linux/include/asm-arm/cacheflush.h
Russell King 6020dff092 [ARM] Resolve fuse and direct-IO failures due to missing cache flushes
fuse does not work on ARM due to cache incoherency issues - fuse wants
to use get_user_pages() to copy data from the current process into
kernel space.  However, since this accesses userspace via the kernel
mapping, the kernel mapping can be out of date wrt data written to
userspace.

This can lead to unpredictable behaviour (in the case of fuse) or data
corruption for direct-IO.

This resolves debian bug 

Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
2007-01-08 19:49:58 +00:00

444 lines
13 KiB
C

/*
* linux/include/asm-arm/cacheflush.h
*
* Copyright (C) 1999-2002 Russell King
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#ifndef _ASMARM_CACHEFLUSH_H
#define _ASMARM_CACHEFLUSH_H
#include <linux/sched.h>
#include <linux/mm.h>
#include <asm/glue.h>
#include <asm/shmparam.h>
#define CACHE_COLOUR(vaddr) ((vaddr & (SHMLBA - 1)) >> PAGE_SHIFT)
/*
* Cache Model
* ===========
*/
#undef _CACHE
#undef MULTI_CACHE
#if defined(CONFIG_CPU_CACHE_V3)
# ifdef _CACHE
# define MULTI_CACHE 1
# else
# define _CACHE v3
# endif
#endif
#if defined(CONFIG_CPU_CACHE_V4)
# ifdef _CACHE
# define MULTI_CACHE 1
# else
# define _CACHE v4
# endif
#endif
#if defined(CONFIG_CPU_ARM920T) || defined(CONFIG_CPU_ARM922T) || \
defined(CONFIG_CPU_ARM925T) || defined(CONFIG_CPU_ARM1020)
# define MULTI_CACHE 1
#endif
#if defined(CONFIG_CPU_ARM926T)
# ifdef _CACHE
# define MULTI_CACHE 1
# else
# define _CACHE arm926
# endif
#endif
#if defined(CONFIG_CPU_ARM940T)
# ifdef _CACHE
# define MULTI_CACHE 1
# else
# define _CACHE arm940
# endif
#endif
#if defined(CONFIG_CPU_ARM946E)
# ifdef _CACHE
# define MULTI_CACHE 1
# else
# define _CACHE arm946
# endif
#endif
#if defined(CONFIG_CPU_CACHE_V4WB)
# ifdef _CACHE
# define MULTI_CACHE 1
# else
# define _CACHE v4wb
# endif
#endif
#if defined(CONFIG_CPU_XSCALE)
# ifdef _CACHE
# define MULTI_CACHE 1
# else
# define _CACHE xscale
# endif
#endif
#if defined(CONFIG_CPU_XSC3)
# ifdef _CACHE
# define MULTI_CACHE 1
# else
# define _CACHE xsc3
# endif
#endif
#if defined(CONFIG_CPU_V6)
//# ifdef _CACHE
# define MULTI_CACHE 1
//# else
//# define _CACHE v6
//# endif
#endif
#if !defined(_CACHE) && !defined(MULTI_CACHE)
#error Unknown cache maintainence model
#endif
/*
* This flag is used to indicate that the page pointed to by a pte
* is dirty and requires cleaning before returning it to the user.
*/
#define PG_dcache_dirty PG_arch_1
/*
* MM Cache Management
* ===================
*
* The arch/arm/mm/cache-*.S and arch/arm/mm/proc-*.S files
* implement these methods.
*
* Start addresses are inclusive and end addresses are exclusive;
* start addresses should be rounded down, end addresses up.
*
* See Documentation/cachetlb.txt for more information.
* Please note that the implementation of these, and the required
* effects are cache-type (VIVT/VIPT/PIPT) specific.
*
* flush_cache_kern_all()
*
* Unconditionally clean and invalidate the entire cache.
*
* flush_cache_user_mm(mm)
*
* Clean and invalidate all user space cache entries
* before a change of page tables.
*
* flush_cache_user_range(start, end, flags)
*
* Clean and invalidate a range of cache entries in the
* specified address space before a change of page tables.
* - start - user start address (inclusive, page aligned)
* - end - user end address (exclusive, page aligned)
* - flags - vma->vm_flags field
*
* coherent_kern_range(start, end)
*
* Ensure coherency between the Icache and the Dcache in the
* region described by start, end. If you have non-snooping
* Harvard caches, you need to implement this function.
* - start - virtual start address
* - end - virtual end address
*
* DMA Cache Coherency
* ===================
*
* dma_inv_range(start, end)
*
* Invalidate (discard) the specified virtual address range.
* May not write back any entries. If 'start' or 'end'
* are not cache line aligned, those lines must be written
* back.
* - start - virtual start address
* - end - virtual end address
*
* dma_clean_range(start, end)
*
* Clean (write back) the specified virtual address range.
* - start - virtual start address
* - end - virtual end address
*
* dma_flush_range(start, end)
*
* Clean and invalidate the specified virtual address range.
* - start - virtual start address
* - end - virtual end address
*/
struct cpu_cache_fns {
void (*flush_kern_all)(void);
void (*flush_user_all)(void);
void (*flush_user_range)(unsigned long, unsigned long, unsigned int);
void (*coherent_kern_range)(unsigned long, unsigned long);
void (*coherent_user_range)(unsigned long, unsigned long);
void (*flush_kern_dcache_page)(void *);
void (*dma_inv_range)(unsigned long, unsigned long);
void (*dma_clean_range)(unsigned long, unsigned long);
void (*dma_flush_range)(unsigned long, unsigned long);
};
/*
* Select the calling method
*/
#ifdef MULTI_CACHE
extern struct cpu_cache_fns cpu_cache;
#define __cpuc_flush_kern_all cpu_cache.flush_kern_all
#define __cpuc_flush_user_all cpu_cache.flush_user_all
#define __cpuc_flush_user_range cpu_cache.flush_user_range
#define __cpuc_coherent_kern_range cpu_cache.coherent_kern_range
#define __cpuc_coherent_user_range cpu_cache.coherent_user_range
#define __cpuc_flush_dcache_page cpu_cache.flush_kern_dcache_page
/*
* These are private to the dma-mapping API. Do not use directly.
* Their sole purpose is to ensure that data held in the cache
* is visible to DMA, or data written by DMA to system memory is
* visible to the CPU.
*/
#define dmac_inv_range cpu_cache.dma_inv_range
#define dmac_clean_range cpu_cache.dma_clean_range
#define dmac_flush_range cpu_cache.dma_flush_range
#else
#define __cpuc_flush_kern_all __glue(_CACHE,_flush_kern_cache_all)
#define __cpuc_flush_user_all __glue(_CACHE,_flush_user_cache_all)
#define __cpuc_flush_user_range __glue(_CACHE,_flush_user_cache_range)
#define __cpuc_coherent_kern_range __glue(_CACHE,_coherent_kern_range)
#define __cpuc_coherent_user_range __glue(_CACHE,_coherent_user_range)
#define __cpuc_flush_dcache_page __glue(_CACHE,_flush_kern_dcache_page)
extern void __cpuc_flush_kern_all(void);
extern void __cpuc_flush_user_all(void);
extern void __cpuc_flush_user_range(unsigned long, unsigned long, unsigned int);
extern void __cpuc_coherent_kern_range(unsigned long, unsigned long);
extern void __cpuc_coherent_user_range(unsigned long, unsigned long);
extern void __cpuc_flush_dcache_page(void *);
/*
* These are private to the dma-mapping API. Do not use directly.
* Their sole purpose is to ensure that data held in the cache
* is visible to DMA, or data written by DMA to system memory is
* visible to the CPU.
*/
#define dmac_inv_range __glue(_CACHE,_dma_inv_range)
#define dmac_clean_range __glue(_CACHE,_dma_clean_range)
#define dmac_flush_range __glue(_CACHE,_dma_flush_range)
extern void dmac_inv_range(unsigned long, unsigned long);
extern void dmac_clean_range(unsigned long, unsigned long);
extern void dmac_flush_range(unsigned long, unsigned long);
#endif
/*
* flush_cache_vmap() is used when creating mappings (eg, via vmap,
* vmalloc, ioremap etc) in kernel space for pages. Since the
* direct-mappings of these pages may contain cached data, we need
* to do a full cache flush to ensure that writebacks don't corrupt
* data placed into these pages via the new mappings.
*/
#define flush_cache_vmap(start, end) flush_cache_all()
#define flush_cache_vunmap(start, end) flush_cache_all()
/*
* Copy user data from/to a page which is mapped into a different
* processes address space. Really, we want to allow our "user
* space" model to handle this.
*/
#define copy_to_user_page(vma, page, vaddr, dst, src, len) \
do { \
memcpy(dst, src, len); \
flush_ptrace_access(vma, page, vaddr, dst, len, 1);\
} while (0)
#define copy_from_user_page(vma, page, vaddr, dst, src, len) \
do { \
memcpy(dst, src, len); \
} while (0)
/*
* Convert calls to our calling convention.
*/
#define flush_cache_all() __cpuc_flush_kern_all()
#ifndef CONFIG_CPU_CACHE_VIPT
static inline void flush_cache_mm(struct mm_struct *mm)
{
if (cpu_isset(smp_processor_id(), mm->cpu_vm_mask))
__cpuc_flush_user_all();
}
static inline void
flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
{
if (cpu_isset(smp_processor_id(), vma->vm_mm->cpu_vm_mask))
__cpuc_flush_user_range(start & PAGE_MASK, PAGE_ALIGN(end),
vma->vm_flags);
}
static inline void
flush_cache_page(struct vm_area_struct *vma, unsigned long user_addr, unsigned long pfn)
{
if (cpu_isset(smp_processor_id(), vma->vm_mm->cpu_vm_mask)) {
unsigned long addr = user_addr & PAGE_MASK;
__cpuc_flush_user_range(addr, addr + PAGE_SIZE, vma->vm_flags);
}
}
static inline void
flush_ptrace_access(struct vm_area_struct *vma, struct page *page,
unsigned long uaddr, void *kaddr,
unsigned long len, int write)
{
if (cpu_isset(smp_processor_id(), vma->vm_mm->cpu_vm_mask)) {
unsigned long addr = (unsigned long)kaddr;
__cpuc_coherent_kern_range(addr, addr + len);
}
}
#else
extern void flush_cache_mm(struct mm_struct *mm);
extern void flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
extern void flush_cache_page(struct vm_area_struct *vma, unsigned long user_addr, unsigned long pfn);
extern void flush_ptrace_access(struct vm_area_struct *vma, struct page *page,
unsigned long uaddr, void *kaddr,
unsigned long len, int write);
#endif
#define flush_cache_dup_mm(mm) flush_cache_mm(mm)
/*
* flush_cache_user_range is used when we want to ensure that the
* Harvard caches are synchronised for the user space address range.
* This is used for the ARM private sys_cacheflush system call.
*/
#define flush_cache_user_range(vma,start,end) \
__cpuc_coherent_user_range((start) & PAGE_MASK, PAGE_ALIGN(end))
/*
* Perform necessary cache operations to ensure that data previously
* stored within this range of addresses can be executed by the CPU.
*/
#define flush_icache_range(s,e) __cpuc_coherent_kern_range(s,e)
/*
* Perform necessary cache operations to ensure that the TLB will
* see data written in the specified area.
*/
#define clean_dcache_area(start,size) cpu_dcache_clean_area(start, size)
/*
* flush_dcache_page is used when the kernel has written to the page
* cache page at virtual address page->virtual.
*
* If this page isn't mapped (ie, page_mapping == NULL), or it might
* have userspace mappings, then we _must_ always clean + invalidate
* the dcache entries associated with the kernel mapping.
*
* Otherwise we can defer the operation, and clean the cache when we are
* about to change to user space. This is the same method as used on SPARC64.
* See update_mmu_cache for the user space part.
*/
extern void flush_dcache_page(struct page *);
extern void __flush_dcache_page(struct address_space *mapping, struct page *page);
#define ARCH_HAS_FLUSH_ANON_PAGE
static inline void flush_anon_page(struct vm_area_struct *vma,
struct page *page, unsigned long vmaddr)
{
extern void __flush_anon_page(struct vm_area_struct *vma,
struct page *, unsigned long);
if (PageAnon(page))
__flush_anon_page(vma, page, vmaddr);
}
#define flush_dcache_mmap_lock(mapping) \
write_lock_irq(&(mapping)->tree_lock)
#define flush_dcache_mmap_unlock(mapping) \
write_unlock_irq(&(mapping)->tree_lock)
#define flush_icache_user_range(vma,page,addr,len) \
flush_dcache_page(page)
/*
* We don't appear to need to do anything here. In fact, if we did, we'd
* duplicate cache flushing elsewhere performed by flush_dcache_page().
*/
#define flush_icache_page(vma,page) do { } while (0)
#define __cacheid_present(val) (val != read_cpuid(CPUID_ID))
#define __cacheid_vivt(val) ((val & (15 << 25)) != (14 << 25))
#define __cacheid_vipt(val) ((val & (15 << 25)) == (14 << 25))
#define __cacheid_vipt_nonaliasing(val) ((val & (15 << 25 | 1 << 23)) == (14 << 25))
#define __cacheid_vipt_aliasing(val) ((val & (15 << 25 | 1 << 23)) == (14 << 25 | 1 << 23))
#if defined(CONFIG_CPU_CACHE_VIVT) && !defined(CONFIG_CPU_CACHE_VIPT)
#define cache_is_vivt() 1
#define cache_is_vipt() 0
#define cache_is_vipt_nonaliasing() 0
#define cache_is_vipt_aliasing() 0
#elif defined(CONFIG_CPU_CACHE_VIPT)
#define cache_is_vivt() 0
#define cache_is_vipt() 1
#define cache_is_vipt_nonaliasing() \
({ \
unsigned int __val = read_cpuid(CPUID_CACHETYPE); \
__cacheid_vipt_nonaliasing(__val); \
})
#define cache_is_vipt_aliasing() \
({ \
unsigned int __val = read_cpuid(CPUID_CACHETYPE); \
__cacheid_vipt_aliasing(__val); \
})
#else
#define cache_is_vivt() \
({ \
unsigned int __val = read_cpuid(CPUID_CACHETYPE); \
(!__cacheid_present(__val)) || __cacheid_vivt(__val); \
})
#define cache_is_vipt() \
({ \
unsigned int __val = read_cpuid(CPUID_CACHETYPE); \
__cacheid_present(__val) && __cacheid_vipt(__val); \
})
#define cache_is_vipt_nonaliasing() \
({ \
unsigned int __val = read_cpuid(CPUID_CACHETYPE); \
__cacheid_present(__val) && \
__cacheid_vipt_nonaliasing(__val); \
})
#define cache_is_vipt_aliasing() \
({ \
unsigned int __val = read_cpuid(CPUID_CACHETYPE); \
__cacheid_present(__val) && \
__cacheid_vipt_aliasing(__val); \
})
#endif
#endif