linux/drivers/net/wireless/ath/ath6kl/htc_hif.c
Vasanthakumar Thiagarajan 4a005c3ed0 ath6kl: Moe virt_scat from hif_dev_scat_sup_info to hif_scatter_req
Signed-off-by: Vasanthakumar Thiagarajan <vthiagar@qca.qualcomm.com>
Signed-off-by: Kalle Valo <kvalo@qca.qualcomm.com>
2011-08-09 19:45:20 +03:00

745 lines
19 KiB
C

/*
* Copyright (c) 2007-2011 Atheros Communications Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include "core.h"
#include "target.h"
#include "hif-ops.h"
#include "htc_hif.h"
#include "debug.h"
#define MAILBOX_FOR_BLOCK_SIZE 1
#define ATH6KL_TIME_QUANTUM 10 /* in ms */
static void ath6kl_add_io_pkt(struct ath6kl_device *dev,
struct htc_packet *packet)
{
spin_lock_bh(&dev->lock);
list_add_tail(&packet->list, &dev->reg_io);
spin_unlock_bh(&dev->lock);
}
static struct htc_packet *ath6kl_get_io_pkt(struct ath6kl_device *dev)
{
struct htc_packet *packet = NULL;
spin_lock_bh(&dev->lock);
if (!list_empty(&dev->reg_io)) {
packet = list_first_entry(&dev->reg_io,
struct htc_packet, list);
list_del(&packet->list);
}
spin_unlock_bh(&dev->lock);
return packet;
}
static int ath6kldev_cp_scat_dma_buf(struct hif_scatter_req *req, bool from_dma)
{
u8 *buf;
int i;
buf = req->virt_dma_buf;
for (i = 0; i < req->scat_entries; i++) {
if (from_dma)
memcpy(req->scat_list[i].buf, buf,
req->scat_list[i].len);
else
memcpy(buf, req->scat_list[i].buf,
req->scat_list[i].len);
buf += req->scat_list[i].len;
}
return 0;
}
int ath6kldev_rw_comp_handler(void *context, int status)
{
struct htc_packet *packet = context;
ath6kl_dbg(ATH6KL_DBG_HTC_RECV,
"ath6kldev_rw_comp_handler (pkt:0x%p , status: %d\n",
packet, status);
packet->status = status;
packet->completion(packet->context, packet);
return 0;
}
static int ath6kldev_proc_dbg_intr(struct ath6kl_device *dev)
{
u32 dummy;
int status;
ath6kl_err("target debug interrupt\n");
ath6kl_target_failure(dev->ar);
/*
* read counter to clear the interrupt, the debug error interrupt is
* counter 0.
*/
status = hif_read_write_sync(dev->ar, COUNT_DEC_ADDRESS,
(u8 *)&dummy, 4, HIF_RD_SYNC_BYTE_INC);
if (status)
WARN_ON(1);
return status;
}
/* mailbox recv message polling */
int ath6kldev_poll_mboxmsg_rx(struct ath6kl_device *dev, u32 *lk_ahd,
int timeout)
{
struct ath6kl_irq_proc_registers *rg;
int status = 0, i;
u8 htc_mbox = 1 << HTC_MAILBOX;
for (i = timeout / ATH6KL_TIME_QUANTUM; i > 0; i--) {
/* this is the standard HIF way, load the reg table */
status = hif_read_write_sync(dev->ar, HOST_INT_STATUS_ADDRESS,
(u8 *) &dev->irq_proc_reg,
sizeof(dev->irq_proc_reg),
HIF_RD_SYNC_BYTE_INC);
if (status) {
ath6kl_err("failed to read reg table\n");
return status;
}
/* check for MBOX data and valid lookahead */
if (dev->irq_proc_reg.host_int_status & htc_mbox) {
if (dev->irq_proc_reg.rx_lkahd_valid &
htc_mbox) {
/*
* Mailbox has a message and the look ahead
* is valid.
*/
rg = &dev->irq_proc_reg;
*lk_ahd =
le32_to_cpu(rg->rx_lkahd[HTC_MAILBOX]);
break;
}
}
/* delay a little */
mdelay(ATH6KL_TIME_QUANTUM);
ath6kl_dbg(ATH6KL_DBG_HTC_RECV, "retry mbox poll : %d\n", i);
}
if (i == 0) {
ath6kl_err("timeout waiting for recv message\n");
status = -ETIME;
/* check if the target asserted */
if (dev->irq_proc_reg.counter_int_status &
ATH6KL_TARGET_DEBUG_INTR_MASK)
/*
* Target failure handler will be called in case of
* an assert.
*/
ath6kldev_proc_dbg_intr(dev);
}
return status;
}
/*
* Disable packet reception (used in case the host runs out of buffers)
* using the interrupt enable registers through the host I/F
*/
int ath6kldev_rx_control(struct ath6kl_device *dev, bool enable_rx)
{
struct ath6kl_irq_enable_reg regs;
int status = 0;
/* take the lock to protect interrupt enable shadows */
spin_lock_bh(&dev->lock);
if (enable_rx)
dev->irq_en_reg.int_status_en |=
SM(INT_STATUS_ENABLE_MBOX_DATA, 0x01);
else
dev->irq_en_reg.int_status_en &=
~SM(INT_STATUS_ENABLE_MBOX_DATA, 0x01);
memcpy(&regs, &dev->irq_en_reg, sizeof(regs));
spin_unlock_bh(&dev->lock);
status = hif_read_write_sync(dev->ar, INT_STATUS_ENABLE_ADDRESS,
&regs.int_status_en,
sizeof(struct ath6kl_irq_enable_reg),
HIF_WR_SYNC_BYTE_INC);
return status;
}
static void ath6kldev_rw_async_handler(struct htc_target *target,
struct htc_packet *packet)
{
struct ath6kl_device *dev = target->dev;
struct hif_scatter_req *req = packet->pkt_cntxt;
req->status = packet->status;
ath6kl_add_io_pkt(dev, packet);
req->complete(target, req);
}
static int ath6kldev_rw_scatter(struct ath6kl *ar, struct hif_scatter_req *req)
{
struct ath6kl_device *dev = ar->htc_target->dev;
struct htc_packet *packet = NULL;
int status = 0;
u32 request = req->req;
u8 *virt_dma_buf;
if (!req->len)
return 0;
if (request & HIF_ASYNCHRONOUS) {
/* use an I/O packet to carry this request */
packet = ath6kl_get_io_pkt(dev);
if (!packet) {
status = -ENOMEM;
goto out;
}
packet->pkt_cntxt = req;
packet->completion = ath6kldev_rw_async_handler;
packet->context = ar->htc_target;
}
virt_dma_buf = req->virt_dma_buf;
if (request & HIF_ASYNCHRONOUS)
status = hif_write_async(dev->ar, req->addr, virt_dma_buf,
req->len, request, packet);
else
status = hif_read_write_sync(dev->ar, req->addr, virt_dma_buf,
req->len, request);
out:
if (status)
if (request & HIF_ASYNCHRONOUS) {
if (packet != NULL)
ath6kl_add_io_pkt(dev, packet);
req->status = status;
req->complete(ar->htc_target, req);
status = 0;
}
return status;
}
int ath6kldev_submit_scat_req(struct ath6kl_device *dev,
struct hif_scatter_req *scat_req, bool read)
{
int status = 0;
if (read) {
scat_req->req = HIF_RD_SYNC_BLOCK_FIX;
scat_req->addr = dev->ar->mbox_info.htc_addr;
} else {
scat_req->req = HIF_WR_ASYNC_BLOCK_INC;
scat_req->addr =
(scat_req->len > HIF_MBOX_WIDTH) ?
dev->ar->mbox_info.htc_ext_addr :
dev->ar->mbox_info.htc_addr;
}
ath6kl_dbg((ATH6KL_DBG_HTC_RECV | ATH6KL_DBG_HTC_SEND),
"ath6kldev_submit_scat_req, entries: %d, total len: %d mbox:0x%X (mode: %s : %s)\n",
scat_req->scat_entries, scat_req->len,
scat_req->addr, !read ? "async" : "sync",
(read) ? "rd" : "wr");
if (!read && scat_req->virt_scat)
status = ath6kldev_cp_scat_dma_buf(scat_req, false);
if (status) {
if (!read) {
scat_req->status = status;
scat_req->complete(dev->ar->htc_target, scat_req);
return 0;
}
return status;
}
if (scat_req->virt_scat)
status = ath6kldev_rw_scatter(dev->ar, scat_req);
else
status = ath6kl_hif_scat_req_rw(dev->ar, scat_req);
if (read) {
/* in sync mode, we can touch the scatter request */
scat_req->status = status;
if (!status && scat_req->virt_scat)
scat_req->status =
ath6kldev_cp_scat_dma_buf(scat_req, true);
}
return status;
}
int ath6kldev_setup_msg_bndl(struct ath6kl_device *dev, int max_msg_per_trans)
{
return ath6kl_hif_enable_scatter(dev->ar, &dev->hif_scat_info);
}
static int ath6kldev_proc_counter_intr(struct ath6kl_device *dev)
{
u8 counter_int_status;
ath6kl_dbg(ATH6KL_DBG_IRQ, "counter interrupt\n");
counter_int_status = dev->irq_proc_reg.counter_int_status &
dev->irq_en_reg.cntr_int_status_en;
ath6kl_dbg(ATH6KL_DBG_IRQ,
"valid interrupt source(s) in COUNTER_INT_STATUS: 0x%x\n",
counter_int_status);
/*
* NOTE: other modules like GMBOX may use the counter interrupt for
* credit flow control on other counters, we only need to check for
* the debug assertion counter interrupt.
*/
if (counter_int_status & ATH6KL_TARGET_DEBUG_INTR_MASK)
return ath6kldev_proc_dbg_intr(dev);
return 0;
}
static int ath6kldev_proc_err_intr(struct ath6kl_device *dev)
{
int status;
u8 error_int_status;
u8 reg_buf[4];
ath6kl_dbg(ATH6KL_DBG_IRQ, "error interrupt\n");
error_int_status = dev->irq_proc_reg.error_int_status & 0x0F;
if (!error_int_status) {
WARN_ON(1);
return -EIO;
}
ath6kl_dbg(ATH6KL_DBG_IRQ,
"valid interrupt source(s) in ERROR_INT_STATUS: 0x%x\n",
error_int_status);
if (MS(ERROR_INT_STATUS_WAKEUP, error_int_status))
ath6kl_dbg(ATH6KL_DBG_IRQ, "error : wakeup\n");
if (MS(ERROR_INT_STATUS_RX_UNDERFLOW, error_int_status))
ath6kl_err("rx underflow\n");
if (MS(ERROR_INT_STATUS_TX_OVERFLOW, error_int_status))
ath6kl_err("tx overflow\n");
/* Clear the interrupt */
dev->irq_proc_reg.error_int_status &= ~error_int_status;
/* set W1C value to clear the interrupt, this hits the register first */
reg_buf[0] = error_int_status;
reg_buf[1] = 0;
reg_buf[2] = 0;
reg_buf[3] = 0;
status = hif_read_write_sync(dev->ar, ERROR_INT_STATUS_ADDRESS,
reg_buf, 4, HIF_WR_SYNC_BYTE_FIX);
if (status)
WARN_ON(1);
return status;
}
static int ath6kldev_proc_cpu_intr(struct ath6kl_device *dev)
{
int status;
u8 cpu_int_status;
u8 reg_buf[4];
ath6kl_dbg(ATH6KL_DBG_IRQ, "cpu interrupt\n");
cpu_int_status = dev->irq_proc_reg.cpu_int_status &
dev->irq_en_reg.cpu_int_status_en;
if (!cpu_int_status) {
WARN_ON(1);
return -EIO;
}
ath6kl_dbg(ATH6KL_DBG_IRQ,
"valid interrupt source(s) in CPU_INT_STATUS: 0x%x\n",
cpu_int_status);
/* Clear the interrupt */
dev->irq_proc_reg.cpu_int_status &= ~cpu_int_status;
/*
* Set up the register transfer buffer to hit the register 4 times ,
* this is done to make the access 4-byte aligned to mitigate issues
* with host bus interconnects that restrict bus transfer lengths to
* be a multiple of 4-bytes.
*/
/* set W1C value to clear the interrupt, this hits the register first */
reg_buf[0] = cpu_int_status;
/* the remaining are set to zero which have no-effect */
reg_buf[1] = 0;
reg_buf[2] = 0;
reg_buf[3] = 0;
status = hif_read_write_sync(dev->ar, CPU_INT_STATUS_ADDRESS,
reg_buf, 4, HIF_WR_SYNC_BYTE_FIX);
if (status)
WARN_ON(1);
return status;
}
/* process pending interrupts synchronously */
static int proc_pending_irqs(struct ath6kl_device *dev, bool *done)
{
struct ath6kl_irq_proc_registers *rg;
int status = 0;
u8 host_int_status = 0;
u32 lk_ahd = 0;
u8 htc_mbox = 1 << HTC_MAILBOX;
ath6kl_dbg(ATH6KL_DBG_IRQ, "proc_pending_irqs: (dev: 0x%p)\n", dev);
/*
* NOTE: HIF implementation guarantees that the context of this
* call allows us to perform SYNCHRONOUS I/O, that is we can block,
* sleep or call any API that can block or switch thread/task
* contexts. This is a fully schedulable context.
*/
/*
* Process pending intr only when int_status_en is clear, it may
* result in unnecessary bus transaction otherwise. Target may be
* unresponsive at the time.
*/
if (dev->irq_en_reg.int_status_en) {
/*
* Read the first 28 bytes of the HTC register table. This
* will yield us the value of different int status
* registers and the lookahead registers.
*
* length = sizeof(int_status) + sizeof(cpu_int_status)
* + sizeof(error_int_status) +
* sizeof(counter_int_status) +
* sizeof(mbox_frame) + sizeof(rx_lkahd_valid)
* + sizeof(hole) + sizeof(rx_lkahd) +
* sizeof(int_status_en) +
* sizeof(cpu_int_status_en) +
* sizeof(err_int_status_en) +
* sizeof(cntr_int_status_en);
*/
status = hif_read_write_sync(dev->ar, HOST_INT_STATUS_ADDRESS,
(u8 *) &dev->irq_proc_reg,
sizeof(dev->irq_proc_reg),
HIF_RD_SYNC_BYTE_INC);
if (status)
goto out;
if (AR_DBG_LVL_CHECK(ATH6KL_DBG_IRQ))
ath6kl_dump_registers(dev, &dev->irq_proc_reg,
&dev->irq_en_reg);
/* Update only those registers that are enabled */
host_int_status = dev->irq_proc_reg.host_int_status &
dev->irq_en_reg.int_status_en;
/* Look at mbox status */
if (host_int_status & htc_mbox) {
/*
* Mask out pending mbox value, we use "lookAhead as
* the real flag for mbox processing.
*/
host_int_status &= ~htc_mbox;
if (dev->irq_proc_reg.rx_lkahd_valid &
htc_mbox) {
rg = &dev->irq_proc_reg;
lk_ahd = le32_to_cpu(rg->rx_lkahd[HTC_MAILBOX]);
if (!lk_ahd)
ath6kl_err("lookAhead is zero!\n");
}
}
}
if (!host_int_status && !lk_ahd) {
*done = true;
goto out;
}
if (lk_ahd) {
int fetched = 0;
ath6kl_dbg(ATH6KL_DBG_IRQ,
"pending mailbox msg, lk_ahd: 0x%X\n", lk_ahd);
/*
* Mailbox Interrupt, the HTC layer may issue async
* requests to empty the mailbox. When emptying the recv
* mailbox we use the async handler above called from the
* completion routine of the callers read request. This can
* improve performance by reducing context switching when
* we rapidly pull packets.
*/
status = dev->msg_pending(dev->htc_cnxt, &lk_ahd, &fetched);
if (status)
goto out;
if (!fetched)
/*
* HTC could not pull any messages out due to lack
* of resources.
*/
dev->chk_irq_status_cnt = 0;
}
/* now handle the rest of them */
ath6kl_dbg(ATH6KL_DBG_IRQ,
"valid interrupt source(s) for other interrupts: 0x%x\n",
host_int_status);
if (MS(HOST_INT_STATUS_CPU, host_int_status)) {
/* CPU Interrupt */
status = ath6kldev_proc_cpu_intr(dev);
if (status)
goto out;
}
if (MS(HOST_INT_STATUS_ERROR, host_int_status)) {
/* Error Interrupt */
status = ath6kldev_proc_err_intr(dev);
if (status)
goto out;
}
if (MS(HOST_INT_STATUS_COUNTER, host_int_status))
/* Counter Interrupt */
status = ath6kldev_proc_counter_intr(dev);
out:
/*
* An optimization to bypass reading the IRQ status registers
* unecessarily which can re-wake the target, if upper layers
* determine that we are in a low-throughput mode, we can rely on
* taking another interrupt rather than re-checking the status
* registers which can re-wake the target.
*
* NOTE : for host interfaces that makes use of detecting pending
* mbox messages at hif can not use this optimization due to
* possible side effects, SPI requires the host to drain all
* messages from the mailbox before exiting the ISR routine.
*/
ath6kl_dbg(ATH6KL_DBG_IRQ,
"bypassing irq status re-check, forcing done\n");
*done = true;
ath6kl_dbg(ATH6KL_DBG_IRQ,
"proc_pending_irqs: (done:%d, status=%d\n", *done, status);
return status;
}
/* interrupt handler, kicks off all interrupt processing */
int ath6kldev_intr_bh_handler(struct ath6kl *ar)
{
struct ath6kl_device *dev = ar->htc_target->dev;
int status = 0;
bool done = false;
/*
* Reset counter used to flag a re-scan of IRQ status registers on
* the target.
*/
dev->chk_irq_status_cnt = 0;
/*
* IRQ processing is synchronous, interrupt status registers can be
* re-read.
*/
while (!done) {
status = proc_pending_irqs(dev, &done);
if (status)
break;
}
return status;
}
static int ath6kldev_enable_intrs(struct ath6kl_device *dev)
{
struct ath6kl_irq_enable_reg regs;
int status;
spin_lock_bh(&dev->lock);
/* Enable all but ATH6KL CPU interrupts */
dev->irq_en_reg.int_status_en =
SM(INT_STATUS_ENABLE_ERROR, 0x01) |
SM(INT_STATUS_ENABLE_CPU, 0x01) |
SM(INT_STATUS_ENABLE_COUNTER, 0x01);
/*
* NOTE: There are some cases where HIF can do detection of
* pending mbox messages which is disabled now.
*/
dev->irq_en_reg.int_status_en |= SM(INT_STATUS_ENABLE_MBOX_DATA, 0x01);
/* Set up the CPU Interrupt status Register */
dev->irq_en_reg.cpu_int_status_en = 0;
/* Set up the Error Interrupt status Register */
dev->irq_en_reg.err_int_status_en =
SM(ERROR_STATUS_ENABLE_RX_UNDERFLOW, 0x01) |
SM(ERROR_STATUS_ENABLE_TX_OVERFLOW, 0x1);
/*
* Enable Counter interrupt status register to get fatal errors for
* debugging.
*/
dev->irq_en_reg.cntr_int_status_en = SM(COUNTER_INT_STATUS_ENABLE_BIT,
ATH6KL_TARGET_DEBUG_INTR_MASK);
memcpy(&regs, &dev->irq_en_reg, sizeof(regs));
spin_unlock_bh(&dev->lock);
status = hif_read_write_sync(dev->ar, INT_STATUS_ENABLE_ADDRESS,
&regs.int_status_en, sizeof(regs),
HIF_WR_SYNC_BYTE_INC);
if (status)
ath6kl_err("failed to update interrupt ctl reg err: %d\n",
status);
return status;
}
int ath6kldev_disable_intrs(struct ath6kl_device *dev)
{
struct ath6kl_irq_enable_reg regs;
spin_lock_bh(&dev->lock);
/* Disable all interrupts */
dev->irq_en_reg.int_status_en = 0;
dev->irq_en_reg.cpu_int_status_en = 0;
dev->irq_en_reg.err_int_status_en = 0;
dev->irq_en_reg.cntr_int_status_en = 0;
memcpy(&regs, &dev->irq_en_reg, sizeof(regs));
spin_unlock_bh(&dev->lock);
return hif_read_write_sync(dev->ar, INT_STATUS_ENABLE_ADDRESS,
&regs.int_status_en, sizeof(regs),
HIF_WR_SYNC_BYTE_INC);
}
/* enable device interrupts */
int ath6kldev_unmask_intrs(struct ath6kl_device *dev)
{
int status = 0;
/*
* Make sure interrupt are disabled before unmasking at the HIF
* layer. The rationale here is that between device insertion
* (where we clear the interrupts the first time) and when HTC
* is finally ready to handle interrupts, other software can perform
* target "soft" resets. The ATH6KL interrupt enables reset back to an
* "enabled" state when this happens.
*/
ath6kldev_disable_intrs(dev);
/* unmask the host controller interrupts */
ath6kl_hif_irq_enable(dev->ar);
status = ath6kldev_enable_intrs(dev);
return status;
}
/* disable all device interrupts */
int ath6kldev_mask_intrs(struct ath6kl_device *dev)
{
/*
* Mask the interrupt at the HIF layer to avoid any stray interrupt
* taken while we zero out our shadow registers in
* ath6kldev_disable_intrs().
*/
ath6kl_hif_irq_disable(dev->ar);
return ath6kldev_disable_intrs(dev);
}
int ath6kldev_setup(struct ath6kl_device *dev)
{
int status = 0;
int i;
struct htc_packet *packet;
/* initialize our free list of IO packets */
INIT_LIST_HEAD(&dev->reg_io);
spin_lock_init(&dev->lock);
/* carve up register I/O packets (these are for ASYNC register I/O ) */
for (i = 0; i < ATH6KL_MAX_REG_IO_BUFFERS; i++) {
packet = &dev->reg_io_buf[i].packet;
set_htc_rxpkt_info(packet, dev, dev->reg_io_buf[i].buf,
ATH6KL_REG_IO_BUFFER_SIZE, 0);
ath6kl_add_io_pkt(dev, packet);
}
/*
* NOTE: we actually get the block size of a mailbox other than 0,
* for SDIO the block size on mailbox 0 is artificially set to 1.
* So we use the block size that is set for the other 3 mailboxes.
*/
dev->block_sz = dev->ar->mbox_info.block_size;
/* must be a power of 2 */
if ((dev->block_sz & (dev->block_sz - 1)) != 0) {
WARN_ON(1);
goto fail_setup;
}
/* assemble mask, used for padding to a block */
dev->block_mask = dev->block_sz - 1;
ath6kl_dbg(ATH6KL_DBG_TRC, "block size: %d, mbox addr:0x%X\n",
dev->block_sz, dev->ar->mbox_info.htc_addr);
ath6kl_dbg(ATH6KL_DBG_TRC,
"hif interrupt processing is sync only\n");
status = ath6kldev_disable_intrs(dev);
fail_setup:
return status;
}