forked from Minki/linux
b6ddf05ff6
We can't run PIT IRQ injection work in the interrupt context of the host timer. This would allow the user to influence the handler complexity by asking for a broadcast to a large number of VCPUs. Therefore, this work was pushed into workqueue context in 9d244caf2e. However, this prevents prioritizing the PIT injection over other task as workqueues share kernel threads. This replaces the workqueue with a kthread worker and gives that thread a name in the format "kvm-pit/<owner-process-pid>". That allows to identify and adjust the kthread priority according to the VM process parameters. Signed-off-by: Jan Kiszka <jan.kiszka@siemens.com> Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
773 lines
19 KiB
C
773 lines
19 KiB
C
/*
|
|
* 8253/8254 interval timer emulation
|
|
*
|
|
* Copyright (c) 2003-2004 Fabrice Bellard
|
|
* Copyright (c) 2006 Intel Corporation
|
|
* Copyright (c) 2007 Keir Fraser, XenSource Inc
|
|
* Copyright (c) 2008 Intel Corporation
|
|
* Copyright 2009 Red Hat, Inc. and/or its affiliates.
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
* of this software and associated documentation files (the "Software"), to deal
|
|
* in the Software without restriction, including without limitation the rights
|
|
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
* copies of the Software, and to permit persons to whom the Software is
|
|
* furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in
|
|
* all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
|
* THE SOFTWARE.
|
|
*
|
|
* Authors:
|
|
* Sheng Yang <sheng.yang@intel.com>
|
|
* Based on QEMU and Xen.
|
|
*/
|
|
|
|
#define pr_fmt(fmt) "pit: " fmt
|
|
|
|
#include <linux/kvm_host.h>
|
|
#include <linux/slab.h>
|
|
|
|
#include "irq.h"
|
|
#include "i8254.h"
|
|
|
|
#ifndef CONFIG_X86_64
|
|
#define mod_64(x, y) ((x) - (y) * div64_u64(x, y))
|
|
#else
|
|
#define mod_64(x, y) ((x) % (y))
|
|
#endif
|
|
|
|
#define RW_STATE_LSB 1
|
|
#define RW_STATE_MSB 2
|
|
#define RW_STATE_WORD0 3
|
|
#define RW_STATE_WORD1 4
|
|
|
|
/* Compute with 96 bit intermediate result: (a*b)/c */
|
|
static u64 muldiv64(u64 a, u32 b, u32 c)
|
|
{
|
|
union {
|
|
u64 ll;
|
|
struct {
|
|
u32 low, high;
|
|
} l;
|
|
} u, res;
|
|
u64 rl, rh;
|
|
|
|
u.ll = a;
|
|
rl = (u64)u.l.low * (u64)b;
|
|
rh = (u64)u.l.high * (u64)b;
|
|
rh += (rl >> 32);
|
|
res.l.high = div64_u64(rh, c);
|
|
res.l.low = div64_u64(((mod_64(rh, c) << 32) + (rl & 0xffffffff)), c);
|
|
return res.ll;
|
|
}
|
|
|
|
static void pit_set_gate(struct kvm *kvm, int channel, u32 val)
|
|
{
|
|
struct kvm_kpit_channel_state *c =
|
|
&kvm->arch.vpit->pit_state.channels[channel];
|
|
|
|
WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
|
|
|
|
switch (c->mode) {
|
|
default:
|
|
case 0:
|
|
case 4:
|
|
/* XXX: just disable/enable counting */
|
|
break;
|
|
case 1:
|
|
case 2:
|
|
case 3:
|
|
case 5:
|
|
/* Restart counting on rising edge. */
|
|
if (c->gate < val)
|
|
c->count_load_time = ktime_get();
|
|
break;
|
|
}
|
|
|
|
c->gate = val;
|
|
}
|
|
|
|
static int pit_get_gate(struct kvm *kvm, int channel)
|
|
{
|
|
WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
|
|
|
|
return kvm->arch.vpit->pit_state.channels[channel].gate;
|
|
}
|
|
|
|
static s64 __kpit_elapsed(struct kvm *kvm)
|
|
{
|
|
s64 elapsed;
|
|
ktime_t remaining;
|
|
struct kvm_kpit_state *ps = &kvm->arch.vpit->pit_state;
|
|
|
|
if (!ps->pit_timer.period)
|
|
return 0;
|
|
|
|
/*
|
|
* The Counter does not stop when it reaches zero. In
|
|
* Modes 0, 1, 4, and 5 the Counter ``wraps around'' to
|
|
* the highest count, either FFFF hex for binary counting
|
|
* or 9999 for BCD counting, and continues counting.
|
|
* Modes 2 and 3 are periodic; the Counter reloads
|
|
* itself with the initial count and continues counting
|
|
* from there.
|
|
*/
|
|
remaining = hrtimer_get_remaining(&ps->pit_timer.timer);
|
|
elapsed = ps->pit_timer.period - ktime_to_ns(remaining);
|
|
elapsed = mod_64(elapsed, ps->pit_timer.period);
|
|
|
|
return elapsed;
|
|
}
|
|
|
|
static s64 kpit_elapsed(struct kvm *kvm, struct kvm_kpit_channel_state *c,
|
|
int channel)
|
|
{
|
|
if (channel == 0)
|
|
return __kpit_elapsed(kvm);
|
|
|
|
return ktime_to_ns(ktime_sub(ktime_get(), c->count_load_time));
|
|
}
|
|
|
|
static int pit_get_count(struct kvm *kvm, int channel)
|
|
{
|
|
struct kvm_kpit_channel_state *c =
|
|
&kvm->arch.vpit->pit_state.channels[channel];
|
|
s64 d, t;
|
|
int counter;
|
|
|
|
WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
|
|
|
|
t = kpit_elapsed(kvm, c, channel);
|
|
d = muldiv64(t, KVM_PIT_FREQ, NSEC_PER_SEC);
|
|
|
|
switch (c->mode) {
|
|
case 0:
|
|
case 1:
|
|
case 4:
|
|
case 5:
|
|
counter = (c->count - d) & 0xffff;
|
|
break;
|
|
case 3:
|
|
/* XXX: may be incorrect for odd counts */
|
|
counter = c->count - (mod_64((2 * d), c->count));
|
|
break;
|
|
default:
|
|
counter = c->count - mod_64(d, c->count);
|
|
break;
|
|
}
|
|
return counter;
|
|
}
|
|
|
|
static int pit_get_out(struct kvm *kvm, int channel)
|
|
{
|
|
struct kvm_kpit_channel_state *c =
|
|
&kvm->arch.vpit->pit_state.channels[channel];
|
|
s64 d, t;
|
|
int out;
|
|
|
|
WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
|
|
|
|
t = kpit_elapsed(kvm, c, channel);
|
|
d = muldiv64(t, KVM_PIT_FREQ, NSEC_PER_SEC);
|
|
|
|
switch (c->mode) {
|
|
default:
|
|
case 0:
|
|
out = (d >= c->count);
|
|
break;
|
|
case 1:
|
|
out = (d < c->count);
|
|
break;
|
|
case 2:
|
|
out = ((mod_64(d, c->count) == 0) && (d != 0));
|
|
break;
|
|
case 3:
|
|
out = (mod_64(d, c->count) < ((c->count + 1) >> 1));
|
|
break;
|
|
case 4:
|
|
case 5:
|
|
out = (d == c->count);
|
|
break;
|
|
}
|
|
|
|
return out;
|
|
}
|
|
|
|
static void pit_latch_count(struct kvm *kvm, int channel)
|
|
{
|
|
struct kvm_kpit_channel_state *c =
|
|
&kvm->arch.vpit->pit_state.channels[channel];
|
|
|
|
WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
|
|
|
|
if (!c->count_latched) {
|
|
c->latched_count = pit_get_count(kvm, channel);
|
|
c->count_latched = c->rw_mode;
|
|
}
|
|
}
|
|
|
|
static void pit_latch_status(struct kvm *kvm, int channel)
|
|
{
|
|
struct kvm_kpit_channel_state *c =
|
|
&kvm->arch.vpit->pit_state.channels[channel];
|
|
|
|
WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
|
|
|
|
if (!c->status_latched) {
|
|
/* TODO: Return NULL COUNT (bit 6). */
|
|
c->status = ((pit_get_out(kvm, channel) << 7) |
|
|
(c->rw_mode << 4) |
|
|
(c->mode << 1) |
|
|
c->bcd);
|
|
c->status_latched = 1;
|
|
}
|
|
}
|
|
|
|
static void kvm_pit_ack_irq(struct kvm_irq_ack_notifier *kian)
|
|
{
|
|
struct kvm_kpit_state *ps = container_of(kian, struct kvm_kpit_state,
|
|
irq_ack_notifier);
|
|
int value;
|
|
|
|
spin_lock(&ps->inject_lock);
|
|
value = atomic_dec_return(&ps->pit_timer.pending);
|
|
if (value < 0)
|
|
/* spurious acks can be generated if, for example, the
|
|
* PIC is being reset. Handle it gracefully here
|
|
*/
|
|
atomic_inc(&ps->pit_timer.pending);
|
|
else if (value > 0)
|
|
/* in this case, we had multiple outstanding pit interrupts
|
|
* that we needed to inject. Reinject
|
|
*/
|
|
queue_kthread_work(&ps->pit->worker, &ps->pit->expired);
|
|
ps->irq_ack = 1;
|
|
spin_unlock(&ps->inject_lock);
|
|
}
|
|
|
|
void __kvm_migrate_pit_timer(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct kvm_pit *pit = vcpu->kvm->arch.vpit;
|
|
struct hrtimer *timer;
|
|
|
|
if (!kvm_vcpu_is_bsp(vcpu) || !pit)
|
|
return;
|
|
|
|
timer = &pit->pit_state.pit_timer.timer;
|
|
if (hrtimer_cancel(timer))
|
|
hrtimer_start_expires(timer, HRTIMER_MODE_ABS);
|
|
}
|
|
|
|
static void destroy_pit_timer(struct kvm_pit *pit)
|
|
{
|
|
hrtimer_cancel(&pit->pit_state.pit_timer.timer);
|
|
flush_kthread_work(&pit->expired);
|
|
}
|
|
|
|
static bool kpit_is_periodic(struct kvm_timer *ktimer)
|
|
{
|
|
struct kvm_kpit_state *ps = container_of(ktimer, struct kvm_kpit_state,
|
|
pit_timer);
|
|
return ps->is_periodic;
|
|
}
|
|
|
|
static struct kvm_timer_ops kpit_ops = {
|
|
.is_periodic = kpit_is_periodic,
|
|
};
|
|
|
|
static void pit_do_work(struct kthread_work *work)
|
|
{
|
|
struct kvm_pit *pit = container_of(work, struct kvm_pit, expired);
|
|
struct kvm *kvm = pit->kvm;
|
|
struct kvm_vcpu *vcpu;
|
|
int i;
|
|
struct kvm_kpit_state *ps = &pit->pit_state;
|
|
int inject = 0;
|
|
|
|
/* Try to inject pending interrupts when
|
|
* last one has been acked.
|
|
*/
|
|
spin_lock(&ps->inject_lock);
|
|
if (ps->irq_ack) {
|
|
ps->irq_ack = 0;
|
|
inject = 1;
|
|
}
|
|
spin_unlock(&ps->inject_lock);
|
|
if (inject) {
|
|
kvm_set_irq(kvm, kvm->arch.vpit->irq_source_id, 0, 1);
|
|
kvm_set_irq(kvm, kvm->arch.vpit->irq_source_id, 0, 0);
|
|
|
|
/*
|
|
* Provides NMI watchdog support via Virtual Wire mode.
|
|
* The route is: PIT -> PIC -> LVT0 in NMI mode.
|
|
*
|
|
* Note: Our Virtual Wire implementation is simplified, only
|
|
* propagating PIT interrupts to all VCPUs when they have set
|
|
* LVT0 to NMI delivery. Other PIC interrupts are just sent to
|
|
* VCPU0, and only if its LVT0 is in EXTINT mode.
|
|
*/
|
|
if (kvm->arch.vapics_in_nmi_mode > 0)
|
|
kvm_for_each_vcpu(i, vcpu, kvm)
|
|
kvm_apic_nmi_wd_deliver(vcpu);
|
|
}
|
|
}
|
|
|
|
static enum hrtimer_restart pit_timer_fn(struct hrtimer *data)
|
|
{
|
|
struct kvm_timer *ktimer = container_of(data, struct kvm_timer, timer);
|
|
struct kvm_pit *pt = ktimer->kvm->arch.vpit;
|
|
|
|
if (ktimer->reinject || !atomic_read(&ktimer->pending)) {
|
|
atomic_inc(&ktimer->pending);
|
|
queue_kthread_work(&pt->worker, &pt->expired);
|
|
}
|
|
|
|
if (ktimer->t_ops->is_periodic(ktimer)) {
|
|
hrtimer_add_expires_ns(&ktimer->timer, ktimer->period);
|
|
return HRTIMER_RESTART;
|
|
} else
|
|
return HRTIMER_NORESTART;
|
|
}
|
|
|
|
static void create_pit_timer(struct kvm *kvm, u32 val, int is_period)
|
|
{
|
|
struct kvm_kpit_state *ps = &kvm->arch.vpit->pit_state;
|
|
struct kvm_timer *pt = &ps->pit_timer;
|
|
s64 interval;
|
|
|
|
if (!irqchip_in_kernel(kvm) || ps->flags & KVM_PIT_FLAGS_HPET_LEGACY)
|
|
return;
|
|
|
|
interval = muldiv64(val, NSEC_PER_SEC, KVM_PIT_FREQ);
|
|
|
|
pr_debug("create pit timer, interval is %llu nsec\n", interval);
|
|
|
|
/* TODO The new value only affected after the retriggered */
|
|
hrtimer_cancel(&pt->timer);
|
|
flush_kthread_work(&ps->pit->expired);
|
|
pt->period = interval;
|
|
ps->is_periodic = is_period;
|
|
|
|
pt->timer.function = pit_timer_fn;
|
|
pt->t_ops = &kpit_ops;
|
|
pt->kvm = ps->pit->kvm;
|
|
|
|
atomic_set(&pt->pending, 0);
|
|
ps->irq_ack = 1;
|
|
|
|
hrtimer_start(&pt->timer, ktime_add_ns(ktime_get(), interval),
|
|
HRTIMER_MODE_ABS);
|
|
}
|
|
|
|
static void pit_load_count(struct kvm *kvm, int channel, u32 val)
|
|
{
|
|
struct kvm_kpit_state *ps = &kvm->arch.vpit->pit_state;
|
|
|
|
WARN_ON(!mutex_is_locked(&ps->lock));
|
|
|
|
pr_debug("load_count val is %d, channel is %d\n", val, channel);
|
|
|
|
/*
|
|
* The largest possible initial count is 0; this is equivalent
|
|
* to 216 for binary counting and 104 for BCD counting.
|
|
*/
|
|
if (val == 0)
|
|
val = 0x10000;
|
|
|
|
ps->channels[channel].count = val;
|
|
|
|
if (channel != 0) {
|
|
ps->channels[channel].count_load_time = ktime_get();
|
|
return;
|
|
}
|
|
|
|
/* Two types of timer
|
|
* mode 1 is one shot, mode 2 is period, otherwise del timer */
|
|
switch (ps->channels[0].mode) {
|
|
case 0:
|
|
case 1:
|
|
/* FIXME: enhance mode 4 precision */
|
|
case 4:
|
|
create_pit_timer(kvm, val, 0);
|
|
break;
|
|
case 2:
|
|
case 3:
|
|
create_pit_timer(kvm, val, 1);
|
|
break;
|
|
default:
|
|
destroy_pit_timer(kvm->arch.vpit);
|
|
}
|
|
}
|
|
|
|
void kvm_pit_load_count(struct kvm *kvm, int channel, u32 val, int hpet_legacy_start)
|
|
{
|
|
u8 saved_mode;
|
|
if (hpet_legacy_start) {
|
|
/* save existing mode for later reenablement */
|
|
saved_mode = kvm->arch.vpit->pit_state.channels[0].mode;
|
|
kvm->arch.vpit->pit_state.channels[0].mode = 0xff; /* disable timer */
|
|
pit_load_count(kvm, channel, val);
|
|
kvm->arch.vpit->pit_state.channels[0].mode = saved_mode;
|
|
} else {
|
|
pit_load_count(kvm, channel, val);
|
|
}
|
|
}
|
|
|
|
static inline struct kvm_pit *dev_to_pit(struct kvm_io_device *dev)
|
|
{
|
|
return container_of(dev, struct kvm_pit, dev);
|
|
}
|
|
|
|
static inline struct kvm_pit *speaker_to_pit(struct kvm_io_device *dev)
|
|
{
|
|
return container_of(dev, struct kvm_pit, speaker_dev);
|
|
}
|
|
|
|
static inline int pit_in_range(gpa_t addr)
|
|
{
|
|
return ((addr >= KVM_PIT_BASE_ADDRESS) &&
|
|
(addr < KVM_PIT_BASE_ADDRESS + KVM_PIT_MEM_LENGTH));
|
|
}
|
|
|
|
static int pit_ioport_write(struct kvm_io_device *this,
|
|
gpa_t addr, int len, const void *data)
|
|
{
|
|
struct kvm_pit *pit = dev_to_pit(this);
|
|
struct kvm_kpit_state *pit_state = &pit->pit_state;
|
|
struct kvm *kvm = pit->kvm;
|
|
int channel, access;
|
|
struct kvm_kpit_channel_state *s;
|
|
u32 val = *(u32 *) data;
|
|
if (!pit_in_range(addr))
|
|
return -EOPNOTSUPP;
|
|
|
|
val &= 0xff;
|
|
addr &= KVM_PIT_CHANNEL_MASK;
|
|
|
|
mutex_lock(&pit_state->lock);
|
|
|
|
if (val != 0)
|
|
pr_debug("write addr is 0x%x, len is %d, val is 0x%x\n",
|
|
(unsigned int)addr, len, val);
|
|
|
|
if (addr == 3) {
|
|
channel = val >> 6;
|
|
if (channel == 3) {
|
|
/* Read-Back Command. */
|
|
for (channel = 0; channel < 3; channel++) {
|
|
s = &pit_state->channels[channel];
|
|
if (val & (2 << channel)) {
|
|
if (!(val & 0x20))
|
|
pit_latch_count(kvm, channel);
|
|
if (!(val & 0x10))
|
|
pit_latch_status(kvm, channel);
|
|
}
|
|
}
|
|
} else {
|
|
/* Select Counter <channel>. */
|
|
s = &pit_state->channels[channel];
|
|
access = (val >> 4) & KVM_PIT_CHANNEL_MASK;
|
|
if (access == 0) {
|
|
pit_latch_count(kvm, channel);
|
|
} else {
|
|
s->rw_mode = access;
|
|
s->read_state = access;
|
|
s->write_state = access;
|
|
s->mode = (val >> 1) & 7;
|
|
if (s->mode > 5)
|
|
s->mode -= 4;
|
|
s->bcd = val & 1;
|
|
}
|
|
}
|
|
} else {
|
|
/* Write Count. */
|
|
s = &pit_state->channels[addr];
|
|
switch (s->write_state) {
|
|
default:
|
|
case RW_STATE_LSB:
|
|
pit_load_count(kvm, addr, val);
|
|
break;
|
|
case RW_STATE_MSB:
|
|
pit_load_count(kvm, addr, val << 8);
|
|
break;
|
|
case RW_STATE_WORD0:
|
|
s->write_latch = val;
|
|
s->write_state = RW_STATE_WORD1;
|
|
break;
|
|
case RW_STATE_WORD1:
|
|
pit_load_count(kvm, addr, s->write_latch | (val << 8));
|
|
s->write_state = RW_STATE_WORD0;
|
|
break;
|
|
}
|
|
}
|
|
|
|
mutex_unlock(&pit_state->lock);
|
|
return 0;
|
|
}
|
|
|
|
static int pit_ioport_read(struct kvm_io_device *this,
|
|
gpa_t addr, int len, void *data)
|
|
{
|
|
struct kvm_pit *pit = dev_to_pit(this);
|
|
struct kvm_kpit_state *pit_state = &pit->pit_state;
|
|
struct kvm *kvm = pit->kvm;
|
|
int ret, count;
|
|
struct kvm_kpit_channel_state *s;
|
|
if (!pit_in_range(addr))
|
|
return -EOPNOTSUPP;
|
|
|
|
addr &= KVM_PIT_CHANNEL_MASK;
|
|
if (addr == 3)
|
|
return 0;
|
|
|
|
s = &pit_state->channels[addr];
|
|
|
|
mutex_lock(&pit_state->lock);
|
|
|
|
if (s->status_latched) {
|
|
s->status_latched = 0;
|
|
ret = s->status;
|
|
} else if (s->count_latched) {
|
|
switch (s->count_latched) {
|
|
default:
|
|
case RW_STATE_LSB:
|
|
ret = s->latched_count & 0xff;
|
|
s->count_latched = 0;
|
|
break;
|
|
case RW_STATE_MSB:
|
|
ret = s->latched_count >> 8;
|
|
s->count_latched = 0;
|
|
break;
|
|
case RW_STATE_WORD0:
|
|
ret = s->latched_count & 0xff;
|
|
s->count_latched = RW_STATE_MSB;
|
|
break;
|
|
}
|
|
} else {
|
|
switch (s->read_state) {
|
|
default:
|
|
case RW_STATE_LSB:
|
|
count = pit_get_count(kvm, addr);
|
|
ret = count & 0xff;
|
|
break;
|
|
case RW_STATE_MSB:
|
|
count = pit_get_count(kvm, addr);
|
|
ret = (count >> 8) & 0xff;
|
|
break;
|
|
case RW_STATE_WORD0:
|
|
count = pit_get_count(kvm, addr);
|
|
ret = count & 0xff;
|
|
s->read_state = RW_STATE_WORD1;
|
|
break;
|
|
case RW_STATE_WORD1:
|
|
count = pit_get_count(kvm, addr);
|
|
ret = (count >> 8) & 0xff;
|
|
s->read_state = RW_STATE_WORD0;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (len > sizeof(ret))
|
|
len = sizeof(ret);
|
|
memcpy(data, (char *)&ret, len);
|
|
|
|
mutex_unlock(&pit_state->lock);
|
|
return 0;
|
|
}
|
|
|
|
static int speaker_ioport_write(struct kvm_io_device *this,
|
|
gpa_t addr, int len, const void *data)
|
|
{
|
|
struct kvm_pit *pit = speaker_to_pit(this);
|
|
struct kvm_kpit_state *pit_state = &pit->pit_state;
|
|
struct kvm *kvm = pit->kvm;
|
|
u32 val = *(u32 *) data;
|
|
if (addr != KVM_SPEAKER_BASE_ADDRESS)
|
|
return -EOPNOTSUPP;
|
|
|
|
mutex_lock(&pit_state->lock);
|
|
pit_state->speaker_data_on = (val >> 1) & 1;
|
|
pit_set_gate(kvm, 2, val & 1);
|
|
mutex_unlock(&pit_state->lock);
|
|
return 0;
|
|
}
|
|
|
|
static int speaker_ioport_read(struct kvm_io_device *this,
|
|
gpa_t addr, int len, void *data)
|
|
{
|
|
struct kvm_pit *pit = speaker_to_pit(this);
|
|
struct kvm_kpit_state *pit_state = &pit->pit_state;
|
|
struct kvm *kvm = pit->kvm;
|
|
unsigned int refresh_clock;
|
|
int ret;
|
|
if (addr != KVM_SPEAKER_BASE_ADDRESS)
|
|
return -EOPNOTSUPP;
|
|
|
|
/* Refresh clock toggles at about 15us. We approximate as 2^14ns. */
|
|
refresh_clock = ((unsigned int)ktime_to_ns(ktime_get()) >> 14) & 1;
|
|
|
|
mutex_lock(&pit_state->lock);
|
|
ret = ((pit_state->speaker_data_on << 1) | pit_get_gate(kvm, 2) |
|
|
(pit_get_out(kvm, 2) << 5) | (refresh_clock << 4));
|
|
if (len > sizeof(ret))
|
|
len = sizeof(ret);
|
|
memcpy(data, (char *)&ret, len);
|
|
mutex_unlock(&pit_state->lock);
|
|
return 0;
|
|
}
|
|
|
|
void kvm_pit_reset(struct kvm_pit *pit)
|
|
{
|
|
int i;
|
|
struct kvm_kpit_channel_state *c;
|
|
|
|
mutex_lock(&pit->pit_state.lock);
|
|
pit->pit_state.flags = 0;
|
|
for (i = 0; i < 3; i++) {
|
|
c = &pit->pit_state.channels[i];
|
|
c->mode = 0xff;
|
|
c->gate = (i != 2);
|
|
pit_load_count(pit->kvm, i, 0);
|
|
}
|
|
mutex_unlock(&pit->pit_state.lock);
|
|
|
|
atomic_set(&pit->pit_state.pit_timer.pending, 0);
|
|
pit->pit_state.irq_ack = 1;
|
|
}
|
|
|
|
static void pit_mask_notifer(struct kvm_irq_mask_notifier *kimn, bool mask)
|
|
{
|
|
struct kvm_pit *pit = container_of(kimn, struct kvm_pit, mask_notifier);
|
|
|
|
if (!mask) {
|
|
atomic_set(&pit->pit_state.pit_timer.pending, 0);
|
|
pit->pit_state.irq_ack = 1;
|
|
}
|
|
}
|
|
|
|
static const struct kvm_io_device_ops pit_dev_ops = {
|
|
.read = pit_ioport_read,
|
|
.write = pit_ioport_write,
|
|
};
|
|
|
|
static const struct kvm_io_device_ops speaker_dev_ops = {
|
|
.read = speaker_ioport_read,
|
|
.write = speaker_ioport_write,
|
|
};
|
|
|
|
/* Caller must hold slots_lock */
|
|
struct kvm_pit *kvm_create_pit(struct kvm *kvm, u32 flags)
|
|
{
|
|
struct kvm_pit *pit;
|
|
struct kvm_kpit_state *pit_state;
|
|
struct pid *pid;
|
|
pid_t pid_nr;
|
|
int ret;
|
|
|
|
pit = kzalloc(sizeof(struct kvm_pit), GFP_KERNEL);
|
|
if (!pit)
|
|
return NULL;
|
|
|
|
pit->irq_source_id = kvm_request_irq_source_id(kvm);
|
|
if (pit->irq_source_id < 0) {
|
|
kfree(pit);
|
|
return NULL;
|
|
}
|
|
|
|
mutex_init(&pit->pit_state.lock);
|
|
mutex_lock(&pit->pit_state.lock);
|
|
spin_lock_init(&pit->pit_state.inject_lock);
|
|
|
|
pid = get_pid(task_tgid(current));
|
|
pid_nr = pid_vnr(pid);
|
|
put_pid(pid);
|
|
|
|
init_kthread_worker(&pit->worker);
|
|
pit->worker_task = kthread_run(kthread_worker_fn, &pit->worker,
|
|
"kvm-pit/%d", pid_nr);
|
|
if (IS_ERR(pit->worker_task)) {
|
|
mutex_unlock(&pit->pit_state.lock);
|
|
kvm_free_irq_source_id(kvm, pit->irq_source_id);
|
|
kfree(pit);
|
|
return NULL;
|
|
}
|
|
init_kthread_work(&pit->expired, pit_do_work);
|
|
|
|
kvm->arch.vpit = pit;
|
|
pit->kvm = kvm;
|
|
|
|
pit_state = &pit->pit_state;
|
|
pit_state->pit = pit;
|
|
hrtimer_init(&pit_state->pit_timer.timer,
|
|
CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
|
|
pit_state->irq_ack_notifier.gsi = 0;
|
|
pit_state->irq_ack_notifier.irq_acked = kvm_pit_ack_irq;
|
|
kvm_register_irq_ack_notifier(kvm, &pit_state->irq_ack_notifier);
|
|
pit_state->pit_timer.reinject = true;
|
|
mutex_unlock(&pit->pit_state.lock);
|
|
|
|
kvm_pit_reset(pit);
|
|
|
|
pit->mask_notifier.func = pit_mask_notifer;
|
|
kvm_register_irq_mask_notifier(kvm, 0, &pit->mask_notifier);
|
|
|
|
kvm_iodevice_init(&pit->dev, &pit_dev_ops);
|
|
ret = kvm_io_bus_register_dev(kvm, KVM_PIO_BUS, KVM_PIT_BASE_ADDRESS,
|
|
KVM_PIT_MEM_LENGTH, &pit->dev);
|
|
if (ret < 0)
|
|
goto fail;
|
|
|
|
if (flags & KVM_PIT_SPEAKER_DUMMY) {
|
|
kvm_iodevice_init(&pit->speaker_dev, &speaker_dev_ops);
|
|
ret = kvm_io_bus_register_dev(kvm, KVM_PIO_BUS,
|
|
KVM_SPEAKER_BASE_ADDRESS, 4,
|
|
&pit->speaker_dev);
|
|
if (ret < 0)
|
|
goto fail_unregister;
|
|
}
|
|
|
|
return pit;
|
|
|
|
fail_unregister:
|
|
kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS, &pit->dev);
|
|
|
|
fail:
|
|
kvm_unregister_irq_mask_notifier(kvm, 0, &pit->mask_notifier);
|
|
kvm_unregister_irq_ack_notifier(kvm, &pit_state->irq_ack_notifier);
|
|
kvm_free_irq_source_id(kvm, pit->irq_source_id);
|
|
kthread_stop(pit->worker_task);
|
|
kfree(pit);
|
|
return NULL;
|
|
}
|
|
|
|
void kvm_free_pit(struct kvm *kvm)
|
|
{
|
|
struct hrtimer *timer;
|
|
|
|
if (kvm->arch.vpit) {
|
|
kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS, &kvm->arch.vpit->dev);
|
|
kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
|
|
&kvm->arch.vpit->speaker_dev);
|
|
kvm_unregister_irq_mask_notifier(kvm, 0,
|
|
&kvm->arch.vpit->mask_notifier);
|
|
kvm_unregister_irq_ack_notifier(kvm,
|
|
&kvm->arch.vpit->pit_state.irq_ack_notifier);
|
|
mutex_lock(&kvm->arch.vpit->pit_state.lock);
|
|
timer = &kvm->arch.vpit->pit_state.pit_timer.timer;
|
|
hrtimer_cancel(timer);
|
|
flush_kthread_work(&kvm->arch.vpit->expired);
|
|
kthread_stop(kvm->arch.vpit->worker_task);
|
|
kvm_free_irq_source_id(kvm, kvm->arch.vpit->irq_source_id);
|
|
mutex_unlock(&kvm->arch.vpit->pit_state.lock);
|
|
kfree(kvm->arch.vpit);
|
|
}
|
|
}
|