linux/drivers/gpu/drm/amd/amdkfd/kfd_migrate.c
Felix Kuehling 48ff079b28 drm/amdkfd: HMM migrate vram to ram
If CPU page fault happens, HMM pgmap_ops callback migrate_to_ram start
migrate memory from vram to ram in steps:

1. migrate_vma_pages get vram pages, and notify HMM to invalidate the
pages, HMM interval notifier callback evict process queues
2. Allocate system memory pages
3. Use svm copy memory to migrate data from vram to ram
4. migrate_vma_pages copy pages structure from vram pages to ram pages
5. Return VM_FAULT_SIGBUS if migration failed, to notify application
6. migrate_vma_finalize put vram pages, page_free callback free vram
pages and vram nodes
7. Restore work wait for migration is finished, then update GPU page
table mapping to system memory, and resume process queues

Signed-off-by: Philip Yang <Philip.Yang@amd.com>
Reviewed-by: Felix Kuehling <Felix.Kuehling@amd.com>
Signed-off-by: Felix Kuehling <Felix.Kuehling@amd.com>
Signed-off-by: Alex Deucher <alexander.deucher@amd.com>
2021-04-20 21:48:43 -04:00

886 lines
22 KiB
C

// SPDX-License-Identifier: GPL-2.0 OR MIT
/*
* Copyright 2020-2021 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*/
#include <linux/types.h>
#include <linux/hmm.h>
#include <linux/dma-direction.h>
#include <linux/dma-mapping.h>
#include "amdgpu_sync.h"
#include "amdgpu_object.h"
#include "amdgpu_vm.h"
#include "amdgpu_mn.h"
#include "kfd_priv.h"
#include "kfd_svm.h"
#include "kfd_migrate.h"
static uint64_t
svm_migrate_direct_mapping_addr(struct amdgpu_device *adev, uint64_t addr)
{
return addr + amdgpu_ttm_domain_start(adev, TTM_PL_VRAM);
}
static int
svm_migrate_gart_map(struct amdgpu_ring *ring, uint64_t npages,
dma_addr_t *addr, uint64_t *gart_addr, uint64_t flags)
{
struct amdgpu_device *adev = ring->adev;
struct amdgpu_job *job;
unsigned int num_dw, num_bytes;
struct dma_fence *fence;
uint64_t src_addr, dst_addr;
uint64_t pte_flags;
void *cpu_addr;
int r;
/* use gart window 0 */
*gart_addr = adev->gmc.gart_start;
num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8);
num_bytes = npages * 8;
r = amdgpu_job_alloc_with_ib(adev, num_dw * 4 + num_bytes,
AMDGPU_IB_POOL_DELAYED, &job);
if (r)
return r;
src_addr = num_dw * 4;
src_addr += job->ibs[0].gpu_addr;
dst_addr = amdgpu_bo_gpu_offset(adev->gart.bo);
amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr,
dst_addr, num_bytes, false);
amdgpu_ring_pad_ib(ring, &job->ibs[0]);
WARN_ON(job->ibs[0].length_dw > num_dw);
pte_flags = AMDGPU_PTE_VALID | AMDGPU_PTE_READABLE;
pte_flags |= AMDGPU_PTE_SYSTEM | AMDGPU_PTE_SNOOPED;
if (!(flags & KFD_IOCTL_SVM_FLAG_GPU_RO))
pte_flags |= AMDGPU_PTE_WRITEABLE;
pte_flags |= adev->gart.gart_pte_flags;
cpu_addr = &job->ibs[0].ptr[num_dw];
r = amdgpu_gart_map(adev, 0, npages, addr, pte_flags, cpu_addr);
if (r)
goto error_free;
r = amdgpu_job_submit(job, &adev->mman.entity,
AMDGPU_FENCE_OWNER_UNDEFINED, &fence);
if (r)
goto error_free;
dma_fence_put(fence);
return r;
error_free:
amdgpu_job_free(job);
return r;
}
/**
* svm_migrate_copy_memory_gart - sdma copy data between ram and vram
*
* @adev: amdgpu device the sdma ring running
* @src: source page address array
* @dst: destination page address array
* @npages: number of pages to copy
* @direction: enum MIGRATION_COPY_DIR
* @mfence: output, sdma fence to signal after sdma is done
*
* ram address uses GART table continuous entries mapping to ram pages,
* vram address uses direct mapping of vram pages, which must have npages
* number of continuous pages.
* GART update and sdma uses same buf copy function ring, sdma is splited to
* multiple GTT_MAX_PAGES transfer, all sdma operations are serialized, wait for
* the last sdma finish fence which is returned to check copy memory is done.
*
* Context: Process context, takes and releases gtt_window_lock
*
* Return:
* 0 - OK, otherwise error code
*/
static int
svm_migrate_copy_memory_gart(struct amdgpu_device *adev, dma_addr_t *sys,
uint64_t *vram, uint64_t npages,
enum MIGRATION_COPY_DIR direction,
struct dma_fence **mfence)
{
const uint64_t GTT_MAX_PAGES = AMDGPU_GTT_MAX_TRANSFER_SIZE;
struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
uint64_t gart_s, gart_d;
struct dma_fence *next;
uint64_t size;
int r;
mutex_lock(&adev->mman.gtt_window_lock);
while (npages) {
size = min(GTT_MAX_PAGES, npages);
if (direction == FROM_VRAM_TO_RAM) {
gart_s = svm_migrate_direct_mapping_addr(adev, *vram);
r = svm_migrate_gart_map(ring, size, sys, &gart_d, 0);
} else if (direction == FROM_RAM_TO_VRAM) {
r = svm_migrate_gart_map(ring, size, sys, &gart_s,
KFD_IOCTL_SVM_FLAG_GPU_RO);
gart_d = svm_migrate_direct_mapping_addr(adev, *vram);
}
if (r) {
pr_debug("failed %d to create gart mapping\n", r);
goto out_unlock;
}
r = amdgpu_copy_buffer(ring, gart_s, gart_d, size * PAGE_SIZE,
NULL, &next, false, true, false);
if (r) {
pr_debug("failed %d to copy memory\n", r);
goto out_unlock;
}
dma_fence_put(*mfence);
*mfence = next;
npages -= size;
if (npages) {
sys += size;
vram += size;
}
}
out_unlock:
mutex_unlock(&adev->mman.gtt_window_lock);
return r;
}
/**
* svm_migrate_copy_done - wait for memory copy sdma is done
*
* @adev: amdgpu device the sdma memory copy is executing on
* @mfence: migrate fence
*
* Wait for dma fence is signaled, if the copy ssplit into multiple sdma
* operations, this is the last sdma operation fence.
*
* Context: called after svm_migrate_copy_memory
*
* Return:
* 0 - success
* otherwise - error code from dma fence signal
*/
static int
svm_migrate_copy_done(struct amdgpu_device *adev, struct dma_fence *mfence)
{
int r = 0;
if (mfence) {
r = dma_fence_wait(mfence, false);
dma_fence_put(mfence);
pr_debug("sdma copy memory fence done\n");
}
return r;
}
static uint64_t
svm_migrate_node_physical_addr(struct amdgpu_device *adev,
struct drm_mm_node **mm_node, uint64_t *offset)
{
struct drm_mm_node *node = *mm_node;
uint64_t pos = *offset;
if (node->start == AMDGPU_BO_INVALID_OFFSET) {
pr_debug("drm node is not validated\n");
return 0;
}
pr_debug("vram node start 0x%llx npages 0x%llx\n", node->start,
node->size);
if (pos >= node->size) {
do {
pos -= node->size;
node++;
} while (pos >= node->size);
*mm_node = node;
*offset = pos;
}
return (node->start + pos) << PAGE_SHIFT;
}
unsigned long
svm_migrate_addr_to_pfn(struct amdgpu_device *adev, unsigned long addr)
{
return (addr + adev->kfd.dev->pgmap.range.start) >> PAGE_SHIFT;
}
static void
svm_migrate_get_vram_page(struct svm_range *prange, unsigned long pfn)
{
struct page *page;
page = pfn_to_page(pfn);
page->zone_device_data = prange;
get_page(page);
lock_page(page);
}
static void
svm_migrate_put_vram_page(struct amdgpu_device *adev, unsigned long addr)
{
struct page *page;
page = pfn_to_page(svm_migrate_addr_to_pfn(adev, addr));
unlock_page(page);
put_page(page);
}
static unsigned long
svm_migrate_addr(struct amdgpu_device *adev, struct page *page)
{
unsigned long addr;
addr = page_to_pfn(page) << PAGE_SHIFT;
return (addr - adev->kfd.dev->pgmap.range.start);
}
static struct page *
svm_migrate_get_sys_page(struct vm_area_struct *vma, unsigned long addr)
{
struct page *page;
page = alloc_page_vma(GFP_HIGHUSER, vma, addr);
if (page)
lock_page(page);
return page;
}
void svm_migrate_put_sys_page(unsigned long addr)
{
struct page *page;
page = pfn_to_page(addr >> PAGE_SHIFT);
unlock_page(page);
put_page(page);
}
static int
svm_migrate_copy_to_vram(struct amdgpu_device *adev, struct svm_range *prange,
struct migrate_vma *migrate, struct dma_fence **mfence,
dma_addr_t *scratch)
{
uint64_t npages = migrate->cpages;
struct device *dev = adev->dev;
struct drm_mm_node *node;
dma_addr_t *src;
uint64_t *dst;
uint64_t vram_addr;
uint64_t offset;
uint64_t i, j;
int r = -ENOMEM;
pr_debug("svms 0x%p [0x%lx 0x%lx]\n", prange->svms, prange->start,
prange->last);
src = scratch;
dst = (uint64_t *)(scratch + npages);
r = svm_range_vram_node_new(adev, prange, true);
if (r) {
pr_debug("failed %d get 0x%llx pages from vram\n", r, npages);
goto out;
}
node = prange->ttm_res->mm_node;
offset = prange->offset;
vram_addr = svm_migrate_node_physical_addr(adev, &node, &offset);
if (!vram_addr) {
WARN_ONCE(1, "vram node address is 0\n");
r = -ENOMEM;
goto out;
}
for (i = j = 0; i < npages; i++) {
struct page *spage;
dst[i] = vram_addr + (j << PAGE_SHIFT);
migrate->dst[i] = svm_migrate_addr_to_pfn(adev, dst[i]);
svm_migrate_get_vram_page(prange, migrate->dst[i]);
migrate->dst[i] = migrate_pfn(migrate->dst[i]);
migrate->dst[i] |= MIGRATE_PFN_LOCKED;
if (migrate->src[i] & MIGRATE_PFN_VALID) {
spage = migrate_pfn_to_page(migrate->src[i]);
src[i] = dma_map_page(dev, spage, 0, PAGE_SIZE,
DMA_TO_DEVICE);
r = dma_mapping_error(dev, src[i]);
if (r) {
pr_debug("failed %d dma_map_page\n", r);
goto out_free_vram_pages;
}
} else {
if (j) {
r = svm_migrate_copy_memory_gart(
adev, src + i - j,
dst + i - j, j,
FROM_RAM_TO_VRAM,
mfence);
if (r)
goto out_free_vram_pages;
offset += j;
vram_addr = (node->start + offset) << PAGE_SHIFT;
j = 0;
} else {
offset++;
vram_addr += PAGE_SIZE;
}
if (offset >= node->size) {
node++;
pr_debug("next node size 0x%llx\n", node->size);
vram_addr = node->start << PAGE_SHIFT;
offset = 0;
}
continue;
}
pr_debug("dma mapping src to 0x%llx, page_to_pfn 0x%lx\n",
src[i] >> PAGE_SHIFT, page_to_pfn(spage));
if (j + offset >= node->size - 1 && i < npages - 1) {
r = svm_migrate_copy_memory_gart(adev, src + i - j,
dst + i - j, j + 1,
FROM_RAM_TO_VRAM,
mfence);
if (r)
goto out_free_vram_pages;
node++;
pr_debug("next node size 0x%llx\n", node->size);
vram_addr = node->start << PAGE_SHIFT;
offset = 0;
j = 0;
} else {
j++;
}
}
r = svm_migrate_copy_memory_gart(adev, src + i - j, dst + i - j, j,
FROM_RAM_TO_VRAM, mfence);
out_free_vram_pages:
if (r) {
pr_debug("failed %d to copy memory to vram\n", r);
while (i--) {
svm_migrate_put_vram_page(adev, dst[i]);
migrate->dst[i] = 0;
}
}
out:
return r;
}
static int
svm_migrate_vma_to_vram(struct amdgpu_device *adev, struct svm_range *prange,
struct vm_area_struct *vma, uint64_t start,
uint64_t end)
{
uint64_t npages = (end - start) >> PAGE_SHIFT;
struct dma_fence *mfence = NULL;
struct migrate_vma migrate;
dma_addr_t *scratch;
size_t size;
void *buf;
int r = -ENOMEM;
int retry = 0;
memset(&migrate, 0, sizeof(migrate));
migrate.vma = vma;
migrate.start = start;
migrate.end = end;
migrate.flags = MIGRATE_VMA_SELECT_SYSTEM;
migrate.pgmap_owner = adev;
size = 2 * sizeof(*migrate.src) + sizeof(uint64_t) + sizeof(dma_addr_t);
size *= npages;
buf = kvmalloc(size, GFP_KERNEL | __GFP_ZERO);
if (!buf)
goto out;
migrate.src = buf;
migrate.dst = migrate.src + npages;
scratch = (dma_addr_t *)(migrate.dst + npages);
retry:
r = migrate_vma_setup(&migrate);
if (r) {
pr_debug("failed %d prepare migrate svms 0x%p [0x%lx 0x%lx]\n",
r, prange->svms, prange->start, prange->last);
goto out_free;
}
if (migrate.cpages != npages) {
pr_debug("collect 0x%lx/0x%llx pages, retry\n", migrate.cpages,
npages);
migrate_vma_finalize(&migrate);
if (retry++ >= 3) {
r = -ENOMEM;
pr_debug("failed %d migrate svms 0x%p [0x%lx 0x%lx]\n",
r, prange->svms, prange->start, prange->last);
goto out_free;
}
goto retry;
}
if (migrate.cpages) {
svm_migrate_copy_to_vram(adev, prange, &migrate, &mfence,
scratch);
migrate_vma_pages(&migrate);
svm_migrate_copy_done(adev, mfence);
migrate_vma_finalize(&migrate);
}
svm_range_dma_unmap(adev->dev, scratch, 0, npages);
svm_range_free_dma_mappings(prange);
out_free:
kvfree(buf);
out:
return r;
}
/**
* svm_migrate_ram_to_vram - migrate svm range from system to device
* @prange: range structure
* @best_loc: the device to migrate to
*
* Context: Process context, caller hold mmap read lock, svms lock, prange lock
*
* Return:
* 0 - OK, otherwise error code
*/
int svm_migrate_ram_to_vram(struct svm_range *prange, uint32_t best_loc)
{
unsigned long addr, start, end;
struct vm_area_struct *vma;
struct amdgpu_device *adev;
struct mm_struct *mm;
int r = 0;
if (prange->actual_loc == best_loc) {
pr_debug("svms 0x%p [0x%lx 0x%lx] already on best_loc 0x%x\n",
prange->svms, prange->start, prange->last, best_loc);
return 0;
}
adev = svm_range_get_adev_by_id(prange, best_loc);
if (!adev) {
pr_debug("failed to get device by id 0x%x\n", best_loc);
return -ENODEV;
}
pr_debug("svms 0x%p [0x%lx 0x%lx] to gpu 0x%x\n", prange->svms,
prange->start, prange->last, best_loc);
/* FIXME: workaround for page locking bug with invalid pages */
svm_range_prefault(prange, mm);
start = prange->start << PAGE_SHIFT;
end = (prange->last + 1) << PAGE_SHIFT;
mm = current->mm;
for (addr = start; addr < end;) {
unsigned long next;
vma = find_vma(mm, addr);
if (!vma || addr < vma->vm_start)
break;
next = min(vma->vm_end, end);
r = svm_migrate_vma_to_vram(adev, prange, vma, addr, next);
if (r) {
pr_debug("failed to migrate\n");
break;
}
addr = next;
}
if (!r)
prange->actual_loc = best_loc;
return r;
}
static void svm_migrate_page_free(struct page *page)
{
/* Keep this function to avoid warning */
}
static int
svm_migrate_copy_to_ram(struct amdgpu_device *adev, struct svm_range *prange,
struct migrate_vma *migrate, struct dma_fence **mfence,
dma_addr_t *scratch)
{
uint64_t npages = migrate->cpages;
struct device *dev = adev->dev;
uint64_t *src;
dma_addr_t *dst;
struct page *dpage;
uint64_t i = 0, j;
uint64_t addr;
int r = 0;
pr_debug("svms 0x%p [0x%lx 0x%lx]\n", prange->svms, prange->start,
prange->last);
addr = prange->start << PAGE_SHIFT;
src = (uint64_t *)(scratch + npages);
dst = scratch;
for (i = 0, j = 0; i < npages; i++, j++, addr += PAGE_SIZE) {
struct page *spage;
spage = migrate_pfn_to_page(migrate->src[i]);
if (!spage) {
pr_debug("failed get spage svms 0x%p [0x%lx 0x%lx]\n",
prange->svms, prange->start, prange->last);
r = -ENOMEM;
goto out_oom;
}
src[i] = svm_migrate_addr(adev, spage);
if (i > 0 && src[i] != src[i - 1] + PAGE_SIZE) {
r = svm_migrate_copy_memory_gart(adev, dst + i - j,
src + i - j, j,
FROM_VRAM_TO_RAM,
mfence);
if (r)
goto out_oom;
j = 0;
}
dpage = svm_migrate_get_sys_page(migrate->vma, addr);
if (!dpage) {
pr_debug("failed get page svms 0x%p [0x%lx 0x%lx]\n",
prange->svms, prange->start, prange->last);
r = -ENOMEM;
goto out_oom;
}
dst[i] = dma_map_page(dev, dpage, 0, PAGE_SIZE, DMA_FROM_DEVICE);
r = dma_mapping_error(dev, dst[i]);
if (r) {
pr_debug("failed %d dma_map_page\n", r);
goto out_oom;
}
pr_debug("dma mapping dst to 0x%llx, page_to_pfn 0x%lx\n",
dst[i] >> PAGE_SHIFT, page_to_pfn(dpage));
migrate->dst[i] = migrate_pfn(page_to_pfn(dpage));
migrate->dst[i] |= MIGRATE_PFN_LOCKED;
}
r = svm_migrate_copy_memory_gart(adev, dst + i - j, src + i - j, j,
FROM_VRAM_TO_RAM, mfence);
out_oom:
if (r) {
pr_debug("failed %d copy to ram\n", r);
while (i--) {
svm_migrate_put_sys_page(dst[i]);
migrate->dst[i] = 0;
}
}
return r;
}
static int
svm_migrate_vma_to_ram(struct amdgpu_device *adev, struct svm_range *prange,
struct vm_area_struct *vma, uint64_t start, uint64_t end)
{
uint64_t npages = (end - start) >> PAGE_SHIFT;
struct dma_fence *mfence = NULL;
struct migrate_vma migrate;
dma_addr_t *scratch;
size_t size;
void *buf;
int r = -ENOMEM;
memset(&migrate, 0, sizeof(migrate));
migrate.vma = vma;
migrate.start = start;
migrate.end = end;
migrate.flags = MIGRATE_VMA_SELECT_DEVICE_PRIVATE;
migrate.pgmap_owner = adev;
size = 2 * sizeof(*migrate.src) + sizeof(uint64_t) + sizeof(dma_addr_t);
size *= npages;
buf = kvmalloc(size, GFP_KERNEL | __GFP_ZERO);
if (!buf)
goto out;
migrate.src = buf;
migrate.dst = migrate.src + npages;
scratch = (dma_addr_t *)(migrate.dst + npages);
r = migrate_vma_setup(&migrate);
if (r) {
pr_debug("failed %d prepare migrate svms 0x%p [0x%lx 0x%lx]\n",
r, prange->svms, prange->start, prange->last);
goto out_free;
}
pr_debug("cpages %ld\n", migrate.cpages);
if (migrate.cpages) {
svm_migrate_copy_to_ram(adev, prange, &migrate, &mfence,
scratch);
migrate_vma_pages(&migrate);
svm_migrate_copy_done(adev, mfence);
migrate_vma_finalize(&migrate);
} else {
pr_debug("failed collect migrate device pages [0x%lx 0x%lx]\n",
prange->start, prange->last);
}
svm_range_dma_unmap(adev->dev, scratch, 0, npages);
out_free:
kvfree(buf);
out:
return r;
}
/**
* svm_migrate_vram_to_ram - migrate svm range from device to system
* @prange: range structure
* @mm: process mm, use current->mm if NULL
*
* Context: Process context, caller hold mmap read lock, svms lock, prange lock
*
* Return:
* 0 - OK, otherwise error code
*/
int svm_migrate_vram_to_ram(struct svm_range *prange, struct mm_struct *mm)
{
struct amdgpu_device *adev;
struct vm_area_struct *vma;
unsigned long addr;
unsigned long start;
unsigned long end;
int r = 0;
if (!prange->actual_loc) {
pr_debug("[0x%lx 0x%lx] already migrated to ram\n",
prange->start, prange->last);
return 0;
}
adev = svm_range_get_adev_by_id(prange, prange->actual_loc);
if (!adev) {
pr_debug("failed to get device by id 0x%x\n",
prange->actual_loc);
return -ENODEV;
}
pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx] from gpu 0x%x to ram\n",
prange->svms, prange, prange->start, prange->last,
prange->actual_loc);
start = prange->start << PAGE_SHIFT;
end = (prange->last + 1) << PAGE_SHIFT;
for (addr = start; addr < end;) {
unsigned long next;
vma = find_vma(mm, addr);
if (!vma || addr < vma->vm_start)
break;
next = min(vma->vm_end, end);
r = svm_migrate_vma_to_ram(adev, prange, vma, addr, next);
if (r) {
pr_debug("failed %d to migrate\n", r);
break;
}
addr = next;
}
if (!r) {
svm_range_vram_node_free(prange);
prange->actual_loc = 0;
}
return r;
}
/**
* svm_migrate_to_ram - CPU page fault handler
* @vmf: CPU vm fault vma, address
*
* Context: vm fault handler, caller holds the mmap read lock
*
* Return:
* 0 - OK
* VM_FAULT_SIGBUS - notice application to have SIGBUS page fault
*/
static vm_fault_t svm_migrate_to_ram(struct vm_fault *vmf)
{
unsigned long addr = vmf->address;
struct vm_area_struct *vma;
enum svm_work_list_ops op;
struct svm_range *parent;
struct svm_range *prange;
struct kfd_process *p;
struct mm_struct *mm;
int r = 0;
vma = vmf->vma;
mm = vma->vm_mm;
p = kfd_lookup_process_by_mm(vma->vm_mm);
if (!p) {
pr_debug("failed find process at fault address 0x%lx\n", addr);
return VM_FAULT_SIGBUS;
}
addr >>= PAGE_SHIFT;
pr_debug("CPU page fault svms 0x%p address 0x%lx\n", &p->svms, addr);
mutex_lock(&p->svms.lock);
prange = svm_range_from_addr(&p->svms, addr, &parent);
if (!prange) {
pr_debug("cannot find svm range at 0x%lx\n", addr);
r = -EFAULT;
goto out;
}
mutex_lock(&parent->migrate_mutex);
if (prange != parent)
mutex_lock_nested(&prange->migrate_mutex, 1);
if (!prange->actual_loc)
goto out_unlock_prange;
svm_range_lock(parent);
if (prange != parent)
mutex_lock_nested(&prange->lock, 1);
r = svm_range_split_by_granularity(p, mm, addr, parent, prange);
if (prange != parent)
mutex_unlock(&prange->lock);
svm_range_unlock(parent);
if (r) {
pr_debug("failed %d to split range by granularity\n", r);
goto out_unlock_prange;
}
r = svm_migrate_vram_to_ram(prange, mm);
if (r)
pr_debug("failed %d migrate 0x%p [0x%lx 0x%lx] to ram\n", r,
prange, prange->start, prange->last);
op = SVM_OP_UPDATE_RANGE_NOTIFIER;
svm_range_add_list_work(&p->svms, parent, mm, op);
schedule_deferred_list_work(&p->svms);
out_unlock_prange:
if (prange != parent)
mutex_unlock(&prange->migrate_mutex);
mutex_unlock(&parent->migrate_mutex);
out:
mutex_unlock(&p->svms.lock);
kfd_unref_process(p);
pr_debug("CPU fault svms 0x%p address 0x%lx done\n", &p->svms, addr);
return r ? VM_FAULT_SIGBUS : 0;
}
static const struct dev_pagemap_ops svm_migrate_pgmap_ops = {
.page_free = svm_migrate_page_free,
.migrate_to_ram = svm_migrate_to_ram,
};
/* Each VRAM page uses sizeof(struct page) on system memory */
#define SVM_HMM_PAGE_STRUCT_SIZE(size) ((size)/PAGE_SIZE * sizeof(struct page))
int svm_migrate_init(struct amdgpu_device *adev)
{
struct kfd_dev *kfddev = adev->kfd.dev;
struct dev_pagemap *pgmap;
struct resource *res;
unsigned long size;
void *r;
/* Page migration works on Vega10 or newer */
if (kfddev->device_info->asic_family < CHIP_VEGA10)
return -EINVAL;
pgmap = &kfddev->pgmap;
memset(pgmap, 0, sizeof(*pgmap));
/* TODO: register all vram to HMM for now.
* should remove reserved size
*/
size = ALIGN(adev->gmc.real_vram_size, 2ULL << 20);
res = devm_request_free_mem_region(adev->dev, &iomem_resource, size);
if (IS_ERR(res))
return -ENOMEM;
pgmap->type = MEMORY_DEVICE_PRIVATE;
pgmap->nr_range = 1;
pgmap->range.start = res->start;
pgmap->range.end = res->end;
pgmap->ops = &svm_migrate_pgmap_ops;
pgmap->owner = adev;
pgmap->flags = MIGRATE_VMA_SELECT_DEVICE_PRIVATE;
r = devm_memremap_pages(adev->dev, pgmap);
if (IS_ERR(r)) {
pr_err("failed to register HMM device memory\n");
return PTR_ERR(r);
}
pr_debug("reserve %ldMB system memory for VRAM pages struct\n",
SVM_HMM_PAGE_STRUCT_SIZE(size) >> 20);
amdgpu_amdkfd_reserve_system_mem(SVM_HMM_PAGE_STRUCT_SIZE(size));
pr_info("HMM registered %ldMB device memory\n", size >> 20);
return 0;
}
void svm_migrate_fini(struct amdgpu_device *adev)
{
memunmap_pages(&adev->kfd.dev->pgmap);
}