linux/drivers/gpu/drm/i915/intel_ringbuffer.c
John Harrison 79bbcc299f drm/i915: Reserve space improvements
An earlier patch was added to reserve space in the ring buffer for the
commands issued during 'add_request()'. The initial version was
pessimistic in the way it handled buffer wrapping and would cause
premature wraps and thus waste ring space.

This patch updates the code to better handle the wrap case. It no
longer enforces that the space being asked for and the reserved space
are a single contiguous block. Instead, it allows the reserve to be on
the far end of a wrap operation. It still guarantees that the space is
available so when the wrap occurs, no wait will happen. Thus the wrap
cannot fail which is the whole point of the exercise.

Also fixed a merge failure with some comments from the original patch.

v2: Incorporated suggestion by David Gordon to move the wrap code
inside the prepare function and thus allow a single combined
wait_for_space() call rather than doing one before the wrap and
another after. This also makes the prepare code much simpler and
easier to follow.

v3: Fix for 'effective_size' vs 'size' during ring buffer remainder
calculations (spotted by Tomas Elf).

For: VIZ-5115
CC: Daniel Vetter <daniel@ffwll.ch>
Signed-off-by: John Harrison <John.C.Harrison@Intel.com>
Reviewed-by: Tomas Elf <tomas.elf@intel.com>
Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-07-03 07:38:59 +02:00

2971 lines
81 KiB
C

/*
* Copyright © 2008-2010 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
* Authors:
* Eric Anholt <eric@anholt.net>
* Zou Nan hai <nanhai.zou@intel.com>
* Xiang Hai hao<haihao.xiang@intel.com>
*
*/
#include <drm/drmP.h>
#include "i915_drv.h"
#include <drm/i915_drm.h>
#include "i915_trace.h"
#include "intel_drv.h"
bool
intel_ring_initialized(struct intel_engine_cs *ring)
{
struct drm_device *dev = ring->dev;
if (!dev)
return false;
if (i915.enable_execlists) {
struct intel_context *dctx = ring->default_context;
struct intel_ringbuffer *ringbuf = dctx->engine[ring->id].ringbuf;
return ringbuf->obj;
} else
return ring->buffer && ring->buffer->obj;
}
int __intel_ring_space(int head, int tail, int size)
{
int space = head - tail;
if (space <= 0)
space += size;
return space - I915_RING_FREE_SPACE;
}
void intel_ring_update_space(struct intel_ringbuffer *ringbuf)
{
if (ringbuf->last_retired_head != -1) {
ringbuf->head = ringbuf->last_retired_head;
ringbuf->last_retired_head = -1;
}
ringbuf->space = __intel_ring_space(ringbuf->head & HEAD_ADDR,
ringbuf->tail, ringbuf->size);
}
int intel_ring_space(struct intel_ringbuffer *ringbuf)
{
intel_ring_update_space(ringbuf);
return ringbuf->space;
}
bool intel_ring_stopped(struct intel_engine_cs *ring)
{
struct drm_i915_private *dev_priv = ring->dev->dev_private;
return dev_priv->gpu_error.stop_rings & intel_ring_flag(ring);
}
static void __intel_ring_advance(struct intel_engine_cs *ring)
{
struct intel_ringbuffer *ringbuf = ring->buffer;
ringbuf->tail &= ringbuf->size - 1;
if (intel_ring_stopped(ring))
return;
ring->write_tail(ring, ringbuf->tail);
}
static int
gen2_render_ring_flush(struct drm_i915_gem_request *req,
u32 invalidate_domains,
u32 flush_domains)
{
struct intel_engine_cs *ring = req->ring;
u32 cmd;
int ret;
cmd = MI_FLUSH;
if (((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER) == 0)
cmd |= MI_NO_WRITE_FLUSH;
if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
cmd |= MI_READ_FLUSH;
ret = intel_ring_begin(req, 2);
if (ret)
return ret;
intel_ring_emit(ring, cmd);
intel_ring_emit(ring, MI_NOOP);
intel_ring_advance(ring);
return 0;
}
static int
gen4_render_ring_flush(struct drm_i915_gem_request *req,
u32 invalidate_domains,
u32 flush_domains)
{
struct intel_engine_cs *ring = req->ring;
struct drm_device *dev = ring->dev;
u32 cmd;
int ret;
/*
* read/write caches:
*
* I915_GEM_DOMAIN_RENDER is always invalidated, but is
* only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
* also flushed at 2d versus 3d pipeline switches.
*
* read-only caches:
*
* I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
* MI_READ_FLUSH is set, and is always flushed on 965.
*
* I915_GEM_DOMAIN_COMMAND may not exist?
*
* I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
* invalidated when MI_EXE_FLUSH is set.
*
* I915_GEM_DOMAIN_VERTEX, which exists on 965, is
* invalidated with every MI_FLUSH.
*
* TLBs:
*
* On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
* and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
* I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
* are flushed at any MI_FLUSH.
*/
cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
if ((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER)
cmd &= ~MI_NO_WRITE_FLUSH;
if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
cmd |= MI_EXE_FLUSH;
if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
(IS_G4X(dev) || IS_GEN5(dev)))
cmd |= MI_INVALIDATE_ISP;
ret = intel_ring_begin(req, 2);
if (ret)
return ret;
intel_ring_emit(ring, cmd);
intel_ring_emit(ring, MI_NOOP);
intel_ring_advance(ring);
return 0;
}
/**
* Emits a PIPE_CONTROL with a non-zero post-sync operation, for
* implementing two workarounds on gen6. From section 1.4.7.1
* "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
*
* [DevSNB-C+{W/A}] Before any depth stall flush (including those
* produced by non-pipelined state commands), software needs to first
* send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
* 0.
*
* [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
* =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
*
* And the workaround for these two requires this workaround first:
*
* [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
* BEFORE the pipe-control with a post-sync op and no write-cache
* flushes.
*
* And this last workaround is tricky because of the requirements on
* that bit. From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
* volume 2 part 1:
*
* "1 of the following must also be set:
* - Render Target Cache Flush Enable ([12] of DW1)
* - Depth Cache Flush Enable ([0] of DW1)
* - Stall at Pixel Scoreboard ([1] of DW1)
* - Depth Stall ([13] of DW1)
* - Post-Sync Operation ([13] of DW1)
* - Notify Enable ([8] of DW1)"
*
* The cache flushes require the workaround flush that triggered this
* one, so we can't use it. Depth stall would trigger the same.
* Post-sync nonzero is what triggered this second workaround, so we
* can't use that one either. Notify enable is IRQs, which aren't
* really our business. That leaves only stall at scoreboard.
*/
static int
intel_emit_post_sync_nonzero_flush(struct drm_i915_gem_request *req)
{
struct intel_engine_cs *ring = req->ring;
u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
int ret;
ret = intel_ring_begin(req, 6);
if (ret)
return ret;
intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
PIPE_CONTROL_STALL_AT_SCOREBOARD);
intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
intel_ring_emit(ring, 0); /* low dword */
intel_ring_emit(ring, 0); /* high dword */
intel_ring_emit(ring, MI_NOOP);
intel_ring_advance(ring);
ret = intel_ring_begin(req, 6);
if (ret)
return ret;
intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
intel_ring_emit(ring, 0);
intel_ring_emit(ring, 0);
intel_ring_emit(ring, MI_NOOP);
intel_ring_advance(ring);
return 0;
}
static int
gen6_render_ring_flush(struct drm_i915_gem_request *req,
u32 invalidate_domains, u32 flush_domains)
{
struct intel_engine_cs *ring = req->ring;
u32 flags = 0;
u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
int ret;
/* Force SNB workarounds for PIPE_CONTROL flushes */
ret = intel_emit_post_sync_nonzero_flush(req);
if (ret)
return ret;
/* Just flush everything. Experiments have shown that reducing the
* number of bits based on the write domains has little performance
* impact.
*/
if (flush_domains) {
flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
/*
* Ensure that any following seqno writes only happen
* when the render cache is indeed flushed.
*/
flags |= PIPE_CONTROL_CS_STALL;
}
if (invalidate_domains) {
flags |= PIPE_CONTROL_TLB_INVALIDATE;
flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
/*
* TLB invalidate requires a post-sync write.
*/
flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
}
ret = intel_ring_begin(req, 4);
if (ret)
return ret;
intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
intel_ring_emit(ring, flags);
intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
intel_ring_emit(ring, 0);
intel_ring_advance(ring);
return 0;
}
static int
gen7_render_ring_cs_stall_wa(struct drm_i915_gem_request *req)
{
struct intel_engine_cs *ring = req->ring;
int ret;
ret = intel_ring_begin(req, 4);
if (ret)
return ret;
intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
PIPE_CONTROL_STALL_AT_SCOREBOARD);
intel_ring_emit(ring, 0);
intel_ring_emit(ring, 0);
intel_ring_advance(ring);
return 0;
}
static int
gen7_render_ring_flush(struct drm_i915_gem_request *req,
u32 invalidate_domains, u32 flush_domains)
{
struct intel_engine_cs *ring = req->ring;
u32 flags = 0;
u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
int ret;
/*
* Ensure that any following seqno writes only happen when the render
* cache is indeed flushed.
*
* Workaround: 4th PIPE_CONTROL command (except the ones with only
* read-cache invalidate bits set) must have the CS_STALL bit set. We
* don't try to be clever and just set it unconditionally.
*/
flags |= PIPE_CONTROL_CS_STALL;
/* Just flush everything. Experiments have shown that reducing the
* number of bits based on the write domains has little performance
* impact.
*/
if (flush_domains) {
flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
}
if (invalidate_domains) {
flags |= PIPE_CONTROL_TLB_INVALIDATE;
flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
flags |= PIPE_CONTROL_MEDIA_STATE_CLEAR;
/*
* TLB invalidate requires a post-sync write.
*/
flags |= PIPE_CONTROL_QW_WRITE;
flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
/* Workaround: we must issue a pipe_control with CS-stall bit
* set before a pipe_control command that has the state cache
* invalidate bit set. */
gen7_render_ring_cs_stall_wa(req);
}
ret = intel_ring_begin(req, 4);
if (ret)
return ret;
intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
intel_ring_emit(ring, flags);
intel_ring_emit(ring, scratch_addr);
intel_ring_emit(ring, 0);
intel_ring_advance(ring);
return 0;
}
static int
gen8_emit_pipe_control(struct drm_i915_gem_request *req,
u32 flags, u32 scratch_addr)
{
struct intel_engine_cs *ring = req->ring;
int ret;
ret = intel_ring_begin(req, 6);
if (ret)
return ret;
intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
intel_ring_emit(ring, flags);
intel_ring_emit(ring, scratch_addr);
intel_ring_emit(ring, 0);
intel_ring_emit(ring, 0);
intel_ring_emit(ring, 0);
intel_ring_advance(ring);
return 0;
}
static int
gen8_render_ring_flush(struct drm_i915_gem_request *req,
u32 invalidate_domains, u32 flush_domains)
{
u32 flags = 0;
u32 scratch_addr = req->ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
int ret;
flags |= PIPE_CONTROL_CS_STALL;
if (flush_domains) {
flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
}
if (invalidate_domains) {
flags |= PIPE_CONTROL_TLB_INVALIDATE;
flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
flags |= PIPE_CONTROL_QW_WRITE;
flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
/* WaCsStallBeforeStateCacheInvalidate:bdw,chv */
ret = gen8_emit_pipe_control(req,
PIPE_CONTROL_CS_STALL |
PIPE_CONTROL_STALL_AT_SCOREBOARD,
0);
if (ret)
return ret;
}
return gen8_emit_pipe_control(req, flags, scratch_addr);
}
static void ring_write_tail(struct intel_engine_cs *ring,
u32 value)
{
struct drm_i915_private *dev_priv = ring->dev->dev_private;
I915_WRITE_TAIL(ring, value);
}
u64 intel_ring_get_active_head(struct intel_engine_cs *ring)
{
struct drm_i915_private *dev_priv = ring->dev->dev_private;
u64 acthd;
if (INTEL_INFO(ring->dev)->gen >= 8)
acthd = I915_READ64_2x32(RING_ACTHD(ring->mmio_base),
RING_ACTHD_UDW(ring->mmio_base));
else if (INTEL_INFO(ring->dev)->gen >= 4)
acthd = I915_READ(RING_ACTHD(ring->mmio_base));
else
acthd = I915_READ(ACTHD);
return acthd;
}
static void ring_setup_phys_status_page(struct intel_engine_cs *ring)
{
struct drm_i915_private *dev_priv = ring->dev->dev_private;
u32 addr;
addr = dev_priv->status_page_dmah->busaddr;
if (INTEL_INFO(ring->dev)->gen >= 4)
addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
I915_WRITE(HWS_PGA, addr);
}
static void intel_ring_setup_status_page(struct intel_engine_cs *ring)
{
struct drm_device *dev = ring->dev;
struct drm_i915_private *dev_priv = ring->dev->dev_private;
u32 mmio = 0;
/* The ring status page addresses are no longer next to the rest of
* the ring registers as of gen7.
*/
if (IS_GEN7(dev)) {
switch (ring->id) {
case RCS:
mmio = RENDER_HWS_PGA_GEN7;
break;
case BCS:
mmio = BLT_HWS_PGA_GEN7;
break;
/*
* VCS2 actually doesn't exist on Gen7. Only shut up
* gcc switch check warning
*/
case VCS2:
case VCS:
mmio = BSD_HWS_PGA_GEN7;
break;
case VECS:
mmio = VEBOX_HWS_PGA_GEN7;
break;
}
} else if (IS_GEN6(ring->dev)) {
mmio = RING_HWS_PGA_GEN6(ring->mmio_base);
} else {
/* XXX: gen8 returns to sanity */
mmio = RING_HWS_PGA(ring->mmio_base);
}
I915_WRITE(mmio, (u32)ring->status_page.gfx_addr);
POSTING_READ(mmio);
/*
* Flush the TLB for this page
*
* FIXME: These two bits have disappeared on gen8, so a question
* arises: do we still need this and if so how should we go about
* invalidating the TLB?
*/
if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8) {
u32 reg = RING_INSTPM(ring->mmio_base);
/* ring should be idle before issuing a sync flush*/
WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
I915_WRITE(reg,
_MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
INSTPM_SYNC_FLUSH));
if (wait_for((I915_READ(reg) & INSTPM_SYNC_FLUSH) == 0,
1000))
DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
ring->name);
}
}
static bool stop_ring(struct intel_engine_cs *ring)
{
struct drm_i915_private *dev_priv = to_i915(ring->dev);
if (!IS_GEN2(ring->dev)) {
I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
if (wait_for((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
DRM_ERROR("%s : timed out trying to stop ring\n", ring->name);
/* Sometimes we observe that the idle flag is not
* set even though the ring is empty. So double
* check before giving up.
*/
if (I915_READ_HEAD(ring) != I915_READ_TAIL(ring))
return false;
}
}
I915_WRITE_CTL(ring, 0);
I915_WRITE_HEAD(ring, 0);
ring->write_tail(ring, 0);
if (!IS_GEN2(ring->dev)) {
(void)I915_READ_CTL(ring);
I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
}
return (I915_READ_HEAD(ring) & HEAD_ADDR) == 0;
}
static int init_ring_common(struct intel_engine_cs *ring)
{
struct drm_device *dev = ring->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_ringbuffer *ringbuf = ring->buffer;
struct drm_i915_gem_object *obj = ringbuf->obj;
int ret = 0;
intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
if (!stop_ring(ring)) {
/* G45 ring initialization often fails to reset head to zero */
DRM_DEBUG_KMS("%s head not reset to zero "
"ctl %08x head %08x tail %08x start %08x\n",
ring->name,
I915_READ_CTL(ring),
I915_READ_HEAD(ring),
I915_READ_TAIL(ring),
I915_READ_START(ring));
if (!stop_ring(ring)) {
DRM_ERROR("failed to set %s head to zero "
"ctl %08x head %08x tail %08x start %08x\n",
ring->name,
I915_READ_CTL(ring),
I915_READ_HEAD(ring),
I915_READ_TAIL(ring),
I915_READ_START(ring));
ret = -EIO;
goto out;
}
}
if (I915_NEED_GFX_HWS(dev))
intel_ring_setup_status_page(ring);
else
ring_setup_phys_status_page(ring);
/* Enforce ordering by reading HEAD register back */
I915_READ_HEAD(ring);
/* Initialize the ring. This must happen _after_ we've cleared the ring
* registers with the above sequence (the readback of the HEAD registers
* also enforces ordering), otherwise the hw might lose the new ring
* register values. */
I915_WRITE_START(ring, i915_gem_obj_ggtt_offset(obj));
/* WaClearRingBufHeadRegAtInit:ctg,elk */
if (I915_READ_HEAD(ring))
DRM_DEBUG("%s initialization failed [head=%08x], fudging\n",
ring->name, I915_READ_HEAD(ring));
I915_WRITE_HEAD(ring, 0);
(void)I915_READ_HEAD(ring);
I915_WRITE_CTL(ring,
((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES)
| RING_VALID);
/* If the head is still not zero, the ring is dead */
if (wait_for((I915_READ_CTL(ring) & RING_VALID) != 0 &&
I915_READ_START(ring) == i915_gem_obj_ggtt_offset(obj) &&
(I915_READ_HEAD(ring) & HEAD_ADDR) == 0, 50)) {
DRM_ERROR("%s initialization failed "
"ctl %08x (valid? %d) head %08x tail %08x start %08x [expected %08lx]\n",
ring->name,
I915_READ_CTL(ring), I915_READ_CTL(ring) & RING_VALID,
I915_READ_HEAD(ring), I915_READ_TAIL(ring),
I915_READ_START(ring), (unsigned long)i915_gem_obj_ggtt_offset(obj));
ret = -EIO;
goto out;
}
ringbuf->last_retired_head = -1;
ringbuf->head = I915_READ_HEAD(ring);
ringbuf->tail = I915_READ_TAIL(ring) & TAIL_ADDR;
intel_ring_update_space(ringbuf);
memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
out:
intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
return ret;
}
void
intel_fini_pipe_control(struct intel_engine_cs *ring)
{
struct drm_device *dev = ring->dev;
if (ring->scratch.obj == NULL)
return;
if (INTEL_INFO(dev)->gen >= 5) {
kunmap(sg_page(ring->scratch.obj->pages->sgl));
i915_gem_object_ggtt_unpin(ring->scratch.obj);
}
drm_gem_object_unreference(&ring->scratch.obj->base);
ring->scratch.obj = NULL;
}
int
intel_init_pipe_control(struct intel_engine_cs *ring)
{
int ret;
WARN_ON(ring->scratch.obj);
ring->scratch.obj = i915_gem_alloc_object(ring->dev, 4096);
if (ring->scratch.obj == NULL) {
DRM_ERROR("Failed to allocate seqno page\n");
ret = -ENOMEM;
goto err;
}
ret = i915_gem_object_set_cache_level(ring->scratch.obj, I915_CACHE_LLC);
if (ret)
goto err_unref;
ret = i915_gem_obj_ggtt_pin(ring->scratch.obj, 4096, 0);
if (ret)
goto err_unref;
ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(ring->scratch.obj);
ring->scratch.cpu_page = kmap(sg_page(ring->scratch.obj->pages->sgl));
if (ring->scratch.cpu_page == NULL) {
ret = -ENOMEM;
goto err_unpin;
}
DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
ring->name, ring->scratch.gtt_offset);
return 0;
err_unpin:
i915_gem_object_ggtt_unpin(ring->scratch.obj);
err_unref:
drm_gem_object_unreference(&ring->scratch.obj->base);
err:
return ret;
}
static int intel_ring_workarounds_emit(struct drm_i915_gem_request *req)
{
int ret, i;
struct intel_engine_cs *ring = req->ring;
struct drm_device *dev = ring->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct i915_workarounds *w = &dev_priv->workarounds;
if (WARN_ON_ONCE(w->count == 0))
return 0;
ring->gpu_caches_dirty = true;
ret = intel_ring_flush_all_caches(req);
if (ret)
return ret;
ret = intel_ring_begin(req, (w->count * 2 + 2));
if (ret)
return ret;
intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(w->count));
for (i = 0; i < w->count; i++) {
intel_ring_emit(ring, w->reg[i].addr);
intel_ring_emit(ring, w->reg[i].value);
}
intel_ring_emit(ring, MI_NOOP);
intel_ring_advance(ring);
ring->gpu_caches_dirty = true;
ret = intel_ring_flush_all_caches(req);
if (ret)
return ret;
DRM_DEBUG_DRIVER("Number of Workarounds emitted: %d\n", w->count);
return 0;
}
static int intel_rcs_ctx_init(struct drm_i915_gem_request *req)
{
int ret;
ret = intel_ring_workarounds_emit(req);
if (ret != 0)
return ret;
ret = i915_gem_render_state_init(req);
if (ret)
DRM_ERROR("init render state: %d\n", ret);
return ret;
}
static int wa_add(struct drm_i915_private *dev_priv,
const u32 addr, const u32 mask, const u32 val)
{
const u32 idx = dev_priv->workarounds.count;
if (WARN_ON(idx >= I915_MAX_WA_REGS))
return -ENOSPC;
dev_priv->workarounds.reg[idx].addr = addr;
dev_priv->workarounds.reg[idx].value = val;
dev_priv->workarounds.reg[idx].mask = mask;
dev_priv->workarounds.count++;
return 0;
}
#define WA_REG(addr, mask, val) { \
const int r = wa_add(dev_priv, (addr), (mask), (val)); \
if (r) \
return r; \
}
#define WA_SET_BIT_MASKED(addr, mask) \
WA_REG(addr, (mask), _MASKED_BIT_ENABLE(mask))
#define WA_CLR_BIT_MASKED(addr, mask) \
WA_REG(addr, (mask), _MASKED_BIT_DISABLE(mask))
#define WA_SET_FIELD_MASKED(addr, mask, value) \
WA_REG(addr, mask, _MASKED_FIELD(mask, value))
#define WA_SET_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) | (mask))
#define WA_CLR_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) & ~(mask))
#define WA_WRITE(addr, val) WA_REG(addr, 0xffffffff, val)
static int bdw_init_workarounds(struct intel_engine_cs *ring)
{
struct drm_device *dev = ring->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
WA_SET_BIT_MASKED(INSTPM, INSTPM_FORCE_ORDERING);
/* WaDisableAsyncFlipPerfMode:bdw */
WA_SET_BIT_MASKED(MI_MODE, ASYNC_FLIP_PERF_DISABLE);
/* WaDisablePartialInstShootdown:bdw */
/* WaDisableThreadStallDopClockGating:bdw (pre-production) */
WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE |
STALL_DOP_GATING_DISABLE);
/* WaDisableDopClockGating:bdw */
WA_SET_BIT_MASKED(GEN7_ROW_CHICKEN2,
DOP_CLOCK_GATING_DISABLE);
WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
GEN8_SAMPLER_POWER_BYPASS_DIS);
/* Use Force Non-Coherent whenever executing a 3D context. This is a
* workaround for for a possible hang in the unlikely event a TLB
* invalidation occurs during a PSD flush.
*/
WA_SET_BIT_MASKED(HDC_CHICKEN0,
/* WaForceEnableNonCoherent:bdw */
HDC_FORCE_NON_COHERENT |
/* WaForceContextSaveRestoreNonCoherent:bdw */
HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
/* WaHdcDisableFetchWhenMasked:bdw */
HDC_DONOT_FETCH_MEM_WHEN_MASKED |
/* WaDisableFenceDestinationToSLM:bdw (pre-prod) */
(IS_BDW_GT3(dev) ? HDC_FENCE_DEST_SLM_DISABLE : 0));
/* From the Haswell PRM, Command Reference: Registers, CACHE_MODE_0:
* "The Hierarchical Z RAW Stall Optimization allows non-overlapping
* polygons in the same 8x4 pixel/sample area to be processed without
* stalling waiting for the earlier ones to write to Hierarchical Z
* buffer."
*
* This optimization is off by default for Broadwell; turn it on.
*/
WA_CLR_BIT_MASKED(CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE);
/* Wa4x4STCOptimizationDisable:bdw */
WA_SET_BIT_MASKED(CACHE_MODE_1,
GEN8_4x4_STC_OPTIMIZATION_DISABLE);
/*
* BSpec recommends 8x4 when MSAA is used,
* however in practice 16x4 seems fastest.
*
* Note that PS/WM thread counts depend on the WIZ hashing
* disable bit, which we don't touch here, but it's good
* to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
*/
WA_SET_FIELD_MASKED(GEN7_GT_MODE,
GEN6_WIZ_HASHING_MASK,
GEN6_WIZ_HASHING_16x4);
return 0;
}
static int chv_init_workarounds(struct intel_engine_cs *ring)
{
struct drm_device *dev = ring->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
WA_SET_BIT_MASKED(INSTPM, INSTPM_FORCE_ORDERING);
/* WaDisableAsyncFlipPerfMode:chv */
WA_SET_BIT_MASKED(MI_MODE, ASYNC_FLIP_PERF_DISABLE);
/* WaDisablePartialInstShootdown:chv */
/* WaDisableThreadStallDopClockGating:chv */
WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE |
STALL_DOP_GATING_DISABLE);
/* Use Force Non-Coherent whenever executing a 3D context. This is a
* workaround for a possible hang in the unlikely event a TLB
* invalidation occurs during a PSD flush.
*/
/* WaForceEnableNonCoherent:chv */
/* WaHdcDisableFetchWhenMasked:chv */
WA_SET_BIT_MASKED(HDC_CHICKEN0,
HDC_FORCE_NON_COHERENT |
HDC_DONOT_FETCH_MEM_WHEN_MASKED);
/* According to the CACHE_MODE_0 default value documentation, some
* CHV platforms disable this optimization by default. Turn it on.
*/
WA_CLR_BIT_MASKED(CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE);
/* Wa4x4STCOptimizationDisable:chv */
WA_SET_BIT_MASKED(CACHE_MODE_1,
GEN8_4x4_STC_OPTIMIZATION_DISABLE);
/* Improve HiZ throughput on CHV. */
WA_SET_BIT_MASKED(HIZ_CHICKEN, CHV_HZ_8X8_MODE_IN_1X);
/*
* BSpec recommends 8x4 when MSAA is used,
* however in practice 16x4 seems fastest.
*
* Note that PS/WM thread counts depend on the WIZ hashing
* disable bit, which we don't touch here, but it's good
* to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
*/
WA_SET_FIELD_MASKED(GEN7_GT_MODE,
GEN6_WIZ_HASHING_MASK,
GEN6_WIZ_HASHING_16x4);
return 0;
}
static int gen9_init_workarounds(struct intel_engine_cs *ring)
{
struct drm_device *dev = ring->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
uint32_t tmp;
/* WaDisablePartialInstShootdown:skl,bxt */
WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
/* Syncing dependencies between camera and graphics:skl,bxt */
WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
GEN9_DISABLE_OCL_OOB_SUPPRESS_LOGIC);
if ((IS_SKYLAKE(dev) && (INTEL_REVID(dev) == SKL_REVID_A0 ||
INTEL_REVID(dev) == SKL_REVID_B0)) ||
(IS_BROXTON(dev) && INTEL_REVID(dev) < BXT_REVID_B0)) {
/* WaDisableDgMirrorFixInHalfSliceChicken5:skl,bxt */
WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
GEN9_DG_MIRROR_FIX_ENABLE);
}
if ((IS_SKYLAKE(dev) && INTEL_REVID(dev) <= SKL_REVID_B0) ||
(IS_BROXTON(dev) && INTEL_REVID(dev) < BXT_REVID_B0)) {
/* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
WA_SET_BIT_MASKED(GEN7_COMMON_SLICE_CHICKEN1,
GEN9_RHWO_OPTIMIZATION_DISABLE);
WA_SET_BIT_MASKED(GEN9_SLICE_COMMON_ECO_CHICKEN0,
DISABLE_PIXEL_MASK_CAMMING);
}
if ((IS_SKYLAKE(dev) && INTEL_REVID(dev) >= SKL_REVID_C0) ||
IS_BROXTON(dev)) {
/* WaEnableYV12BugFixInHalfSliceChicken7:skl,bxt */
WA_SET_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN7,
GEN9_ENABLE_YV12_BUGFIX);
}
/* Wa4x4STCOptimizationDisable:skl,bxt */
WA_SET_BIT_MASKED(CACHE_MODE_1, GEN8_4x4_STC_OPTIMIZATION_DISABLE);
/* WaDisablePartialResolveInVc:skl,bxt */
WA_SET_BIT_MASKED(CACHE_MODE_1, GEN9_PARTIAL_RESOLVE_IN_VC_DISABLE);
/* WaCcsTlbPrefetchDisable:skl,bxt */
WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
GEN9_CCS_TLB_PREFETCH_ENABLE);
/* WaDisableMaskBasedCammingInRCC:skl,bxt */
if ((IS_SKYLAKE(dev) && INTEL_REVID(dev) == SKL_REVID_C0) ||
(IS_BROXTON(dev) && INTEL_REVID(dev) < BXT_REVID_B0))
WA_SET_BIT_MASKED(SLICE_ECO_CHICKEN0,
PIXEL_MASK_CAMMING_DISABLE);
/* WaForceContextSaveRestoreNonCoherent:skl,bxt */
tmp = HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT;
if ((IS_SKYLAKE(dev) && INTEL_REVID(dev) == SKL_REVID_F0) ||
(IS_BROXTON(dev) && INTEL_REVID(dev) >= BXT_REVID_B0))
tmp |= HDC_FORCE_CSR_NON_COHERENT_OVR_DISABLE;
WA_SET_BIT_MASKED(HDC_CHICKEN0, tmp);
return 0;
}
static int skl_tune_iz_hashing(struct intel_engine_cs *ring)
{
struct drm_device *dev = ring->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
u8 vals[3] = { 0, 0, 0 };
unsigned int i;
for (i = 0; i < 3; i++) {
u8 ss;
/*
* Only consider slices where one, and only one, subslice has 7
* EUs
*/
if (hweight8(dev_priv->info.subslice_7eu[i]) != 1)
continue;
/*
* subslice_7eu[i] != 0 (because of the check above) and
* ss_max == 4 (maximum number of subslices possible per slice)
*
* -> 0 <= ss <= 3;
*/
ss = ffs(dev_priv->info.subslice_7eu[i]) - 1;
vals[i] = 3 - ss;
}
if (vals[0] == 0 && vals[1] == 0 && vals[2] == 0)
return 0;
/* Tune IZ hashing. See intel_device_info_runtime_init() */
WA_SET_FIELD_MASKED(GEN7_GT_MODE,
GEN9_IZ_HASHING_MASK(2) |
GEN9_IZ_HASHING_MASK(1) |
GEN9_IZ_HASHING_MASK(0),
GEN9_IZ_HASHING(2, vals[2]) |
GEN9_IZ_HASHING(1, vals[1]) |
GEN9_IZ_HASHING(0, vals[0]));
return 0;
}
static int skl_init_workarounds(struct intel_engine_cs *ring)
{
struct drm_device *dev = ring->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
gen9_init_workarounds(ring);
/* WaDisablePowerCompilerClockGating:skl */
if (INTEL_REVID(dev) == SKL_REVID_B0)
WA_SET_BIT_MASKED(HIZ_CHICKEN,
BDW_HIZ_POWER_COMPILER_CLOCK_GATING_DISABLE);
if (INTEL_REVID(dev) <= SKL_REVID_D0) {
/*
*Use Force Non-Coherent whenever executing a 3D context. This
* is a workaround for a possible hang in the unlikely event
* a TLB invalidation occurs during a PSD flush.
*/
/* WaForceEnableNonCoherent:skl */
WA_SET_BIT_MASKED(HDC_CHICKEN0,
HDC_FORCE_NON_COHERENT);
}
if (INTEL_REVID(dev) == SKL_REVID_C0 ||
INTEL_REVID(dev) == SKL_REVID_D0)
/* WaBarrierPerformanceFixDisable:skl */
WA_SET_BIT_MASKED(HDC_CHICKEN0,
HDC_FENCE_DEST_SLM_DISABLE |
HDC_BARRIER_PERFORMANCE_DISABLE);
return skl_tune_iz_hashing(ring);
}
static int bxt_init_workarounds(struct intel_engine_cs *ring)
{
struct drm_device *dev = ring->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
gen9_init_workarounds(ring);
/* WaDisableThreadStallDopClockGating:bxt */
WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
STALL_DOP_GATING_DISABLE);
/* WaDisableSbeCacheDispatchPortSharing:bxt */
if (INTEL_REVID(dev) <= BXT_REVID_B0) {
WA_SET_BIT_MASKED(
GEN7_HALF_SLICE_CHICKEN1,
GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
}
return 0;
}
int init_workarounds_ring(struct intel_engine_cs *ring)
{
struct drm_device *dev = ring->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
WARN_ON(ring->id != RCS);
dev_priv->workarounds.count = 0;
if (IS_BROADWELL(dev))
return bdw_init_workarounds(ring);
if (IS_CHERRYVIEW(dev))
return chv_init_workarounds(ring);
if (IS_SKYLAKE(dev))
return skl_init_workarounds(ring);
if (IS_BROXTON(dev))
return bxt_init_workarounds(ring);
return 0;
}
static int init_render_ring(struct intel_engine_cs *ring)
{
struct drm_device *dev = ring->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
int ret = init_ring_common(ring);
if (ret)
return ret;
/* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
if (INTEL_INFO(dev)->gen >= 4 && INTEL_INFO(dev)->gen < 7)
I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
/* We need to disable the AsyncFlip performance optimisations in order
* to use MI_WAIT_FOR_EVENT within the CS. It should already be
* programmed to '1' on all products.
*
* WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
*/
if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8)
I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
/* Required for the hardware to program scanline values for waiting */
/* WaEnableFlushTlbInvalidationMode:snb */
if (INTEL_INFO(dev)->gen == 6)
I915_WRITE(GFX_MODE,
_MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
/* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
if (IS_GEN7(dev))
I915_WRITE(GFX_MODE_GEN7,
_MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
_MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
if (IS_GEN6(dev)) {
/* From the Sandybridge PRM, volume 1 part 3, page 24:
* "If this bit is set, STCunit will have LRA as replacement
* policy. [...] This bit must be reset. LRA replacement
* policy is not supported."
*/
I915_WRITE(CACHE_MODE_0,
_MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
}
if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8)
I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
if (HAS_L3_DPF(dev))
I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
return init_workarounds_ring(ring);
}
static void render_ring_cleanup(struct intel_engine_cs *ring)
{
struct drm_device *dev = ring->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
if (dev_priv->semaphore_obj) {
i915_gem_object_ggtt_unpin(dev_priv->semaphore_obj);
drm_gem_object_unreference(&dev_priv->semaphore_obj->base);
dev_priv->semaphore_obj = NULL;
}
intel_fini_pipe_control(ring);
}
static int gen8_rcs_signal(struct drm_i915_gem_request *signaller_req,
unsigned int num_dwords)
{
#define MBOX_UPDATE_DWORDS 8
struct intel_engine_cs *signaller = signaller_req->ring;
struct drm_device *dev = signaller->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_engine_cs *waiter;
int i, ret, num_rings;
num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
#undef MBOX_UPDATE_DWORDS
ret = intel_ring_begin(signaller_req, num_dwords);
if (ret)
return ret;
for_each_ring(waiter, dev_priv, i) {
u32 seqno;
u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
continue;
seqno = i915_gem_request_get_seqno(signaller_req);
intel_ring_emit(signaller, GFX_OP_PIPE_CONTROL(6));
intel_ring_emit(signaller, PIPE_CONTROL_GLOBAL_GTT_IVB |
PIPE_CONTROL_QW_WRITE |
PIPE_CONTROL_FLUSH_ENABLE);
intel_ring_emit(signaller, lower_32_bits(gtt_offset));
intel_ring_emit(signaller, upper_32_bits(gtt_offset));
intel_ring_emit(signaller, seqno);
intel_ring_emit(signaller, 0);
intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
MI_SEMAPHORE_TARGET(waiter->id));
intel_ring_emit(signaller, 0);
}
return 0;
}
static int gen8_xcs_signal(struct drm_i915_gem_request *signaller_req,
unsigned int num_dwords)
{
#define MBOX_UPDATE_DWORDS 6
struct intel_engine_cs *signaller = signaller_req->ring;
struct drm_device *dev = signaller->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_engine_cs *waiter;
int i, ret, num_rings;
num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
#undef MBOX_UPDATE_DWORDS
ret = intel_ring_begin(signaller_req, num_dwords);
if (ret)
return ret;
for_each_ring(waiter, dev_priv, i) {
u32 seqno;
u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
continue;
seqno = i915_gem_request_get_seqno(signaller_req);
intel_ring_emit(signaller, (MI_FLUSH_DW + 1) |
MI_FLUSH_DW_OP_STOREDW);
intel_ring_emit(signaller, lower_32_bits(gtt_offset) |
MI_FLUSH_DW_USE_GTT);
intel_ring_emit(signaller, upper_32_bits(gtt_offset));
intel_ring_emit(signaller, seqno);
intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
MI_SEMAPHORE_TARGET(waiter->id));
intel_ring_emit(signaller, 0);
}
return 0;
}
static int gen6_signal(struct drm_i915_gem_request *signaller_req,
unsigned int num_dwords)
{
struct intel_engine_cs *signaller = signaller_req->ring;
struct drm_device *dev = signaller->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_engine_cs *useless;
int i, ret, num_rings;
#define MBOX_UPDATE_DWORDS 3
num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
num_dwords += round_up((num_rings-1) * MBOX_UPDATE_DWORDS, 2);
#undef MBOX_UPDATE_DWORDS
ret = intel_ring_begin(signaller_req, num_dwords);
if (ret)
return ret;
for_each_ring(useless, dev_priv, i) {
u32 mbox_reg = signaller->semaphore.mbox.signal[i];
if (mbox_reg != GEN6_NOSYNC) {
u32 seqno = i915_gem_request_get_seqno(signaller_req);
intel_ring_emit(signaller, MI_LOAD_REGISTER_IMM(1));
intel_ring_emit(signaller, mbox_reg);
intel_ring_emit(signaller, seqno);
}
}
/* If num_dwords was rounded, make sure the tail pointer is correct */
if (num_rings % 2 == 0)
intel_ring_emit(signaller, MI_NOOP);
return 0;
}
/**
* gen6_add_request - Update the semaphore mailbox registers
*
* @request - request to write to the ring
*
* Update the mailbox registers in the *other* rings with the current seqno.
* This acts like a signal in the canonical semaphore.
*/
static int
gen6_add_request(struct drm_i915_gem_request *req)
{
struct intel_engine_cs *ring = req->ring;
int ret;
if (ring->semaphore.signal)
ret = ring->semaphore.signal(req, 4);
else
ret = intel_ring_begin(req, 4);
if (ret)
return ret;
intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
intel_ring_emit(ring, i915_gem_request_get_seqno(req));
intel_ring_emit(ring, MI_USER_INTERRUPT);
__intel_ring_advance(ring);
return 0;
}
static inline bool i915_gem_has_seqno_wrapped(struct drm_device *dev,
u32 seqno)
{
struct drm_i915_private *dev_priv = dev->dev_private;
return dev_priv->last_seqno < seqno;
}
/**
* intel_ring_sync - sync the waiter to the signaller on seqno
*
* @waiter - ring that is waiting
* @signaller - ring which has, or will signal
* @seqno - seqno which the waiter will block on
*/
static int
gen8_ring_sync(struct drm_i915_gem_request *waiter_req,
struct intel_engine_cs *signaller,
u32 seqno)
{
struct intel_engine_cs *waiter = waiter_req->ring;
struct drm_i915_private *dev_priv = waiter->dev->dev_private;
int ret;
ret = intel_ring_begin(waiter_req, 4);
if (ret)
return ret;
intel_ring_emit(waiter, MI_SEMAPHORE_WAIT |
MI_SEMAPHORE_GLOBAL_GTT |
MI_SEMAPHORE_POLL |
MI_SEMAPHORE_SAD_GTE_SDD);
intel_ring_emit(waiter, seqno);
intel_ring_emit(waiter,
lower_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
intel_ring_emit(waiter,
upper_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
intel_ring_advance(waiter);
return 0;
}
static int
gen6_ring_sync(struct drm_i915_gem_request *waiter_req,
struct intel_engine_cs *signaller,
u32 seqno)
{
struct intel_engine_cs *waiter = waiter_req->ring;
u32 dw1 = MI_SEMAPHORE_MBOX |
MI_SEMAPHORE_COMPARE |
MI_SEMAPHORE_REGISTER;
u32 wait_mbox = signaller->semaphore.mbox.wait[waiter->id];
int ret;
/* Throughout all of the GEM code, seqno passed implies our current
* seqno is >= the last seqno executed. However for hardware the
* comparison is strictly greater than.
*/
seqno -= 1;
WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
ret = intel_ring_begin(waiter_req, 4);
if (ret)
return ret;
/* If seqno wrap happened, omit the wait with no-ops */
if (likely(!i915_gem_has_seqno_wrapped(waiter->dev, seqno))) {
intel_ring_emit(waiter, dw1 | wait_mbox);
intel_ring_emit(waiter, seqno);
intel_ring_emit(waiter, 0);
intel_ring_emit(waiter, MI_NOOP);
} else {
intel_ring_emit(waiter, MI_NOOP);
intel_ring_emit(waiter, MI_NOOP);
intel_ring_emit(waiter, MI_NOOP);
intel_ring_emit(waiter, MI_NOOP);
}
intel_ring_advance(waiter);
return 0;
}
#define PIPE_CONTROL_FLUSH(ring__, addr__) \
do { \
intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE | \
PIPE_CONTROL_DEPTH_STALL); \
intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT); \
intel_ring_emit(ring__, 0); \
intel_ring_emit(ring__, 0); \
} while (0)
static int
pc_render_add_request(struct drm_i915_gem_request *req)
{
struct intel_engine_cs *ring = req->ring;
u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
int ret;
/* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
* incoherent with writes to memory, i.e. completely fubar,
* so we need to use PIPE_NOTIFY instead.
*
* However, we also need to workaround the qword write
* incoherence by flushing the 6 PIPE_NOTIFY buffers out to
* memory before requesting an interrupt.
*/
ret = intel_ring_begin(req, 32);
if (ret)
return ret;
intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
PIPE_CONTROL_WRITE_FLUSH |
PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
intel_ring_emit(ring, i915_gem_request_get_seqno(req));
intel_ring_emit(ring, 0);
PIPE_CONTROL_FLUSH(ring, scratch_addr);
scratch_addr += 2 * CACHELINE_BYTES; /* write to separate cachelines */
PIPE_CONTROL_FLUSH(ring, scratch_addr);
scratch_addr += 2 * CACHELINE_BYTES;
PIPE_CONTROL_FLUSH(ring, scratch_addr);
scratch_addr += 2 * CACHELINE_BYTES;
PIPE_CONTROL_FLUSH(ring, scratch_addr);
scratch_addr += 2 * CACHELINE_BYTES;
PIPE_CONTROL_FLUSH(ring, scratch_addr);
scratch_addr += 2 * CACHELINE_BYTES;
PIPE_CONTROL_FLUSH(ring, scratch_addr);
intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
PIPE_CONTROL_WRITE_FLUSH |
PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
PIPE_CONTROL_NOTIFY);
intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
intel_ring_emit(ring, i915_gem_request_get_seqno(req));
intel_ring_emit(ring, 0);
__intel_ring_advance(ring);
return 0;
}
static u32
gen6_ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
{
/* Workaround to force correct ordering between irq and seqno writes on
* ivb (and maybe also on snb) by reading from a CS register (like
* ACTHD) before reading the status page. */
if (!lazy_coherency) {
struct drm_i915_private *dev_priv = ring->dev->dev_private;
POSTING_READ(RING_ACTHD(ring->mmio_base));
}
return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
}
static u32
ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
{
return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
}
static void
ring_set_seqno(struct intel_engine_cs *ring, u32 seqno)
{
intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
}
static u32
pc_render_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
{
return ring->scratch.cpu_page[0];
}
static void
pc_render_set_seqno(struct intel_engine_cs *ring, u32 seqno)
{
ring->scratch.cpu_page[0] = seqno;
}
static bool
gen5_ring_get_irq(struct intel_engine_cs *ring)
{
struct drm_device *dev = ring->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
unsigned long flags;
if (WARN_ON(!intel_irqs_enabled(dev_priv)))
return false;
spin_lock_irqsave(&dev_priv->irq_lock, flags);
if (ring->irq_refcount++ == 0)
gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
return true;
}
static void
gen5_ring_put_irq(struct intel_engine_cs *ring)
{
struct drm_device *dev = ring->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
unsigned long flags;
spin_lock_irqsave(&dev_priv->irq_lock, flags);
if (--ring->irq_refcount == 0)
gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
}
static bool
i9xx_ring_get_irq(struct intel_engine_cs *ring)
{
struct drm_device *dev = ring->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
unsigned long flags;
if (!intel_irqs_enabled(dev_priv))
return false;
spin_lock_irqsave(&dev_priv->irq_lock, flags);
if (ring->irq_refcount++ == 0) {
dev_priv->irq_mask &= ~ring->irq_enable_mask;
I915_WRITE(IMR, dev_priv->irq_mask);
POSTING_READ(IMR);
}
spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
return true;
}
static void
i9xx_ring_put_irq(struct intel_engine_cs *ring)
{
struct drm_device *dev = ring->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
unsigned long flags;
spin_lock_irqsave(&dev_priv->irq_lock, flags);
if (--ring->irq_refcount == 0) {
dev_priv->irq_mask |= ring->irq_enable_mask;
I915_WRITE(IMR, dev_priv->irq_mask);
POSTING_READ(IMR);
}
spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
}
static bool
i8xx_ring_get_irq(struct intel_engine_cs *ring)
{
struct drm_device *dev = ring->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
unsigned long flags;
if (!intel_irqs_enabled(dev_priv))
return false;
spin_lock_irqsave(&dev_priv->irq_lock, flags);
if (ring->irq_refcount++ == 0) {
dev_priv->irq_mask &= ~ring->irq_enable_mask;
I915_WRITE16(IMR, dev_priv->irq_mask);
POSTING_READ16(IMR);
}
spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
return true;
}
static void
i8xx_ring_put_irq(struct intel_engine_cs *ring)
{
struct drm_device *dev = ring->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
unsigned long flags;
spin_lock_irqsave(&dev_priv->irq_lock, flags);
if (--ring->irq_refcount == 0) {
dev_priv->irq_mask |= ring->irq_enable_mask;
I915_WRITE16(IMR, dev_priv->irq_mask);
POSTING_READ16(IMR);
}
spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
}
static int
bsd_ring_flush(struct drm_i915_gem_request *req,
u32 invalidate_domains,
u32 flush_domains)
{
struct intel_engine_cs *ring = req->ring;
int ret;
ret = intel_ring_begin(req, 2);
if (ret)
return ret;
intel_ring_emit(ring, MI_FLUSH);
intel_ring_emit(ring, MI_NOOP);
intel_ring_advance(ring);
return 0;
}
static int
i9xx_add_request(struct drm_i915_gem_request *req)
{
struct intel_engine_cs *ring = req->ring;
int ret;
ret = intel_ring_begin(req, 4);
if (ret)
return ret;
intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
intel_ring_emit(ring, i915_gem_request_get_seqno(req));
intel_ring_emit(ring, MI_USER_INTERRUPT);
__intel_ring_advance(ring);
return 0;
}
static bool
gen6_ring_get_irq(struct intel_engine_cs *ring)
{
struct drm_device *dev = ring->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
unsigned long flags;
if (WARN_ON(!intel_irqs_enabled(dev_priv)))
return false;
spin_lock_irqsave(&dev_priv->irq_lock, flags);
if (ring->irq_refcount++ == 0) {
if (HAS_L3_DPF(dev) && ring->id == RCS)
I915_WRITE_IMR(ring,
~(ring->irq_enable_mask |
GT_PARITY_ERROR(dev)));
else
I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
}
spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
return true;
}
static void
gen6_ring_put_irq(struct intel_engine_cs *ring)
{
struct drm_device *dev = ring->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
unsigned long flags;
spin_lock_irqsave(&dev_priv->irq_lock, flags);
if (--ring->irq_refcount == 0) {
if (HAS_L3_DPF(dev) && ring->id == RCS)
I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
else
I915_WRITE_IMR(ring, ~0);
gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
}
spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
}
static bool
hsw_vebox_get_irq(struct intel_engine_cs *ring)
{
struct drm_device *dev = ring->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
unsigned long flags;
if (WARN_ON(!intel_irqs_enabled(dev_priv)))
return false;
spin_lock_irqsave(&dev_priv->irq_lock, flags);
if (ring->irq_refcount++ == 0) {
I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
gen6_enable_pm_irq(dev_priv, ring->irq_enable_mask);
}
spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
return true;
}
static void
hsw_vebox_put_irq(struct intel_engine_cs *ring)
{
struct drm_device *dev = ring->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
unsigned long flags;
spin_lock_irqsave(&dev_priv->irq_lock, flags);
if (--ring->irq_refcount == 0) {
I915_WRITE_IMR(ring, ~0);
gen6_disable_pm_irq(dev_priv, ring->irq_enable_mask);
}
spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
}
static bool
gen8_ring_get_irq(struct intel_engine_cs *ring)
{
struct drm_device *dev = ring->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
unsigned long flags;
if (WARN_ON(!intel_irqs_enabled(dev_priv)))
return false;
spin_lock_irqsave(&dev_priv->irq_lock, flags);
if (ring->irq_refcount++ == 0) {
if (HAS_L3_DPF(dev) && ring->id == RCS) {
I915_WRITE_IMR(ring,
~(ring->irq_enable_mask |
GT_RENDER_L3_PARITY_ERROR_INTERRUPT));
} else {
I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
}
POSTING_READ(RING_IMR(ring->mmio_base));
}
spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
return true;
}
static void
gen8_ring_put_irq(struct intel_engine_cs *ring)
{
struct drm_device *dev = ring->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
unsigned long flags;
spin_lock_irqsave(&dev_priv->irq_lock, flags);
if (--ring->irq_refcount == 0) {
if (HAS_L3_DPF(dev) && ring->id == RCS) {
I915_WRITE_IMR(ring,
~GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
} else {
I915_WRITE_IMR(ring, ~0);
}
POSTING_READ(RING_IMR(ring->mmio_base));
}
spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
}
static int
i965_dispatch_execbuffer(struct drm_i915_gem_request *req,
u64 offset, u32 length,
unsigned dispatch_flags)
{
struct intel_engine_cs *ring = req->ring;
int ret;
ret = intel_ring_begin(req, 2);
if (ret)
return ret;
intel_ring_emit(ring,
MI_BATCH_BUFFER_START |
MI_BATCH_GTT |
(dispatch_flags & I915_DISPATCH_SECURE ?
0 : MI_BATCH_NON_SECURE_I965));
intel_ring_emit(ring, offset);
intel_ring_advance(ring);
return 0;
}
/* Just userspace ABI convention to limit the wa batch bo to a resonable size */
#define I830_BATCH_LIMIT (256*1024)
#define I830_TLB_ENTRIES (2)
#define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
static int
i830_dispatch_execbuffer(struct drm_i915_gem_request *req,
u64 offset, u32 len,
unsigned dispatch_flags)
{
struct intel_engine_cs *ring = req->ring;
u32 cs_offset = ring->scratch.gtt_offset;
int ret;
ret = intel_ring_begin(req, 6);
if (ret)
return ret;
/* Evict the invalid PTE TLBs */
intel_ring_emit(ring, COLOR_BLT_CMD | BLT_WRITE_RGBA);
intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096);
intel_ring_emit(ring, I830_TLB_ENTRIES << 16 | 4); /* load each page */
intel_ring_emit(ring, cs_offset);
intel_ring_emit(ring, 0xdeadbeef);
intel_ring_emit(ring, MI_NOOP);
intel_ring_advance(ring);
if ((dispatch_flags & I915_DISPATCH_PINNED) == 0) {
if (len > I830_BATCH_LIMIT)
return -ENOSPC;
ret = intel_ring_begin(req, 6 + 2);
if (ret)
return ret;
/* Blit the batch (which has now all relocs applied) to the
* stable batch scratch bo area (so that the CS never
* stumbles over its tlb invalidation bug) ...
*/
intel_ring_emit(ring, SRC_COPY_BLT_CMD | BLT_WRITE_RGBA);
intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096);
intel_ring_emit(ring, DIV_ROUND_UP(len, 4096) << 16 | 4096);
intel_ring_emit(ring, cs_offset);
intel_ring_emit(ring, 4096);
intel_ring_emit(ring, offset);
intel_ring_emit(ring, MI_FLUSH);
intel_ring_emit(ring, MI_NOOP);
intel_ring_advance(ring);
/* ... and execute it. */
offset = cs_offset;
}
ret = intel_ring_begin(req, 4);
if (ret)
return ret;
intel_ring_emit(ring, MI_BATCH_BUFFER);
intel_ring_emit(ring, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
0 : MI_BATCH_NON_SECURE));
intel_ring_emit(ring, offset + len - 8);
intel_ring_emit(ring, MI_NOOP);
intel_ring_advance(ring);
return 0;
}
static int
i915_dispatch_execbuffer(struct drm_i915_gem_request *req,
u64 offset, u32 len,
unsigned dispatch_flags)
{
struct intel_engine_cs *ring = req->ring;
int ret;
ret = intel_ring_begin(req, 2);
if (ret)
return ret;
intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
intel_ring_emit(ring, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
0 : MI_BATCH_NON_SECURE));
intel_ring_advance(ring);
return 0;
}
static void cleanup_status_page(struct intel_engine_cs *ring)
{
struct drm_i915_gem_object *obj;
obj = ring->status_page.obj;
if (obj == NULL)
return;
kunmap(sg_page(obj->pages->sgl));
i915_gem_object_ggtt_unpin(obj);
drm_gem_object_unreference(&obj->base);
ring->status_page.obj = NULL;
}
static int init_status_page(struct intel_engine_cs *ring)
{
struct drm_i915_gem_object *obj;
if ((obj = ring->status_page.obj) == NULL) {
unsigned flags;
int ret;
obj = i915_gem_alloc_object(ring->dev, 4096);
if (obj == NULL) {
DRM_ERROR("Failed to allocate status page\n");
return -ENOMEM;
}
ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
if (ret)
goto err_unref;
flags = 0;
if (!HAS_LLC(ring->dev))
/* On g33, we cannot place HWS above 256MiB, so
* restrict its pinning to the low mappable arena.
* Though this restriction is not documented for
* gen4, gen5, or byt, they also behave similarly
* and hang if the HWS is placed at the top of the
* GTT. To generalise, it appears that all !llc
* platforms have issues with us placing the HWS
* above the mappable region (even though we never
* actualy map it).
*/
flags |= PIN_MAPPABLE;
ret = i915_gem_obj_ggtt_pin(obj, 4096, flags);
if (ret) {
err_unref:
drm_gem_object_unreference(&obj->base);
return ret;
}
ring->status_page.obj = obj;
}
ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(obj);
ring->status_page.page_addr = kmap(sg_page(obj->pages->sgl));
memset(ring->status_page.page_addr, 0, PAGE_SIZE);
DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
ring->name, ring->status_page.gfx_addr);
return 0;
}
static int init_phys_status_page(struct intel_engine_cs *ring)
{
struct drm_i915_private *dev_priv = ring->dev->dev_private;
if (!dev_priv->status_page_dmah) {
dev_priv->status_page_dmah =
drm_pci_alloc(ring->dev, PAGE_SIZE, PAGE_SIZE);
if (!dev_priv->status_page_dmah)
return -ENOMEM;
}
ring->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
memset(ring->status_page.page_addr, 0, PAGE_SIZE);
return 0;
}
void intel_unpin_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
{
iounmap(ringbuf->virtual_start);
ringbuf->virtual_start = NULL;
i915_gem_object_ggtt_unpin(ringbuf->obj);
}
int intel_pin_and_map_ringbuffer_obj(struct drm_device *dev,
struct intel_ringbuffer *ringbuf)
{
struct drm_i915_private *dev_priv = to_i915(dev);
struct drm_i915_gem_object *obj = ringbuf->obj;
int ret;
ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, PIN_MAPPABLE);
if (ret)
return ret;
ret = i915_gem_object_set_to_gtt_domain(obj, true);
if (ret) {
i915_gem_object_ggtt_unpin(obj);
return ret;
}
ringbuf->virtual_start = ioremap_wc(dev_priv->gtt.mappable_base +
i915_gem_obj_ggtt_offset(obj), ringbuf->size);
if (ringbuf->virtual_start == NULL) {
i915_gem_object_ggtt_unpin(obj);
return -EINVAL;
}
return 0;
}
void intel_destroy_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
{
drm_gem_object_unreference(&ringbuf->obj->base);
ringbuf->obj = NULL;
}
int intel_alloc_ringbuffer_obj(struct drm_device *dev,
struct intel_ringbuffer *ringbuf)
{
struct drm_i915_gem_object *obj;
obj = NULL;
if (!HAS_LLC(dev))
obj = i915_gem_object_create_stolen(dev, ringbuf->size);
if (obj == NULL)
obj = i915_gem_alloc_object(dev, ringbuf->size);
if (obj == NULL)
return -ENOMEM;
/* mark ring buffers as read-only from GPU side by default */
obj->gt_ro = 1;
ringbuf->obj = obj;
return 0;
}
static int intel_init_ring_buffer(struct drm_device *dev,
struct intel_engine_cs *ring)
{
struct intel_ringbuffer *ringbuf;
int ret;
WARN_ON(ring->buffer);
ringbuf = kzalloc(sizeof(*ringbuf), GFP_KERNEL);
if (!ringbuf)
return -ENOMEM;
ring->buffer = ringbuf;
ring->dev = dev;
INIT_LIST_HEAD(&ring->active_list);
INIT_LIST_HEAD(&ring->request_list);
INIT_LIST_HEAD(&ring->execlist_queue);
i915_gem_batch_pool_init(dev, &ring->batch_pool);
ringbuf->size = 32 * PAGE_SIZE;
ringbuf->ring = ring;
memset(ring->semaphore.sync_seqno, 0, sizeof(ring->semaphore.sync_seqno));
init_waitqueue_head(&ring->irq_queue);
if (I915_NEED_GFX_HWS(dev)) {
ret = init_status_page(ring);
if (ret)
goto error;
} else {
BUG_ON(ring->id != RCS);
ret = init_phys_status_page(ring);
if (ret)
goto error;
}
WARN_ON(ringbuf->obj);
ret = intel_alloc_ringbuffer_obj(dev, ringbuf);
if (ret) {
DRM_ERROR("Failed to allocate ringbuffer %s: %d\n",
ring->name, ret);
goto error;
}
ret = intel_pin_and_map_ringbuffer_obj(dev, ringbuf);
if (ret) {
DRM_ERROR("Failed to pin and map ringbuffer %s: %d\n",
ring->name, ret);
intel_destroy_ringbuffer_obj(ringbuf);
goto error;
}
/* Workaround an erratum on the i830 which causes a hang if
* the TAIL pointer points to within the last 2 cachelines
* of the buffer.
*/
ringbuf->effective_size = ringbuf->size;
if (IS_I830(dev) || IS_845G(dev))
ringbuf->effective_size -= 2 * CACHELINE_BYTES;
ret = i915_cmd_parser_init_ring(ring);
if (ret)
goto error;
return 0;
error:
kfree(ringbuf);
ring->buffer = NULL;
return ret;
}
void intel_cleanup_ring_buffer(struct intel_engine_cs *ring)
{
struct drm_i915_private *dev_priv;
struct intel_ringbuffer *ringbuf;
if (!intel_ring_initialized(ring))
return;
dev_priv = to_i915(ring->dev);
ringbuf = ring->buffer;
intel_stop_ring_buffer(ring);
WARN_ON(!IS_GEN2(ring->dev) && (I915_READ_MODE(ring) & MODE_IDLE) == 0);
intel_unpin_ringbuffer_obj(ringbuf);
intel_destroy_ringbuffer_obj(ringbuf);
if (ring->cleanup)
ring->cleanup(ring);
cleanup_status_page(ring);
i915_cmd_parser_fini_ring(ring);
i915_gem_batch_pool_fini(&ring->batch_pool);
kfree(ringbuf);
ring->buffer = NULL;
}
static int ring_wait_for_space(struct intel_engine_cs *ring, int n)
{
struct intel_ringbuffer *ringbuf = ring->buffer;
struct drm_i915_gem_request *request;
unsigned space;
int ret;
if (intel_ring_space(ringbuf) >= n)
return 0;
/* The whole point of reserving space is to not wait! */
WARN_ON(ringbuf->reserved_in_use);
list_for_each_entry(request, &ring->request_list, list) {
space = __intel_ring_space(request->postfix, ringbuf->tail,
ringbuf->size);
if (space >= n)
break;
}
if (WARN_ON(&request->list == &ring->request_list))
return -ENOSPC;
ret = i915_wait_request(request);
if (ret)
return ret;
ringbuf->space = space;
return 0;
}
static void __wrap_ring_buffer(struct intel_ringbuffer *ringbuf)
{
uint32_t __iomem *virt;
int rem = ringbuf->size - ringbuf->tail;
virt = ringbuf->virtual_start + ringbuf->tail;
rem /= 4;
while (rem--)
iowrite32(MI_NOOP, virt++);
ringbuf->tail = 0;
intel_ring_update_space(ringbuf);
}
int intel_ring_idle(struct intel_engine_cs *ring)
{
struct drm_i915_gem_request *req;
/* Wait upon the last request to be completed */
if (list_empty(&ring->request_list))
return 0;
req = list_entry(ring->request_list.prev,
struct drm_i915_gem_request,
list);
/* Make sure we do not trigger any retires */
return __i915_wait_request(req,
atomic_read(&to_i915(ring->dev)->gpu_error.reset_counter),
to_i915(ring->dev)->mm.interruptible,
NULL, NULL);
}
int intel_ring_alloc_request_extras(struct drm_i915_gem_request *request)
{
request->ringbuf = request->ring->buffer;
return 0;
}
int intel_ring_reserve_space(struct drm_i915_gem_request *request)
{
/*
* The first call merely notes the reserve request and is common for
* all back ends. The subsequent localised _begin() call actually
* ensures that the reservation is available. Without the begin, if
* the request creator immediately submitted the request without
* adding any commands to it then there might not actually be
* sufficient room for the submission commands.
*/
intel_ring_reserved_space_reserve(request->ringbuf, MIN_SPACE_FOR_ADD_REQUEST);
return intel_ring_begin(request, 0);
}
void intel_ring_reserved_space_reserve(struct intel_ringbuffer *ringbuf, int size)
{
WARN_ON(ringbuf->reserved_size);
WARN_ON(ringbuf->reserved_in_use);
ringbuf->reserved_size = size;
}
void intel_ring_reserved_space_cancel(struct intel_ringbuffer *ringbuf)
{
WARN_ON(ringbuf->reserved_in_use);
ringbuf->reserved_size = 0;
ringbuf->reserved_in_use = false;
}
void intel_ring_reserved_space_use(struct intel_ringbuffer *ringbuf)
{
WARN_ON(ringbuf->reserved_in_use);
ringbuf->reserved_in_use = true;
ringbuf->reserved_tail = ringbuf->tail;
}
void intel_ring_reserved_space_end(struct intel_ringbuffer *ringbuf)
{
WARN_ON(!ringbuf->reserved_in_use);
if (ringbuf->tail > ringbuf->reserved_tail) {
WARN(ringbuf->tail > ringbuf->reserved_tail + ringbuf->reserved_size,
"request reserved size too small: %d vs %d!\n",
ringbuf->tail - ringbuf->reserved_tail, ringbuf->reserved_size);
} else {
/*
* The ring was wrapped while the reserved space was in use.
* That means that some unknown amount of the ring tail was
* no-op filled and skipped. Thus simply adding the ring size
* to the tail and doing the above space check will not work.
* Rather than attempt to track how much tail was skipped,
* it is much simpler to say that also skipping the sanity
* check every once in a while is not a big issue.
*/
}
ringbuf->reserved_size = 0;
ringbuf->reserved_in_use = false;
}
static int __intel_ring_prepare(struct intel_engine_cs *ring, int bytes)
{
struct intel_ringbuffer *ringbuf = ring->buffer;
int remain_usable = ringbuf->effective_size - ringbuf->tail;
int remain_actual = ringbuf->size - ringbuf->tail;
int ret, total_bytes, wait_bytes = 0;
bool need_wrap = false;
if (ringbuf->reserved_in_use)
total_bytes = bytes;
else
total_bytes = bytes + ringbuf->reserved_size;
if (unlikely(bytes > remain_usable)) {
/*
* Not enough space for the basic request. So need to flush
* out the remainder and then wait for base + reserved.
*/
wait_bytes = remain_actual + total_bytes;
need_wrap = true;
} else {
if (unlikely(total_bytes > remain_usable)) {
/*
* The base request will fit but the reserved space
* falls off the end. So only need to to wait for the
* reserved size after flushing out the remainder.
*/
wait_bytes = remain_actual + ringbuf->reserved_size;
need_wrap = true;
} else if (total_bytes > ringbuf->space) {
/* No wrapping required, just waiting. */
wait_bytes = total_bytes;
}
}
if (wait_bytes) {
ret = ring_wait_for_space(ring, wait_bytes);
if (unlikely(ret))
return ret;
if (need_wrap)
__wrap_ring_buffer(ringbuf);
}
return 0;
}
int intel_ring_begin(struct drm_i915_gem_request *req,
int num_dwords)
{
struct intel_engine_cs *ring;
struct drm_i915_private *dev_priv;
int ret;
WARN_ON(req == NULL);
ring = req->ring;
dev_priv = ring->dev->dev_private;
ret = i915_gem_check_wedge(&dev_priv->gpu_error,
dev_priv->mm.interruptible);
if (ret)
return ret;
ret = __intel_ring_prepare(ring, num_dwords * sizeof(uint32_t));
if (ret)
return ret;
ring->buffer->space -= num_dwords * sizeof(uint32_t);
return 0;
}
/* Align the ring tail to a cacheline boundary */
int intel_ring_cacheline_align(struct drm_i915_gem_request *req)
{
struct intel_engine_cs *ring = req->ring;
int num_dwords = (ring->buffer->tail & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
int ret;
if (num_dwords == 0)
return 0;
num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
ret = intel_ring_begin(req, num_dwords);
if (ret)
return ret;
while (num_dwords--)
intel_ring_emit(ring, MI_NOOP);
intel_ring_advance(ring);
return 0;
}
void intel_ring_init_seqno(struct intel_engine_cs *ring, u32 seqno)
{
struct drm_device *dev = ring->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
if (INTEL_INFO(dev)->gen == 6 || INTEL_INFO(dev)->gen == 7) {
I915_WRITE(RING_SYNC_0(ring->mmio_base), 0);
I915_WRITE(RING_SYNC_1(ring->mmio_base), 0);
if (HAS_VEBOX(dev))
I915_WRITE(RING_SYNC_2(ring->mmio_base), 0);
}
ring->set_seqno(ring, seqno);
ring->hangcheck.seqno = seqno;
}
static void gen6_bsd_ring_write_tail(struct intel_engine_cs *ring,
u32 value)
{
struct drm_i915_private *dev_priv = ring->dev->dev_private;
/* Every tail move must follow the sequence below */
/* Disable notification that the ring is IDLE. The GT
* will then assume that it is busy and bring it out of rc6.
*/
I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
_MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
/* Clear the context id. Here be magic! */
I915_WRITE64(GEN6_BSD_RNCID, 0x0);
/* Wait for the ring not to be idle, i.e. for it to wake up. */
if (wait_for((I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL) &
GEN6_BSD_SLEEP_INDICATOR) == 0,
50))
DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
/* Now that the ring is fully powered up, update the tail */
I915_WRITE_TAIL(ring, value);
POSTING_READ(RING_TAIL(ring->mmio_base));
/* Let the ring send IDLE messages to the GT again,
* and so let it sleep to conserve power when idle.
*/
I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
_MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
}
static int gen6_bsd_ring_flush(struct drm_i915_gem_request *req,
u32 invalidate, u32 flush)
{
struct intel_engine_cs *ring = req->ring;
uint32_t cmd;
int ret;
ret = intel_ring_begin(req, 4);
if (ret)
return ret;
cmd = MI_FLUSH_DW;
if (INTEL_INFO(ring->dev)->gen >= 8)
cmd += 1;
/* We always require a command barrier so that subsequent
* commands, such as breadcrumb interrupts, are strictly ordered
* wrt the contents of the write cache being flushed to memory
* (and thus being coherent from the CPU).
*/
cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
/*
* Bspec vol 1c.5 - video engine command streamer:
* "If ENABLED, all TLBs will be invalidated once the flush
* operation is complete. This bit is only valid when the
* Post-Sync Operation field is a value of 1h or 3h."
*/
if (invalidate & I915_GEM_GPU_DOMAINS)
cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD;
intel_ring_emit(ring, cmd);
intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
if (INTEL_INFO(ring->dev)->gen >= 8) {
intel_ring_emit(ring, 0); /* upper addr */
intel_ring_emit(ring, 0); /* value */
} else {
intel_ring_emit(ring, 0);
intel_ring_emit(ring, MI_NOOP);
}
intel_ring_advance(ring);
return 0;
}
static int
gen8_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
u64 offset, u32 len,
unsigned dispatch_flags)
{
struct intel_engine_cs *ring = req->ring;
bool ppgtt = USES_PPGTT(ring->dev) &&
!(dispatch_flags & I915_DISPATCH_SECURE);
int ret;
ret = intel_ring_begin(req, 4);
if (ret)
return ret;
/* FIXME(BDW): Address space and security selectors. */
intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8));
intel_ring_emit(ring, lower_32_bits(offset));
intel_ring_emit(ring, upper_32_bits(offset));
intel_ring_emit(ring, MI_NOOP);
intel_ring_advance(ring);
return 0;
}
static int
hsw_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
u64 offset, u32 len,
unsigned dispatch_flags)
{
struct intel_engine_cs *ring = req->ring;
int ret;
ret = intel_ring_begin(req, 2);
if (ret)
return ret;
intel_ring_emit(ring,
MI_BATCH_BUFFER_START |
(dispatch_flags & I915_DISPATCH_SECURE ?
0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW));
/* bit0-7 is the length on GEN6+ */
intel_ring_emit(ring, offset);
intel_ring_advance(ring);
return 0;
}
static int
gen6_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
u64 offset, u32 len,
unsigned dispatch_flags)
{
struct intel_engine_cs *ring = req->ring;
int ret;
ret = intel_ring_begin(req, 2);
if (ret)
return ret;
intel_ring_emit(ring,
MI_BATCH_BUFFER_START |
(dispatch_flags & I915_DISPATCH_SECURE ?
0 : MI_BATCH_NON_SECURE_I965));
/* bit0-7 is the length on GEN6+ */
intel_ring_emit(ring, offset);
intel_ring_advance(ring);
return 0;
}
/* Blitter support (SandyBridge+) */
static int gen6_ring_flush(struct drm_i915_gem_request *req,
u32 invalidate, u32 flush)
{
struct intel_engine_cs *ring = req->ring;
struct drm_device *dev = ring->dev;
uint32_t cmd;
int ret;
ret = intel_ring_begin(req, 4);
if (ret)
return ret;
cmd = MI_FLUSH_DW;
if (INTEL_INFO(dev)->gen >= 8)
cmd += 1;
/* We always require a command barrier so that subsequent
* commands, such as breadcrumb interrupts, are strictly ordered
* wrt the contents of the write cache being flushed to memory
* (and thus being coherent from the CPU).
*/
cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
/*
* Bspec vol 1c.3 - blitter engine command streamer:
* "If ENABLED, all TLBs will be invalidated once the flush
* operation is complete. This bit is only valid when the
* Post-Sync Operation field is a value of 1h or 3h."
*/
if (invalidate & I915_GEM_DOMAIN_RENDER)
cmd |= MI_INVALIDATE_TLB;
intel_ring_emit(ring, cmd);
intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
if (INTEL_INFO(dev)->gen >= 8) {
intel_ring_emit(ring, 0); /* upper addr */
intel_ring_emit(ring, 0); /* value */
} else {
intel_ring_emit(ring, 0);
intel_ring_emit(ring, MI_NOOP);
}
intel_ring_advance(ring);
return 0;
}
int intel_init_render_ring_buffer(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_engine_cs *ring = &dev_priv->ring[RCS];
struct drm_i915_gem_object *obj;
int ret;
ring->name = "render ring";
ring->id = RCS;
ring->mmio_base = RENDER_RING_BASE;
if (INTEL_INFO(dev)->gen >= 8) {
if (i915_semaphore_is_enabled(dev)) {
obj = i915_gem_alloc_object(dev, 4096);
if (obj == NULL) {
DRM_ERROR("Failed to allocate semaphore bo. Disabling semaphores\n");
i915.semaphores = 0;
} else {
i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_NONBLOCK);
if (ret != 0) {
drm_gem_object_unreference(&obj->base);
DRM_ERROR("Failed to pin semaphore bo. Disabling semaphores\n");
i915.semaphores = 0;
} else
dev_priv->semaphore_obj = obj;
}
}
ring->init_context = intel_rcs_ctx_init;
ring->add_request = gen6_add_request;
ring->flush = gen8_render_ring_flush;
ring->irq_get = gen8_ring_get_irq;
ring->irq_put = gen8_ring_put_irq;
ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
ring->get_seqno = gen6_ring_get_seqno;
ring->set_seqno = ring_set_seqno;
if (i915_semaphore_is_enabled(dev)) {
WARN_ON(!dev_priv->semaphore_obj);
ring->semaphore.sync_to = gen8_ring_sync;
ring->semaphore.signal = gen8_rcs_signal;
GEN8_RING_SEMAPHORE_INIT;
}
} else if (INTEL_INFO(dev)->gen >= 6) {
ring->add_request = gen6_add_request;
ring->flush = gen7_render_ring_flush;
if (INTEL_INFO(dev)->gen == 6)
ring->flush = gen6_render_ring_flush;
ring->irq_get = gen6_ring_get_irq;
ring->irq_put = gen6_ring_put_irq;
ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
ring->get_seqno = gen6_ring_get_seqno;
ring->set_seqno = ring_set_seqno;
if (i915_semaphore_is_enabled(dev)) {
ring->semaphore.sync_to = gen6_ring_sync;
ring->semaphore.signal = gen6_signal;
/*
* The current semaphore is only applied on pre-gen8
* platform. And there is no VCS2 ring on the pre-gen8
* platform. So the semaphore between RCS and VCS2 is
* initialized as INVALID. Gen8 will initialize the
* sema between VCS2 and RCS later.
*/
ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_INVALID;
ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_RV;
ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_RB;
ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_RVE;
ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
ring->semaphore.mbox.signal[RCS] = GEN6_NOSYNC;
ring->semaphore.mbox.signal[VCS] = GEN6_VRSYNC;
ring->semaphore.mbox.signal[BCS] = GEN6_BRSYNC;
ring->semaphore.mbox.signal[VECS] = GEN6_VERSYNC;
ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
}
} else if (IS_GEN5(dev)) {
ring->add_request = pc_render_add_request;
ring->flush = gen4_render_ring_flush;
ring->get_seqno = pc_render_get_seqno;
ring->set_seqno = pc_render_set_seqno;
ring->irq_get = gen5_ring_get_irq;
ring->irq_put = gen5_ring_put_irq;
ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT |
GT_RENDER_PIPECTL_NOTIFY_INTERRUPT;
} else {
ring->add_request = i9xx_add_request;
if (INTEL_INFO(dev)->gen < 4)
ring->flush = gen2_render_ring_flush;
else
ring->flush = gen4_render_ring_flush;
ring->get_seqno = ring_get_seqno;
ring->set_seqno = ring_set_seqno;
if (IS_GEN2(dev)) {
ring->irq_get = i8xx_ring_get_irq;
ring->irq_put = i8xx_ring_put_irq;
} else {
ring->irq_get = i9xx_ring_get_irq;
ring->irq_put = i9xx_ring_put_irq;
}
ring->irq_enable_mask = I915_USER_INTERRUPT;
}
ring->write_tail = ring_write_tail;
if (IS_HASWELL(dev))
ring->dispatch_execbuffer = hsw_ring_dispatch_execbuffer;
else if (IS_GEN8(dev))
ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
else if (INTEL_INFO(dev)->gen >= 6)
ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
else if (INTEL_INFO(dev)->gen >= 4)
ring->dispatch_execbuffer = i965_dispatch_execbuffer;
else if (IS_I830(dev) || IS_845G(dev))
ring->dispatch_execbuffer = i830_dispatch_execbuffer;
else
ring->dispatch_execbuffer = i915_dispatch_execbuffer;
ring->init_hw = init_render_ring;
ring->cleanup = render_ring_cleanup;
/* Workaround batchbuffer to combat CS tlb bug. */
if (HAS_BROKEN_CS_TLB(dev)) {
obj = i915_gem_alloc_object(dev, I830_WA_SIZE);
if (obj == NULL) {
DRM_ERROR("Failed to allocate batch bo\n");
return -ENOMEM;
}
ret = i915_gem_obj_ggtt_pin(obj, 0, 0);
if (ret != 0) {
drm_gem_object_unreference(&obj->base);
DRM_ERROR("Failed to ping batch bo\n");
return ret;
}
ring->scratch.obj = obj;
ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(obj);
}
ret = intel_init_ring_buffer(dev, ring);
if (ret)
return ret;
if (INTEL_INFO(dev)->gen >= 5) {
ret = intel_init_pipe_control(ring);
if (ret)
return ret;
}
return 0;
}
int intel_init_bsd_ring_buffer(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_engine_cs *ring = &dev_priv->ring[VCS];
ring->name = "bsd ring";
ring->id = VCS;
ring->write_tail = ring_write_tail;
if (INTEL_INFO(dev)->gen >= 6) {
ring->mmio_base = GEN6_BSD_RING_BASE;
/* gen6 bsd needs a special wa for tail updates */
if (IS_GEN6(dev))
ring->write_tail = gen6_bsd_ring_write_tail;
ring->flush = gen6_bsd_ring_flush;
ring->add_request = gen6_add_request;
ring->get_seqno = gen6_ring_get_seqno;
ring->set_seqno = ring_set_seqno;
if (INTEL_INFO(dev)->gen >= 8) {
ring->irq_enable_mask =
GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
ring->irq_get = gen8_ring_get_irq;
ring->irq_put = gen8_ring_put_irq;
ring->dispatch_execbuffer =
gen8_ring_dispatch_execbuffer;
if (i915_semaphore_is_enabled(dev)) {
ring->semaphore.sync_to = gen8_ring_sync;
ring->semaphore.signal = gen8_xcs_signal;
GEN8_RING_SEMAPHORE_INIT;
}
} else {
ring->irq_enable_mask = GT_BSD_USER_INTERRUPT;
ring->irq_get = gen6_ring_get_irq;
ring->irq_put = gen6_ring_put_irq;
ring->dispatch_execbuffer =
gen6_ring_dispatch_execbuffer;
if (i915_semaphore_is_enabled(dev)) {
ring->semaphore.sync_to = gen6_ring_sync;
ring->semaphore.signal = gen6_signal;
ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VR;
ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_INVALID;
ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VB;
ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_VVE;
ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
ring->semaphore.mbox.signal[RCS] = GEN6_RVSYNC;
ring->semaphore.mbox.signal[VCS] = GEN6_NOSYNC;
ring->semaphore.mbox.signal[BCS] = GEN6_BVSYNC;
ring->semaphore.mbox.signal[VECS] = GEN6_VEVSYNC;
ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
}
}
} else {
ring->mmio_base = BSD_RING_BASE;
ring->flush = bsd_ring_flush;
ring->add_request = i9xx_add_request;
ring->get_seqno = ring_get_seqno;
ring->set_seqno = ring_set_seqno;
if (IS_GEN5(dev)) {
ring->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
ring->irq_get = gen5_ring_get_irq;
ring->irq_put = gen5_ring_put_irq;
} else {
ring->irq_enable_mask = I915_BSD_USER_INTERRUPT;
ring->irq_get = i9xx_ring_get_irq;
ring->irq_put = i9xx_ring_put_irq;
}
ring->dispatch_execbuffer = i965_dispatch_execbuffer;
}
ring->init_hw = init_ring_common;
return intel_init_ring_buffer(dev, ring);
}
/**
* Initialize the second BSD ring (eg. Broadwell GT3, Skylake GT3)
*/
int intel_init_bsd2_ring_buffer(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_engine_cs *ring = &dev_priv->ring[VCS2];
ring->name = "bsd2 ring";
ring->id = VCS2;
ring->write_tail = ring_write_tail;
ring->mmio_base = GEN8_BSD2_RING_BASE;
ring->flush = gen6_bsd_ring_flush;
ring->add_request = gen6_add_request;
ring->get_seqno = gen6_ring_get_seqno;
ring->set_seqno = ring_set_seqno;
ring->irq_enable_mask =
GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
ring->irq_get = gen8_ring_get_irq;
ring->irq_put = gen8_ring_put_irq;
ring->dispatch_execbuffer =
gen8_ring_dispatch_execbuffer;
if (i915_semaphore_is_enabled(dev)) {
ring->semaphore.sync_to = gen8_ring_sync;
ring->semaphore.signal = gen8_xcs_signal;
GEN8_RING_SEMAPHORE_INIT;
}
ring->init_hw = init_ring_common;
return intel_init_ring_buffer(dev, ring);
}
int intel_init_blt_ring_buffer(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_engine_cs *ring = &dev_priv->ring[BCS];
ring->name = "blitter ring";
ring->id = BCS;
ring->mmio_base = BLT_RING_BASE;
ring->write_tail = ring_write_tail;
ring->flush = gen6_ring_flush;
ring->add_request = gen6_add_request;
ring->get_seqno = gen6_ring_get_seqno;
ring->set_seqno = ring_set_seqno;
if (INTEL_INFO(dev)->gen >= 8) {
ring->irq_enable_mask =
GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
ring->irq_get = gen8_ring_get_irq;
ring->irq_put = gen8_ring_put_irq;
ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
if (i915_semaphore_is_enabled(dev)) {
ring->semaphore.sync_to = gen8_ring_sync;
ring->semaphore.signal = gen8_xcs_signal;
GEN8_RING_SEMAPHORE_INIT;
}
} else {
ring->irq_enable_mask = GT_BLT_USER_INTERRUPT;
ring->irq_get = gen6_ring_get_irq;
ring->irq_put = gen6_ring_put_irq;
ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
if (i915_semaphore_is_enabled(dev)) {
ring->semaphore.signal = gen6_signal;
ring->semaphore.sync_to = gen6_ring_sync;
/*
* The current semaphore is only applied on pre-gen8
* platform. And there is no VCS2 ring on the pre-gen8
* platform. So the semaphore between BCS and VCS2 is
* initialized as INVALID. Gen8 will initialize the
* sema between BCS and VCS2 later.
*/
ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_BR;
ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_BV;
ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_INVALID;
ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_BVE;
ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
ring->semaphore.mbox.signal[RCS] = GEN6_RBSYNC;
ring->semaphore.mbox.signal[VCS] = GEN6_VBSYNC;
ring->semaphore.mbox.signal[BCS] = GEN6_NOSYNC;
ring->semaphore.mbox.signal[VECS] = GEN6_VEBSYNC;
ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
}
}
ring->init_hw = init_ring_common;
return intel_init_ring_buffer(dev, ring);
}
int intel_init_vebox_ring_buffer(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_engine_cs *ring = &dev_priv->ring[VECS];
ring->name = "video enhancement ring";
ring->id = VECS;
ring->mmio_base = VEBOX_RING_BASE;
ring->write_tail = ring_write_tail;
ring->flush = gen6_ring_flush;
ring->add_request = gen6_add_request;
ring->get_seqno = gen6_ring_get_seqno;
ring->set_seqno = ring_set_seqno;
if (INTEL_INFO(dev)->gen >= 8) {
ring->irq_enable_mask =
GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
ring->irq_get = gen8_ring_get_irq;
ring->irq_put = gen8_ring_put_irq;
ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
if (i915_semaphore_is_enabled(dev)) {
ring->semaphore.sync_to = gen8_ring_sync;
ring->semaphore.signal = gen8_xcs_signal;
GEN8_RING_SEMAPHORE_INIT;
}
} else {
ring->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
ring->irq_get = hsw_vebox_get_irq;
ring->irq_put = hsw_vebox_put_irq;
ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
if (i915_semaphore_is_enabled(dev)) {
ring->semaphore.sync_to = gen6_ring_sync;
ring->semaphore.signal = gen6_signal;
ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VER;
ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_VEV;
ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VEB;
ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_INVALID;
ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
ring->semaphore.mbox.signal[RCS] = GEN6_RVESYNC;
ring->semaphore.mbox.signal[VCS] = GEN6_VVESYNC;
ring->semaphore.mbox.signal[BCS] = GEN6_BVESYNC;
ring->semaphore.mbox.signal[VECS] = GEN6_NOSYNC;
ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
}
}
ring->init_hw = init_ring_common;
return intel_init_ring_buffer(dev, ring);
}
int
intel_ring_flush_all_caches(struct drm_i915_gem_request *req)
{
struct intel_engine_cs *ring = req->ring;
int ret;
if (!ring->gpu_caches_dirty)
return 0;
ret = ring->flush(req, 0, I915_GEM_GPU_DOMAINS);
if (ret)
return ret;
trace_i915_gem_ring_flush(req, 0, I915_GEM_GPU_DOMAINS);
ring->gpu_caches_dirty = false;
return 0;
}
int
intel_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
{
struct intel_engine_cs *ring = req->ring;
uint32_t flush_domains;
int ret;
flush_domains = 0;
if (ring->gpu_caches_dirty)
flush_domains = I915_GEM_GPU_DOMAINS;
ret = ring->flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
if (ret)
return ret;
trace_i915_gem_ring_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
ring->gpu_caches_dirty = false;
return 0;
}
void
intel_stop_ring_buffer(struct intel_engine_cs *ring)
{
int ret;
if (!intel_ring_initialized(ring))
return;
ret = intel_ring_idle(ring);
if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
ring->name, ret);
stop_ring(ring);
}