62a679cb28
Currently __cpu_setup conditionally initializes the address authentication keys and enables them in SCTLR_EL1, doing so differently for the primary CPU and secondary CPUs, and skipping this work for CPUs returning from an idle state. For the latter case, cpu_do_resume restores the keys and SCTLR_EL1 value after the MMU has been enabled. This flow is rather difficult to follow, so instead let's move the primary and secondary CPU initialization into their respective boot paths. By following the example of cpu_do_resume and doing so once the MMU is enabled, we can always initialize the keys from the values in thread_struct, and avoid the machinery necessary to pass the keys in secondary_data or open-coding initialization for the boot CPU. This means we perform an additional RMW of SCTLR_EL1, but we already do this in the cpu_do_resume path, and for other features in cpufeature.c, so this isn't a major concern in a bringup path. Note that even while the enable bits are clear, the key registers are accessible. As this now renders the argument to __cpu_setup redundant, let's also remove that entirely. Future extensions can follow a similar approach to initialize values that differ for primary/secondary CPUs. Signed-off-by: Mark Rutland <mark.rutland@arm.com> Tested-by: Amit Daniel Kachhap <amit.kachhap@arm.com> Reviewed-by: Amit Daniel Kachhap <amit.kachhap@arm.com> Cc: Amit Daniel Kachhap <amit.kachhap@arm.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: James Morse <james.morse@arm.com> Cc: Suzuki K Poulose <suzuki.poulose@arm.com> Cc: Will Deacon <will@kernel.org> Link: https://lore.kernel.org/r/20200423101606.37601-3-mark.rutland@arm.com Signed-off-by: Will Deacon <will@kernel.org>
160 lines
4.1 KiB
C
160 lines
4.1 KiB
C
/* SPDX-License-Identifier: GPL-2.0-only */
|
|
/*
|
|
* Copyright (C) 2012 ARM Ltd.
|
|
*/
|
|
#ifndef __ASM_SMP_H
|
|
#define __ASM_SMP_H
|
|
|
|
#include <linux/const.h>
|
|
|
|
/* Values for secondary_data.status */
|
|
#define CPU_STUCK_REASON_SHIFT (8)
|
|
#define CPU_BOOT_STATUS_MASK ((UL(1) << CPU_STUCK_REASON_SHIFT) - 1)
|
|
|
|
#define CPU_MMU_OFF (-1)
|
|
#define CPU_BOOT_SUCCESS (0)
|
|
/* The cpu invoked ops->cpu_die, synchronise it with cpu_kill */
|
|
#define CPU_KILL_ME (1)
|
|
/* The cpu couldn't die gracefully and is looping in the kernel */
|
|
#define CPU_STUCK_IN_KERNEL (2)
|
|
/* Fatal system error detected by secondary CPU, crash the system */
|
|
#define CPU_PANIC_KERNEL (3)
|
|
|
|
#define CPU_STUCK_REASON_52_BIT_VA (UL(1) << CPU_STUCK_REASON_SHIFT)
|
|
#define CPU_STUCK_REASON_NO_GRAN (UL(2) << CPU_STUCK_REASON_SHIFT)
|
|
|
|
#ifndef __ASSEMBLY__
|
|
|
|
#include <asm/percpu.h>
|
|
|
|
#include <linux/threads.h>
|
|
#include <linux/cpumask.h>
|
|
#include <linux/thread_info.h>
|
|
#include <asm/pointer_auth.h>
|
|
|
|
DECLARE_PER_CPU_READ_MOSTLY(int, cpu_number);
|
|
|
|
/*
|
|
* We don't use this_cpu_read(cpu_number) as that has implicit writes to
|
|
* preempt_count, and associated (compiler) barriers, that we'd like to avoid
|
|
* the expense of. If we're preemptible, the value can be stale at use anyway.
|
|
* And we can't use this_cpu_ptr() either, as that winds up recursing back
|
|
* here under CONFIG_DEBUG_PREEMPT=y.
|
|
*/
|
|
#define raw_smp_processor_id() (*raw_cpu_ptr(&cpu_number))
|
|
|
|
/*
|
|
* Logical CPU mapping.
|
|
*/
|
|
extern u64 __cpu_logical_map[NR_CPUS];
|
|
#define cpu_logical_map(cpu) __cpu_logical_map[cpu]
|
|
|
|
struct seq_file;
|
|
|
|
/*
|
|
* generate IPI list text
|
|
*/
|
|
extern void show_ipi_list(struct seq_file *p, int prec);
|
|
|
|
/*
|
|
* Called from C code, this handles an IPI.
|
|
*/
|
|
extern void handle_IPI(int ipinr, struct pt_regs *regs);
|
|
|
|
/*
|
|
* Discover the set of possible CPUs and determine their
|
|
* SMP operations.
|
|
*/
|
|
extern void smp_init_cpus(void);
|
|
|
|
/*
|
|
* Provide a function to raise an IPI cross call on CPUs in callmap.
|
|
*/
|
|
extern void set_smp_cross_call(void (*)(const struct cpumask *, unsigned int));
|
|
|
|
extern void (*__smp_cross_call)(const struct cpumask *, unsigned int);
|
|
|
|
/*
|
|
* Called from the secondary holding pen, this is the secondary CPU entry point.
|
|
*/
|
|
asmlinkage void secondary_start_kernel(void);
|
|
|
|
/*
|
|
* Initial data for bringing up a secondary CPU.
|
|
* @stack - sp for the secondary CPU
|
|
* @status - Result passed back from the secondary CPU to
|
|
* indicate failure.
|
|
*/
|
|
struct secondary_data {
|
|
void *stack;
|
|
struct task_struct *task;
|
|
long status;
|
|
};
|
|
|
|
extern struct secondary_data secondary_data;
|
|
extern long __early_cpu_boot_status;
|
|
extern void secondary_entry(void);
|
|
|
|
extern void arch_send_call_function_single_ipi(int cpu);
|
|
extern void arch_send_call_function_ipi_mask(const struct cpumask *mask);
|
|
|
|
#ifdef CONFIG_ARM64_ACPI_PARKING_PROTOCOL
|
|
extern void arch_send_wakeup_ipi_mask(const struct cpumask *mask);
|
|
#else
|
|
static inline void arch_send_wakeup_ipi_mask(const struct cpumask *mask)
|
|
{
|
|
BUILD_BUG();
|
|
}
|
|
#endif
|
|
|
|
extern int __cpu_disable(void);
|
|
|
|
extern void __cpu_die(unsigned int cpu);
|
|
extern void cpu_die(void);
|
|
extern void cpu_die_early(void);
|
|
|
|
static inline void cpu_park_loop(void)
|
|
{
|
|
for (;;) {
|
|
wfe();
|
|
wfi();
|
|
}
|
|
}
|
|
|
|
static inline void update_cpu_boot_status(int val)
|
|
{
|
|
WRITE_ONCE(secondary_data.status, val);
|
|
/* Ensure the visibility of the status update */
|
|
dsb(ishst);
|
|
}
|
|
|
|
/*
|
|
* The calling secondary CPU has detected serious configuration mismatch,
|
|
* which calls for a kernel panic. Update the boot status and park the calling
|
|
* CPU.
|
|
*/
|
|
static inline void cpu_panic_kernel(void)
|
|
{
|
|
update_cpu_boot_status(CPU_PANIC_KERNEL);
|
|
cpu_park_loop();
|
|
}
|
|
|
|
/*
|
|
* If a secondary CPU enters the kernel but fails to come online,
|
|
* (e.g. due to mismatched features), and cannot exit the kernel,
|
|
* we increment cpus_stuck_in_kernel and leave the CPU in a
|
|
* quiesecent loop within the kernel text. The memory containing
|
|
* this loop must not be re-used for anything else as the 'stuck'
|
|
* core is executing it.
|
|
*
|
|
* This function is used to inhibit features like kexec and hibernate.
|
|
*/
|
|
bool cpus_are_stuck_in_kernel(void);
|
|
|
|
extern void crash_smp_send_stop(void);
|
|
extern bool smp_crash_stop_failed(void);
|
|
|
|
#endif /* ifndef __ASSEMBLY__ */
|
|
|
|
#endif /* ifndef __ASM_SMP_H */
|