OFS:
sbi->s_flags |= SF_MUFS;
/* fall thru */
case FS_OFS:
sbi->s_flags |= SF_OFS;
sb->s_flags |= MS_NOEXEC;
break;
case MUFS_DCOFS:
case MUFS_INTLOFS:
sbi->s_flags |= SF_MUFS;
case FS_DCOFS:
case FS_INTLOFS:
sbi->s_flags |= SF_INTL | SF_OFS;
sb->s_flags |= MS_NOEXEC;
break;
default:
printk(KERN_ERR "AFFS: Unknown filesystem on device %s: %08X\n",
sb->s_id, chksum);
goto out_error;
}
if (mount_flags & SF_VERBOSE) {
chksum = cpu_to_be32(chksum);
printk(KERN_NOTICE "AFFS: Mounting volume \"%*s\": Type=%.3s\\%c, Blocksize=%d\n",
AFFS_ROOT_TAIL(sb, root_bh)->disk_name[0],
AFFS_ROOT_TAIL(sb, root_bh)->disk_name + 1,
(char *)&chksum,((char *)&chksum)[3] + '0',blocksize);
}
sb->s_flags |= MS_NODEV | MS_NOSUID;
sbi->s_data_blksize = sb->s_blocksize;
if (sbi->s_flags & SF_OFS)
sbi->s_data_blksize -= 24;
/* Keep super block in cache */
sbi->s_root_bh = root_bh;
/* N.B. after this point s_root_bh must be released */
tmp_flags = sb->s_flags;
if (affs_init_bitmap(sb, &tmp_flags))
goto out_error;
sb->s_flags = tmp_flags;
/* set up enough so that it can read an inode */
root_inode = iget(sb, root_block);
sb->s_root = d_alloc_root(root_inode);
if (!sb->s_root) {
printk(KERN_ERR "AFFS: Get root inode failed\n");
goto out_error;
}
sb->s_root->d_op = &affs_dentry_operations;
pr_debug("AFFS: s_flags=%lX\n",sb->s_flags);
return 0;
/*
* Begin the cascaded cleanup ...
*/
out_error:
if (root_inode)
iput(root_inode);
kfree(sbi->s_bitmap);
affs_brelse(root_bh);
kfree(sbi->s_prefix);
kfree(sbi);
sb->s_fs_info = NULL;
return -EINVAL;
}
static int
affs_remount(struct super_block *sb, int *flags, char *data)
{
struct affs_sb_info *sbi = AFFS_SB(sb);
int blocksize;
uid_t uid;
gid_t gid;
int mode;
int reserved;
int root_block;
unsigned long mount_flags;
int res = 0;
pr_debug("AFFS: remount(flags=0x%x,opts=\"%s\")\n",*flags,data);
*flags |= MS_NODIRATIME;
if (!parse_options(data,&uid,&gid,&mode,&reserved,&root_block,
&blocksize,&sbi->s_prefix,sbi->s_volume,&mount_flags))
return -EINVAL;
sbi->s_flags = mount_flags;
sbi->s_mode = mode;
sbi->s_uid = uid;
sbi->s_gid = gid;
if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
return 0;
if (*flags & MS_RDONLY) {
sb->s_dirt = 1;
while (sb->s_dirt)
affs_write_super(sb);
affs_free_bitmap(sb);
} else
res = affs_init_bitmap(sb, flags);
return res;
}
static int
affs_statfs(struct super_block *sb, struct kstatfs *buf)
{
int free;
pr_debug("AFFS: statfs() partsize=%d, reserved=%d\n",AFFS_SB(sb)->s_partition_size,
AFFS_SB(sb)->s_reserved);
free = affs_count_free_blocks(sb);
buf->f_type = AFFS_SUPER_MAGIC;
buf->f_bsize = sb->s_blocksize;
buf->f_blocks = AFFS_SB(sb)->s_partition_size - AFFS_SB(sb)->s_reserved;
buf->f_bfree = free;
buf->f_bavail = free;
return 0;
}
static struct super_block *affs_get_sb(struct file_system_type *fs_type,
int flags, const char *dev_name, void *data)
{
return get_sb_bdev(fs_type, flags, dev_name, data, affs_fill_super);
}
static struct file_system_type affs_fs_type = {
.owner = THIS_MODULE,
.name = "affs",
.get_sb = affs_get_sb,
.kill_sb = kill_block_super,
.fs_flags = FS_REQUIRES_DEV,
};
static int __init init_affs_fs(void)
{
int err = init_inodecache();
if (err)
goto out1;
err = register_filesystem(&affs_fs_type);
if (err)
goto out;
return 0;
out:
destroy_inodecache();
out1:
return err;
}
static void __exit exit_affs_fs(void)
{
unregister_filesystem(&affs_fs_type);
destroy_inodecache();
}
MODULE_DESCRIPTION("Amiga filesystem support for Linux");
MODULE_LICENSE("GPL");
module_init(init_affs_fs)
module_exit(exit_affs_fs)