forked from Minki/linux
f42d79ab67
tags is freed in blk_mq_free_rq_map() and should not be used after that.
The problem doesn't manifest if CONFIG_CPUMASK_OFFSTACK is false because
free_cpumask_var() is nop.
tags->cpumask is allocated in blk_mq_init_tags() so it's natural to
free cpumask in its counter part, blk_mq_free_tags().
Fixes: f26cdc8536
("blk-mq: Shared tag enhancements")
Signed-off-by: Jun'ichi Nomura <j-nomura@ce.jp.nec.com>
Cc: Keith Busch <keith.busch@intel.com>
Reviewed-by: Jeff Moyer <jmoyer@redhat.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
719 lines
17 KiB
C
719 lines
17 KiB
C
/*
|
|
* Fast and scalable bitmap tagging variant. Uses sparser bitmaps spread
|
|
* over multiple cachelines to avoid ping-pong between multiple submitters
|
|
* or submitter and completer. Uses rolling wakeups to avoid falling of
|
|
* the scaling cliff when we run out of tags and have to start putting
|
|
* submitters to sleep.
|
|
*
|
|
* Uses active queue tracking to support fairer distribution of tags
|
|
* between multiple submitters when a shared tag map is used.
|
|
*
|
|
* Copyright (C) 2013-2014 Jens Axboe
|
|
*/
|
|
#include <linux/kernel.h>
|
|
#include <linux/module.h>
|
|
#include <linux/random.h>
|
|
|
|
#include <linux/blk-mq.h>
|
|
#include "blk.h"
|
|
#include "blk-mq.h"
|
|
#include "blk-mq-tag.h"
|
|
|
|
static bool bt_has_free_tags(struct blk_mq_bitmap_tags *bt)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < bt->map_nr; i++) {
|
|
struct blk_align_bitmap *bm = &bt->map[i];
|
|
int ret;
|
|
|
|
ret = find_first_zero_bit(&bm->word, bm->depth);
|
|
if (ret < bm->depth)
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool blk_mq_has_free_tags(struct blk_mq_tags *tags)
|
|
{
|
|
if (!tags)
|
|
return true;
|
|
|
|
return bt_has_free_tags(&tags->bitmap_tags);
|
|
}
|
|
|
|
static inline int bt_index_inc(int index)
|
|
{
|
|
return (index + 1) & (BT_WAIT_QUEUES - 1);
|
|
}
|
|
|
|
static inline void bt_index_atomic_inc(atomic_t *index)
|
|
{
|
|
int old = atomic_read(index);
|
|
int new = bt_index_inc(old);
|
|
atomic_cmpxchg(index, old, new);
|
|
}
|
|
|
|
/*
|
|
* If a previously inactive queue goes active, bump the active user count.
|
|
*/
|
|
bool __blk_mq_tag_busy(struct blk_mq_hw_ctx *hctx)
|
|
{
|
|
if (!test_bit(BLK_MQ_S_TAG_ACTIVE, &hctx->state) &&
|
|
!test_and_set_bit(BLK_MQ_S_TAG_ACTIVE, &hctx->state))
|
|
atomic_inc(&hctx->tags->active_queues);
|
|
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* Wakeup all potentially sleeping on tags
|
|
*/
|
|
void blk_mq_tag_wakeup_all(struct blk_mq_tags *tags, bool include_reserve)
|
|
{
|
|
struct blk_mq_bitmap_tags *bt;
|
|
int i, wake_index;
|
|
|
|
bt = &tags->bitmap_tags;
|
|
wake_index = atomic_read(&bt->wake_index);
|
|
for (i = 0; i < BT_WAIT_QUEUES; i++) {
|
|
struct bt_wait_state *bs = &bt->bs[wake_index];
|
|
|
|
if (waitqueue_active(&bs->wait))
|
|
wake_up(&bs->wait);
|
|
|
|
wake_index = bt_index_inc(wake_index);
|
|
}
|
|
|
|
if (include_reserve) {
|
|
bt = &tags->breserved_tags;
|
|
if (waitqueue_active(&bt->bs[0].wait))
|
|
wake_up(&bt->bs[0].wait);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If a previously busy queue goes inactive, potential waiters could now
|
|
* be allowed to queue. Wake them up and check.
|
|
*/
|
|
void __blk_mq_tag_idle(struct blk_mq_hw_ctx *hctx)
|
|
{
|
|
struct blk_mq_tags *tags = hctx->tags;
|
|
|
|
if (!test_and_clear_bit(BLK_MQ_S_TAG_ACTIVE, &hctx->state))
|
|
return;
|
|
|
|
atomic_dec(&tags->active_queues);
|
|
|
|
blk_mq_tag_wakeup_all(tags, false);
|
|
}
|
|
|
|
/*
|
|
* For shared tag users, we track the number of currently active users
|
|
* and attempt to provide a fair share of the tag depth for each of them.
|
|
*/
|
|
static inline bool hctx_may_queue(struct blk_mq_hw_ctx *hctx,
|
|
struct blk_mq_bitmap_tags *bt)
|
|
{
|
|
unsigned int depth, users;
|
|
|
|
if (!hctx || !(hctx->flags & BLK_MQ_F_TAG_SHARED))
|
|
return true;
|
|
if (!test_bit(BLK_MQ_S_TAG_ACTIVE, &hctx->state))
|
|
return true;
|
|
|
|
/*
|
|
* Don't try dividing an ant
|
|
*/
|
|
if (bt->depth == 1)
|
|
return true;
|
|
|
|
users = atomic_read(&hctx->tags->active_queues);
|
|
if (!users)
|
|
return true;
|
|
|
|
/*
|
|
* Allow at least some tags
|
|
*/
|
|
depth = max((bt->depth + users - 1) / users, 4U);
|
|
return atomic_read(&hctx->nr_active) < depth;
|
|
}
|
|
|
|
static int __bt_get_word(struct blk_align_bitmap *bm, unsigned int last_tag,
|
|
bool nowrap)
|
|
{
|
|
int tag, org_last_tag = last_tag;
|
|
|
|
while (1) {
|
|
tag = find_next_zero_bit(&bm->word, bm->depth, last_tag);
|
|
if (unlikely(tag >= bm->depth)) {
|
|
/*
|
|
* We started with an offset, and we didn't reset the
|
|
* offset to 0 in a failure case, so start from 0 to
|
|
* exhaust the map.
|
|
*/
|
|
if (org_last_tag && last_tag && !nowrap) {
|
|
last_tag = org_last_tag = 0;
|
|
continue;
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
if (!test_and_set_bit(tag, &bm->word))
|
|
break;
|
|
|
|
last_tag = tag + 1;
|
|
if (last_tag >= bm->depth - 1)
|
|
last_tag = 0;
|
|
}
|
|
|
|
return tag;
|
|
}
|
|
|
|
#define BT_ALLOC_RR(tags) (tags->alloc_policy == BLK_TAG_ALLOC_RR)
|
|
|
|
/*
|
|
* Straight forward bitmap tag implementation, where each bit is a tag
|
|
* (cleared == free, and set == busy). The small twist is using per-cpu
|
|
* last_tag caches, which blk-mq stores in the blk_mq_ctx software queue
|
|
* contexts. This enables us to drastically limit the space searched,
|
|
* without dirtying an extra shared cacheline like we would if we stored
|
|
* the cache value inside the shared blk_mq_bitmap_tags structure. On top
|
|
* of that, each word of tags is in a separate cacheline. This means that
|
|
* multiple users will tend to stick to different cachelines, at least
|
|
* until the map is exhausted.
|
|
*/
|
|
static int __bt_get(struct blk_mq_hw_ctx *hctx, struct blk_mq_bitmap_tags *bt,
|
|
unsigned int *tag_cache, struct blk_mq_tags *tags)
|
|
{
|
|
unsigned int last_tag, org_last_tag;
|
|
int index, i, tag;
|
|
|
|
if (!hctx_may_queue(hctx, bt))
|
|
return -1;
|
|
|
|
last_tag = org_last_tag = *tag_cache;
|
|
index = TAG_TO_INDEX(bt, last_tag);
|
|
|
|
for (i = 0; i < bt->map_nr; i++) {
|
|
tag = __bt_get_word(&bt->map[index], TAG_TO_BIT(bt, last_tag),
|
|
BT_ALLOC_RR(tags));
|
|
if (tag != -1) {
|
|
tag += (index << bt->bits_per_word);
|
|
goto done;
|
|
}
|
|
|
|
/*
|
|
* Jump to next index, and reset the last tag to be the
|
|
* first tag of that index
|
|
*/
|
|
index++;
|
|
last_tag = (index << bt->bits_per_word);
|
|
|
|
if (index >= bt->map_nr) {
|
|
index = 0;
|
|
last_tag = 0;
|
|
}
|
|
}
|
|
|
|
*tag_cache = 0;
|
|
return -1;
|
|
|
|
/*
|
|
* Only update the cache from the allocation path, if we ended
|
|
* up using the specific cached tag.
|
|
*/
|
|
done:
|
|
if (tag == org_last_tag || unlikely(BT_ALLOC_RR(tags))) {
|
|
last_tag = tag + 1;
|
|
if (last_tag >= bt->depth - 1)
|
|
last_tag = 0;
|
|
|
|
*tag_cache = last_tag;
|
|
}
|
|
|
|
return tag;
|
|
}
|
|
|
|
static struct bt_wait_state *bt_wait_ptr(struct blk_mq_bitmap_tags *bt,
|
|
struct blk_mq_hw_ctx *hctx)
|
|
{
|
|
struct bt_wait_state *bs;
|
|
int wait_index;
|
|
|
|
if (!hctx)
|
|
return &bt->bs[0];
|
|
|
|
wait_index = atomic_read(&hctx->wait_index);
|
|
bs = &bt->bs[wait_index];
|
|
bt_index_atomic_inc(&hctx->wait_index);
|
|
return bs;
|
|
}
|
|
|
|
static int bt_get(struct blk_mq_alloc_data *data,
|
|
struct blk_mq_bitmap_tags *bt,
|
|
struct blk_mq_hw_ctx *hctx,
|
|
unsigned int *last_tag, struct blk_mq_tags *tags)
|
|
{
|
|
struct bt_wait_state *bs;
|
|
DEFINE_WAIT(wait);
|
|
int tag;
|
|
|
|
tag = __bt_get(hctx, bt, last_tag, tags);
|
|
if (tag != -1)
|
|
return tag;
|
|
|
|
if (!(data->gfp & __GFP_WAIT))
|
|
return -1;
|
|
|
|
bs = bt_wait_ptr(bt, hctx);
|
|
do {
|
|
prepare_to_wait(&bs->wait, &wait, TASK_UNINTERRUPTIBLE);
|
|
|
|
tag = __bt_get(hctx, bt, last_tag, tags);
|
|
if (tag != -1)
|
|
break;
|
|
|
|
/*
|
|
* We're out of tags on this hardware queue, kick any
|
|
* pending IO submits before going to sleep waiting for
|
|
* some to complete. Note that hctx can be NULL here for
|
|
* reserved tag allocation.
|
|
*/
|
|
if (hctx)
|
|
blk_mq_run_hw_queue(hctx, false);
|
|
|
|
/*
|
|
* Retry tag allocation after running the hardware queue,
|
|
* as running the queue may also have found completions.
|
|
*/
|
|
tag = __bt_get(hctx, bt, last_tag, tags);
|
|
if (tag != -1)
|
|
break;
|
|
|
|
blk_mq_put_ctx(data->ctx);
|
|
|
|
io_schedule();
|
|
|
|
data->ctx = blk_mq_get_ctx(data->q);
|
|
data->hctx = data->q->mq_ops->map_queue(data->q,
|
|
data->ctx->cpu);
|
|
if (data->reserved) {
|
|
bt = &data->hctx->tags->breserved_tags;
|
|
} else {
|
|
last_tag = &data->ctx->last_tag;
|
|
hctx = data->hctx;
|
|
bt = &hctx->tags->bitmap_tags;
|
|
}
|
|
finish_wait(&bs->wait, &wait);
|
|
bs = bt_wait_ptr(bt, hctx);
|
|
} while (1);
|
|
|
|
finish_wait(&bs->wait, &wait);
|
|
return tag;
|
|
}
|
|
|
|
static unsigned int __blk_mq_get_tag(struct blk_mq_alloc_data *data)
|
|
{
|
|
int tag;
|
|
|
|
tag = bt_get(data, &data->hctx->tags->bitmap_tags, data->hctx,
|
|
&data->ctx->last_tag, data->hctx->tags);
|
|
if (tag >= 0)
|
|
return tag + data->hctx->tags->nr_reserved_tags;
|
|
|
|
return BLK_MQ_TAG_FAIL;
|
|
}
|
|
|
|
static unsigned int __blk_mq_get_reserved_tag(struct blk_mq_alloc_data *data)
|
|
{
|
|
int tag, zero = 0;
|
|
|
|
if (unlikely(!data->hctx->tags->nr_reserved_tags)) {
|
|
WARN_ON_ONCE(1);
|
|
return BLK_MQ_TAG_FAIL;
|
|
}
|
|
|
|
tag = bt_get(data, &data->hctx->tags->breserved_tags, NULL, &zero,
|
|
data->hctx->tags);
|
|
if (tag < 0)
|
|
return BLK_MQ_TAG_FAIL;
|
|
|
|
return tag;
|
|
}
|
|
|
|
unsigned int blk_mq_get_tag(struct blk_mq_alloc_data *data)
|
|
{
|
|
if (!data->reserved)
|
|
return __blk_mq_get_tag(data);
|
|
|
|
return __blk_mq_get_reserved_tag(data);
|
|
}
|
|
|
|
static struct bt_wait_state *bt_wake_ptr(struct blk_mq_bitmap_tags *bt)
|
|
{
|
|
int i, wake_index;
|
|
|
|
wake_index = atomic_read(&bt->wake_index);
|
|
for (i = 0; i < BT_WAIT_QUEUES; i++) {
|
|
struct bt_wait_state *bs = &bt->bs[wake_index];
|
|
|
|
if (waitqueue_active(&bs->wait)) {
|
|
int o = atomic_read(&bt->wake_index);
|
|
if (wake_index != o)
|
|
atomic_cmpxchg(&bt->wake_index, o, wake_index);
|
|
|
|
return bs;
|
|
}
|
|
|
|
wake_index = bt_index_inc(wake_index);
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static void bt_clear_tag(struct blk_mq_bitmap_tags *bt, unsigned int tag)
|
|
{
|
|
const int index = TAG_TO_INDEX(bt, tag);
|
|
struct bt_wait_state *bs;
|
|
int wait_cnt;
|
|
|
|
clear_bit(TAG_TO_BIT(bt, tag), &bt->map[index].word);
|
|
|
|
/* Ensure that the wait list checks occur after clear_bit(). */
|
|
smp_mb();
|
|
|
|
bs = bt_wake_ptr(bt);
|
|
if (!bs)
|
|
return;
|
|
|
|
wait_cnt = atomic_dec_return(&bs->wait_cnt);
|
|
if (unlikely(wait_cnt < 0))
|
|
wait_cnt = atomic_inc_return(&bs->wait_cnt);
|
|
if (wait_cnt == 0) {
|
|
atomic_add(bt->wake_cnt, &bs->wait_cnt);
|
|
bt_index_atomic_inc(&bt->wake_index);
|
|
wake_up(&bs->wait);
|
|
}
|
|
}
|
|
|
|
void blk_mq_put_tag(struct blk_mq_hw_ctx *hctx, unsigned int tag,
|
|
unsigned int *last_tag)
|
|
{
|
|
struct blk_mq_tags *tags = hctx->tags;
|
|
|
|
if (tag >= tags->nr_reserved_tags) {
|
|
const int real_tag = tag - tags->nr_reserved_tags;
|
|
|
|
BUG_ON(real_tag >= tags->nr_tags);
|
|
bt_clear_tag(&tags->bitmap_tags, real_tag);
|
|
if (likely(tags->alloc_policy == BLK_TAG_ALLOC_FIFO))
|
|
*last_tag = real_tag;
|
|
} else {
|
|
BUG_ON(tag >= tags->nr_reserved_tags);
|
|
bt_clear_tag(&tags->breserved_tags, tag);
|
|
}
|
|
}
|
|
|
|
static void bt_for_each(struct blk_mq_hw_ctx *hctx,
|
|
struct blk_mq_bitmap_tags *bt, unsigned int off,
|
|
busy_iter_fn *fn, void *data, bool reserved)
|
|
{
|
|
struct request *rq;
|
|
int bit, i;
|
|
|
|
for (i = 0; i < bt->map_nr; i++) {
|
|
struct blk_align_bitmap *bm = &bt->map[i];
|
|
|
|
for (bit = find_first_bit(&bm->word, bm->depth);
|
|
bit < bm->depth;
|
|
bit = find_next_bit(&bm->word, bm->depth, bit + 1)) {
|
|
rq = hctx->tags->rqs[off + bit];
|
|
if (rq->q == hctx->queue)
|
|
fn(hctx, rq, data, reserved);
|
|
}
|
|
|
|
off += (1 << bt->bits_per_word);
|
|
}
|
|
}
|
|
|
|
static void bt_tags_for_each(struct blk_mq_tags *tags,
|
|
struct blk_mq_bitmap_tags *bt, unsigned int off,
|
|
busy_tag_iter_fn *fn, void *data, bool reserved)
|
|
{
|
|
struct request *rq;
|
|
int bit, i;
|
|
|
|
if (!tags->rqs)
|
|
return;
|
|
for (i = 0; i < bt->map_nr; i++) {
|
|
struct blk_align_bitmap *bm = &bt->map[i];
|
|
|
|
for (bit = find_first_bit(&bm->word, bm->depth);
|
|
bit < bm->depth;
|
|
bit = find_next_bit(&bm->word, bm->depth, bit + 1)) {
|
|
rq = tags->rqs[off + bit];
|
|
fn(rq, data, reserved);
|
|
}
|
|
|
|
off += (1 << bt->bits_per_word);
|
|
}
|
|
}
|
|
|
|
void blk_mq_all_tag_busy_iter(struct blk_mq_tags *tags, busy_tag_iter_fn *fn,
|
|
void *priv)
|
|
{
|
|
if (tags->nr_reserved_tags)
|
|
bt_tags_for_each(tags, &tags->breserved_tags, 0, fn, priv, true);
|
|
bt_tags_for_each(tags, &tags->bitmap_tags, tags->nr_reserved_tags, fn, priv,
|
|
false);
|
|
}
|
|
EXPORT_SYMBOL(blk_mq_all_tag_busy_iter);
|
|
|
|
void blk_mq_queue_tag_busy_iter(struct request_queue *q, busy_iter_fn *fn,
|
|
void *priv)
|
|
{
|
|
struct blk_mq_hw_ctx *hctx;
|
|
int i;
|
|
|
|
|
|
queue_for_each_hw_ctx(q, hctx, i) {
|
|
struct blk_mq_tags *tags = hctx->tags;
|
|
|
|
/*
|
|
* If not software queues are currently mapped to this
|
|
* hardware queue, there's nothing to check
|
|
*/
|
|
if (!blk_mq_hw_queue_mapped(hctx))
|
|
continue;
|
|
|
|
if (tags->nr_reserved_tags)
|
|
bt_for_each(hctx, &tags->breserved_tags, 0, fn, priv, true);
|
|
bt_for_each(hctx, &tags->bitmap_tags, tags->nr_reserved_tags, fn, priv,
|
|
false);
|
|
}
|
|
|
|
}
|
|
|
|
static unsigned int bt_unused_tags(struct blk_mq_bitmap_tags *bt)
|
|
{
|
|
unsigned int i, used;
|
|
|
|
for (i = 0, used = 0; i < bt->map_nr; i++) {
|
|
struct blk_align_bitmap *bm = &bt->map[i];
|
|
|
|
used += bitmap_weight(&bm->word, bm->depth);
|
|
}
|
|
|
|
return bt->depth - used;
|
|
}
|
|
|
|
static void bt_update_count(struct blk_mq_bitmap_tags *bt,
|
|
unsigned int depth)
|
|
{
|
|
unsigned int tags_per_word = 1U << bt->bits_per_word;
|
|
unsigned int map_depth = depth;
|
|
|
|
if (depth) {
|
|
int i;
|
|
|
|
for (i = 0; i < bt->map_nr; i++) {
|
|
bt->map[i].depth = min(map_depth, tags_per_word);
|
|
map_depth -= bt->map[i].depth;
|
|
}
|
|
}
|
|
|
|
bt->wake_cnt = BT_WAIT_BATCH;
|
|
if (bt->wake_cnt > depth / BT_WAIT_QUEUES)
|
|
bt->wake_cnt = max(1U, depth / BT_WAIT_QUEUES);
|
|
|
|
bt->depth = depth;
|
|
}
|
|
|
|
static int bt_alloc(struct blk_mq_bitmap_tags *bt, unsigned int depth,
|
|
int node, bool reserved)
|
|
{
|
|
int i;
|
|
|
|
bt->bits_per_word = ilog2(BITS_PER_LONG);
|
|
|
|
/*
|
|
* Depth can be zero for reserved tags, that's not a failure
|
|
* condition.
|
|
*/
|
|
if (depth) {
|
|
unsigned int nr, tags_per_word;
|
|
|
|
tags_per_word = (1 << bt->bits_per_word);
|
|
|
|
/*
|
|
* If the tag space is small, shrink the number of tags
|
|
* per word so we spread over a few cachelines, at least.
|
|
* If less than 4 tags, just forget about it, it's not
|
|
* going to work optimally anyway.
|
|
*/
|
|
if (depth >= 4) {
|
|
while (tags_per_word * 4 > depth) {
|
|
bt->bits_per_word--;
|
|
tags_per_word = (1 << bt->bits_per_word);
|
|
}
|
|
}
|
|
|
|
nr = ALIGN(depth, tags_per_word) / tags_per_word;
|
|
bt->map = kzalloc_node(nr * sizeof(struct blk_align_bitmap),
|
|
GFP_KERNEL, node);
|
|
if (!bt->map)
|
|
return -ENOMEM;
|
|
|
|
bt->map_nr = nr;
|
|
}
|
|
|
|
bt->bs = kzalloc(BT_WAIT_QUEUES * sizeof(*bt->bs), GFP_KERNEL);
|
|
if (!bt->bs) {
|
|
kfree(bt->map);
|
|
bt->map = NULL;
|
|
return -ENOMEM;
|
|
}
|
|
|
|
bt_update_count(bt, depth);
|
|
|
|
for (i = 0; i < BT_WAIT_QUEUES; i++) {
|
|
init_waitqueue_head(&bt->bs[i].wait);
|
|
atomic_set(&bt->bs[i].wait_cnt, bt->wake_cnt);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void bt_free(struct blk_mq_bitmap_tags *bt)
|
|
{
|
|
kfree(bt->map);
|
|
kfree(bt->bs);
|
|
}
|
|
|
|
static struct blk_mq_tags *blk_mq_init_bitmap_tags(struct blk_mq_tags *tags,
|
|
int node, int alloc_policy)
|
|
{
|
|
unsigned int depth = tags->nr_tags - tags->nr_reserved_tags;
|
|
|
|
tags->alloc_policy = alloc_policy;
|
|
|
|
if (bt_alloc(&tags->bitmap_tags, depth, node, false))
|
|
goto enomem;
|
|
if (bt_alloc(&tags->breserved_tags, tags->nr_reserved_tags, node, true))
|
|
goto enomem;
|
|
|
|
return tags;
|
|
enomem:
|
|
bt_free(&tags->bitmap_tags);
|
|
kfree(tags);
|
|
return NULL;
|
|
}
|
|
|
|
struct blk_mq_tags *blk_mq_init_tags(unsigned int total_tags,
|
|
unsigned int reserved_tags,
|
|
int node, int alloc_policy)
|
|
{
|
|
struct blk_mq_tags *tags;
|
|
|
|
if (total_tags > BLK_MQ_TAG_MAX) {
|
|
pr_err("blk-mq: tag depth too large\n");
|
|
return NULL;
|
|
}
|
|
|
|
tags = kzalloc_node(sizeof(*tags), GFP_KERNEL, node);
|
|
if (!tags)
|
|
return NULL;
|
|
|
|
if (!zalloc_cpumask_var(&tags->cpumask, GFP_KERNEL)) {
|
|
kfree(tags);
|
|
return NULL;
|
|
}
|
|
|
|
tags->nr_tags = total_tags;
|
|
tags->nr_reserved_tags = reserved_tags;
|
|
|
|
return blk_mq_init_bitmap_tags(tags, node, alloc_policy);
|
|
}
|
|
|
|
void blk_mq_free_tags(struct blk_mq_tags *tags)
|
|
{
|
|
bt_free(&tags->bitmap_tags);
|
|
bt_free(&tags->breserved_tags);
|
|
free_cpumask_var(tags->cpumask);
|
|
kfree(tags);
|
|
}
|
|
|
|
void blk_mq_tag_init_last_tag(struct blk_mq_tags *tags, unsigned int *tag)
|
|
{
|
|
unsigned int depth = tags->nr_tags - tags->nr_reserved_tags;
|
|
|
|
*tag = prandom_u32() % depth;
|
|
}
|
|
|
|
int blk_mq_tag_update_depth(struct blk_mq_tags *tags, unsigned int tdepth)
|
|
{
|
|
tdepth -= tags->nr_reserved_tags;
|
|
if (tdepth > tags->nr_tags)
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* Don't need (or can't) update reserved tags here, they remain
|
|
* static and should never need resizing.
|
|
*/
|
|
bt_update_count(&tags->bitmap_tags, tdepth);
|
|
blk_mq_tag_wakeup_all(tags, false);
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* blk_mq_unique_tag() - return a tag that is unique queue-wide
|
|
* @rq: request for which to compute a unique tag
|
|
*
|
|
* The tag field in struct request is unique per hardware queue but not over
|
|
* all hardware queues. Hence this function that returns a tag with the
|
|
* hardware context index in the upper bits and the per hardware queue tag in
|
|
* the lower bits.
|
|
*
|
|
* Note: When called for a request that is queued on a non-multiqueue request
|
|
* queue, the hardware context index is set to zero.
|
|
*/
|
|
u32 blk_mq_unique_tag(struct request *rq)
|
|
{
|
|
struct request_queue *q = rq->q;
|
|
struct blk_mq_hw_ctx *hctx;
|
|
int hwq = 0;
|
|
|
|
if (q->mq_ops) {
|
|
hctx = q->mq_ops->map_queue(q, rq->mq_ctx->cpu);
|
|
hwq = hctx->queue_num;
|
|
}
|
|
|
|
return (hwq << BLK_MQ_UNIQUE_TAG_BITS) |
|
|
(rq->tag & BLK_MQ_UNIQUE_TAG_MASK);
|
|
}
|
|
EXPORT_SYMBOL(blk_mq_unique_tag);
|
|
|
|
ssize_t blk_mq_tag_sysfs_show(struct blk_mq_tags *tags, char *page)
|
|
{
|
|
char *orig_page = page;
|
|
unsigned int free, res;
|
|
|
|
if (!tags)
|
|
return 0;
|
|
|
|
page += sprintf(page, "nr_tags=%u, reserved_tags=%u, "
|
|
"bits_per_word=%u\n",
|
|
tags->nr_tags, tags->nr_reserved_tags,
|
|
tags->bitmap_tags.bits_per_word);
|
|
|
|
free = bt_unused_tags(&tags->bitmap_tags);
|
|
res = bt_unused_tags(&tags->breserved_tags);
|
|
|
|
page += sprintf(page, "nr_free=%u, nr_reserved=%u\n", free, res);
|
|
page += sprintf(page, "active_queues=%u\n", atomic_read(&tags->active_queues));
|
|
|
|
return page - orig_page;
|
|
}
|