47cf1e659e
Minor, use the explicit PORT_DEFAULT_VLAN define instead of 0x07. Signed-off-by: Vivien Didelot <vivien.didelot@savoirfairelinux.com> Acked-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
1484 lines
34 KiB
C
1484 lines
34 KiB
C
/*
|
|
* net/dsa/mv88e6xxx.c - Marvell 88e6xxx switch chip support
|
|
* Copyright (c) 2008 Marvell Semiconductor
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*/
|
|
|
|
#include <linux/delay.h>
|
|
#include <linux/etherdevice.h>
|
|
#include <linux/if_bridge.h>
|
|
#include <linux/jiffies.h>
|
|
#include <linux/list.h>
|
|
#include <linux/module.h>
|
|
#include <linux/netdevice.h>
|
|
#include <linux/phy.h>
|
|
#include <net/dsa.h>
|
|
#include "mv88e6xxx.h"
|
|
|
|
/* If the switch's ADDR[4:0] strap pins are strapped to zero, it will
|
|
* use all 32 SMI bus addresses on its SMI bus, and all switch registers
|
|
* will be directly accessible on some {device address,register address}
|
|
* pair. If the ADDR[4:0] pins are not strapped to zero, the switch
|
|
* will only respond to SMI transactions to that specific address, and
|
|
* an indirect addressing mechanism needs to be used to access its
|
|
* registers.
|
|
*/
|
|
static int mv88e6xxx_reg_wait_ready(struct mii_bus *bus, int sw_addr)
|
|
{
|
|
int ret;
|
|
int i;
|
|
|
|
for (i = 0; i < 16; i++) {
|
|
ret = mdiobus_read(bus, sw_addr, SMI_CMD);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
if ((ret & SMI_CMD_BUSY) == 0)
|
|
return 0;
|
|
}
|
|
|
|
return -ETIMEDOUT;
|
|
}
|
|
|
|
int __mv88e6xxx_reg_read(struct mii_bus *bus, int sw_addr, int addr, int reg)
|
|
{
|
|
int ret;
|
|
|
|
if (sw_addr == 0)
|
|
return mdiobus_read(bus, addr, reg);
|
|
|
|
/* Wait for the bus to become free. */
|
|
ret = mv88e6xxx_reg_wait_ready(bus, sw_addr);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
/* Transmit the read command. */
|
|
ret = mdiobus_write(bus, sw_addr, SMI_CMD,
|
|
SMI_CMD_OP_22_READ | (addr << 5) | reg);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
/* Wait for the read command to complete. */
|
|
ret = mv88e6xxx_reg_wait_ready(bus, sw_addr);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
/* Read the data. */
|
|
ret = mdiobus_read(bus, sw_addr, SMI_DATA);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
return ret & 0xffff;
|
|
}
|
|
|
|
/* Must be called with SMI mutex held */
|
|
static int _mv88e6xxx_reg_read(struct dsa_switch *ds, int addr, int reg)
|
|
{
|
|
struct mii_bus *bus = dsa_host_dev_to_mii_bus(ds->master_dev);
|
|
int ret;
|
|
|
|
if (bus == NULL)
|
|
return -EINVAL;
|
|
|
|
ret = __mv88e6xxx_reg_read(bus, ds->pd->sw_addr, addr, reg);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
dev_dbg(ds->master_dev, "<- addr: 0x%.2x reg: 0x%.2x val: 0x%.4x\n",
|
|
addr, reg, ret);
|
|
|
|
return ret;
|
|
}
|
|
|
|
int mv88e6xxx_reg_read(struct dsa_switch *ds, int addr, int reg)
|
|
{
|
|
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
|
|
int ret;
|
|
|
|
mutex_lock(&ps->smi_mutex);
|
|
ret = _mv88e6xxx_reg_read(ds, addr, reg);
|
|
mutex_unlock(&ps->smi_mutex);
|
|
|
|
return ret;
|
|
}
|
|
|
|
int __mv88e6xxx_reg_write(struct mii_bus *bus, int sw_addr, int addr,
|
|
int reg, u16 val)
|
|
{
|
|
int ret;
|
|
|
|
if (sw_addr == 0)
|
|
return mdiobus_write(bus, addr, reg, val);
|
|
|
|
/* Wait for the bus to become free. */
|
|
ret = mv88e6xxx_reg_wait_ready(bus, sw_addr);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
/* Transmit the data to write. */
|
|
ret = mdiobus_write(bus, sw_addr, SMI_DATA, val);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
/* Transmit the write command. */
|
|
ret = mdiobus_write(bus, sw_addr, SMI_CMD,
|
|
SMI_CMD_OP_22_WRITE | (addr << 5) | reg);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
/* Wait for the write command to complete. */
|
|
ret = mv88e6xxx_reg_wait_ready(bus, sw_addr);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Must be called with SMI mutex held */
|
|
static int _mv88e6xxx_reg_write(struct dsa_switch *ds, int addr, int reg,
|
|
u16 val)
|
|
{
|
|
struct mii_bus *bus = dsa_host_dev_to_mii_bus(ds->master_dev);
|
|
|
|
if (bus == NULL)
|
|
return -EINVAL;
|
|
|
|
dev_dbg(ds->master_dev, "-> addr: 0x%.2x reg: 0x%.2x val: 0x%.4x\n",
|
|
addr, reg, val);
|
|
|
|
return __mv88e6xxx_reg_write(bus, ds->pd->sw_addr, addr, reg, val);
|
|
}
|
|
|
|
int mv88e6xxx_reg_write(struct dsa_switch *ds, int addr, int reg, u16 val)
|
|
{
|
|
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
|
|
int ret;
|
|
|
|
mutex_lock(&ps->smi_mutex);
|
|
ret = _mv88e6xxx_reg_write(ds, addr, reg, val);
|
|
mutex_unlock(&ps->smi_mutex);
|
|
|
|
return ret;
|
|
}
|
|
|
|
int mv88e6xxx_config_prio(struct dsa_switch *ds)
|
|
{
|
|
/* Configure the IP ToS mapping registers. */
|
|
REG_WRITE(REG_GLOBAL, GLOBAL_IP_PRI_0, 0x0000);
|
|
REG_WRITE(REG_GLOBAL, GLOBAL_IP_PRI_1, 0x0000);
|
|
REG_WRITE(REG_GLOBAL, GLOBAL_IP_PRI_2, 0x5555);
|
|
REG_WRITE(REG_GLOBAL, GLOBAL_IP_PRI_3, 0x5555);
|
|
REG_WRITE(REG_GLOBAL, GLOBAL_IP_PRI_4, 0xaaaa);
|
|
REG_WRITE(REG_GLOBAL, GLOBAL_IP_PRI_5, 0xaaaa);
|
|
REG_WRITE(REG_GLOBAL, GLOBAL_IP_PRI_6, 0xffff);
|
|
REG_WRITE(REG_GLOBAL, GLOBAL_IP_PRI_7, 0xffff);
|
|
|
|
/* Configure the IEEE 802.1p priority mapping register. */
|
|
REG_WRITE(REG_GLOBAL, GLOBAL_IEEE_PRI, 0xfa41);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int mv88e6xxx_set_addr_direct(struct dsa_switch *ds, u8 *addr)
|
|
{
|
|
REG_WRITE(REG_GLOBAL, GLOBAL_MAC_01, (addr[0] << 8) | addr[1]);
|
|
REG_WRITE(REG_GLOBAL, GLOBAL_MAC_23, (addr[2] << 8) | addr[3]);
|
|
REG_WRITE(REG_GLOBAL, GLOBAL_MAC_45, (addr[4] << 8) | addr[5]);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int mv88e6xxx_set_addr_indirect(struct dsa_switch *ds, u8 *addr)
|
|
{
|
|
int i;
|
|
int ret;
|
|
|
|
for (i = 0; i < 6; i++) {
|
|
int j;
|
|
|
|
/* Write the MAC address byte. */
|
|
REG_WRITE(REG_GLOBAL2, GLOBAL2_SWITCH_MAC,
|
|
GLOBAL2_SWITCH_MAC_BUSY | (i << 8) | addr[i]);
|
|
|
|
/* Wait for the write to complete. */
|
|
for (j = 0; j < 16; j++) {
|
|
ret = REG_READ(REG_GLOBAL2, GLOBAL2_SWITCH_MAC);
|
|
if ((ret & GLOBAL2_SWITCH_MAC_BUSY) == 0)
|
|
break;
|
|
}
|
|
if (j == 16)
|
|
return -ETIMEDOUT;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Must be called with phy mutex held */
|
|
static int _mv88e6xxx_phy_read(struct dsa_switch *ds, int addr, int regnum)
|
|
{
|
|
if (addr >= 0)
|
|
return mv88e6xxx_reg_read(ds, addr, regnum);
|
|
return 0xffff;
|
|
}
|
|
|
|
/* Must be called with phy mutex held */
|
|
static int _mv88e6xxx_phy_write(struct dsa_switch *ds, int addr, int regnum,
|
|
u16 val)
|
|
{
|
|
if (addr >= 0)
|
|
return mv88e6xxx_reg_write(ds, addr, regnum, val);
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CONFIG_NET_DSA_MV88E6XXX_NEED_PPU
|
|
static int mv88e6xxx_ppu_disable(struct dsa_switch *ds)
|
|
{
|
|
int ret;
|
|
unsigned long timeout;
|
|
|
|
ret = REG_READ(REG_GLOBAL, GLOBAL_CONTROL);
|
|
REG_WRITE(REG_GLOBAL, GLOBAL_CONTROL,
|
|
ret & ~GLOBAL_CONTROL_PPU_ENABLE);
|
|
|
|
timeout = jiffies + 1 * HZ;
|
|
while (time_before(jiffies, timeout)) {
|
|
ret = REG_READ(REG_GLOBAL, GLOBAL_STATUS);
|
|
usleep_range(1000, 2000);
|
|
if ((ret & GLOBAL_STATUS_PPU_MASK) !=
|
|
GLOBAL_STATUS_PPU_POLLING)
|
|
return 0;
|
|
}
|
|
|
|
return -ETIMEDOUT;
|
|
}
|
|
|
|
static int mv88e6xxx_ppu_enable(struct dsa_switch *ds)
|
|
{
|
|
int ret;
|
|
unsigned long timeout;
|
|
|
|
ret = REG_READ(REG_GLOBAL, GLOBAL_CONTROL);
|
|
REG_WRITE(REG_GLOBAL, GLOBAL_CONTROL, ret | GLOBAL_CONTROL_PPU_ENABLE);
|
|
|
|
timeout = jiffies + 1 * HZ;
|
|
while (time_before(jiffies, timeout)) {
|
|
ret = REG_READ(REG_GLOBAL, GLOBAL_STATUS);
|
|
usleep_range(1000, 2000);
|
|
if ((ret & GLOBAL_STATUS_PPU_MASK) ==
|
|
GLOBAL_STATUS_PPU_POLLING)
|
|
return 0;
|
|
}
|
|
|
|
return -ETIMEDOUT;
|
|
}
|
|
|
|
static void mv88e6xxx_ppu_reenable_work(struct work_struct *ugly)
|
|
{
|
|
struct mv88e6xxx_priv_state *ps;
|
|
|
|
ps = container_of(ugly, struct mv88e6xxx_priv_state, ppu_work);
|
|
if (mutex_trylock(&ps->ppu_mutex)) {
|
|
struct dsa_switch *ds = ((struct dsa_switch *)ps) - 1;
|
|
|
|
if (mv88e6xxx_ppu_enable(ds) == 0)
|
|
ps->ppu_disabled = 0;
|
|
mutex_unlock(&ps->ppu_mutex);
|
|
}
|
|
}
|
|
|
|
static void mv88e6xxx_ppu_reenable_timer(unsigned long _ps)
|
|
{
|
|
struct mv88e6xxx_priv_state *ps = (void *)_ps;
|
|
|
|
schedule_work(&ps->ppu_work);
|
|
}
|
|
|
|
static int mv88e6xxx_ppu_access_get(struct dsa_switch *ds)
|
|
{
|
|
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
|
|
int ret;
|
|
|
|
mutex_lock(&ps->ppu_mutex);
|
|
|
|
/* If the PHY polling unit is enabled, disable it so that
|
|
* we can access the PHY registers. If it was already
|
|
* disabled, cancel the timer that is going to re-enable
|
|
* it.
|
|
*/
|
|
if (!ps->ppu_disabled) {
|
|
ret = mv88e6xxx_ppu_disable(ds);
|
|
if (ret < 0) {
|
|
mutex_unlock(&ps->ppu_mutex);
|
|
return ret;
|
|
}
|
|
ps->ppu_disabled = 1;
|
|
} else {
|
|
del_timer(&ps->ppu_timer);
|
|
ret = 0;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void mv88e6xxx_ppu_access_put(struct dsa_switch *ds)
|
|
{
|
|
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
|
|
|
|
/* Schedule a timer to re-enable the PHY polling unit. */
|
|
mod_timer(&ps->ppu_timer, jiffies + msecs_to_jiffies(10));
|
|
mutex_unlock(&ps->ppu_mutex);
|
|
}
|
|
|
|
void mv88e6xxx_ppu_state_init(struct dsa_switch *ds)
|
|
{
|
|
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
|
|
|
|
mutex_init(&ps->ppu_mutex);
|
|
INIT_WORK(&ps->ppu_work, mv88e6xxx_ppu_reenable_work);
|
|
init_timer(&ps->ppu_timer);
|
|
ps->ppu_timer.data = (unsigned long)ps;
|
|
ps->ppu_timer.function = mv88e6xxx_ppu_reenable_timer;
|
|
}
|
|
|
|
int mv88e6xxx_phy_read_ppu(struct dsa_switch *ds, int addr, int regnum)
|
|
{
|
|
int ret;
|
|
|
|
ret = mv88e6xxx_ppu_access_get(ds);
|
|
if (ret >= 0) {
|
|
ret = mv88e6xxx_reg_read(ds, addr, regnum);
|
|
mv88e6xxx_ppu_access_put(ds);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
int mv88e6xxx_phy_write_ppu(struct dsa_switch *ds, int addr,
|
|
int regnum, u16 val)
|
|
{
|
|
int ret;
|
|
|
|
ret = mv88e6xxx_ppu_access_get(ds);
|
|
if (ret >= 0) {
|
|
ret = mv88e6xxx_reg_write(ds, addr, regnum, val);
|
|
mv88e6xxx_ppu_access_put(ds);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
#endif
|
|
|
|
void mv88e6xxx_poll_link(struct dsa_switch *ds)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < DSA_MAX_PORTS; i++) {
|
|
struct net_device *dev;
|
|
int uninitialized_var(port_status);
|
|
int link;
|
|
int speed;
|
|
int duplex;
|
|
int fc;
|
|
|
|
dev = ds->ports[i];
|
|
if (dev == NULL)
|
|
continue;
|
|
|
|
link = 0;
|
|
if (dev->flags & IFF_UP) {
|
|
port_status = mv88e6xxx_reg_read(ds, REG_PORT(i),
|
|
PORT_STATUS);
|
|
if (port_status < 0)
|
|
continue;
|
|
|
|
link = !!(port_status & PORT_STATUS_LINK);
|
|
}
|
|
|
|
if (!link) {
|
|
if (netif_carrier_ok(dev)) {
|
|
netdev_info(dev, "link down\n");
|
|
netif_carrier_off(dev);
|
|
}
|
|
continue;
|
|
}
|
|
|
|
switch (port_status & PORT_STATUS_SPEED_MASK) {
|
|
case PORT_STATUS_SPEED_10:
|
|
speed = 10;
|
|
break;
|
|
case PORT_STATUS_SPEED_100:
|
|
speed = 100;
|
|
break;
|
|
case PORT_STATUS_SPEED_1000:
|
|
speed = 1000;
|
|
break;
|
|
default:
|
|
speed = -1;
|
|
break;
|
|
}
|
|
duplex = (port_status & PORT_STATUS_DUPLEX) ? 1 : 0;
|
|
fc = (port_status & PORT_STATUS_PAUSE_EN) ? 1 : 0;
|
|
|
|
if (!netif_carrier_ok(dev)) {
|
|
netdev_info(dev,
|
|
"link up, %d Mb/s, %s duplex, flow control %sabled\n",
|
|
speed,
|
|
duplex ? "full" : "half",
|
|
fc ? "en" : "dis");
|
|
netif_carrier_on(dev);
|
|
}
|
|
}
|
|
}
|
|
|
|
static bool mv88e6xxx_6352_family(struct dsa_switch *ds)
|
|
{
|
|
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
|
|
|
|
switch (ps->id) {
|
|
case PORT_SWITCH_ID_6352:
|
|
case PORT_SWITCH_ID_6172:
|
|
case PORT_SWITCH_ID_6176:
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static int mv88e6xxx_stats_wait(struct dsa_switch *ds)
|
|
{
|
|
int ret;
|
|
int i;
|
|
|
|
for (i = 0; i < 10; i++) {
|
|
ret = REG_READ(REG_GLOBAL, GLOBAL_STATS_OP);
|
|
if ((ret & GLOBAL_STATS_OP_BUSY) == 0)
|
|
return 0;
|
|
}
|
|
|
|
return -ETIMEDOUT;
|
|
}
|
|
|
|
static int mv88e6xxx_stats_snapshot(struct dsa_switch *ds, int port)
|
|
{
|
|
int ret;
|
|
|
|
if (mv88e6xxx_6352_family(ds))
|
|
port = (port + 1) << 5;
|
|
|
|
/* Snapshot the hardware statistics counters for this port. */
|
|
REG_WRITE(REG_GLOBAL, GLOBAL_STATS_OP,
|
|
GLOBAL_STATS_OP_CAPTURE_PORT |
|
|
GLOBAL_STATS_OP_HIST_RX_TX | port);
|
|
|
|
/* Wait for the snapshotting to complete. */
|
|
ret = mv88e6xxx_stats_wait(ds);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void mv88e6xxx_stats_read(struct dsa_switch *ds, int stat, u32 *val)
|
|
{
|
|
u32 _val;
|
|
int ret;
|
|
|
|
*val = 0;
|
|
|
|
ret = mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_STATS_OP,
|
|
GLOBAL_STATS_OP_READ_CAPTURED |
|
|
GLOBAL_STATS_OP_HIST_RX_TX | stat);
|
|
if (ret < 0)
|
|
return;
|
|
|
|
ret = mv88e6xxx_stats_wait(ds);
|
|
if (ret < 0)
|
|
return;
|
|
|
|
ret = mv88e6xxx_reg_read(ds, REG_GLOBAL, GLOBAL_STATS_COUNTER_32);
|
|
if (ret < 0)
|
|
return;
|
|
|
|
_val = ret << 16;
|
|
|
|
ret = mv88e6xxx_reg_read(ds, REG_GLOBAL, GLOBAL_STATS_COUNTER_01);
|
|
if (ret < 0)
|
|
return;
|
|
|
|
*val = _val | ret;
|
|
}
|
|
|
|
static struct mv88e6xxx_hw_stat mv88e6xxx_hw_stats[] = {
|
|
{ "in_good_octets", 8, 0x00, },
|
|
{ "in_bad_octets", 4, 0x02, },
|
|
{ "in_unicast", 4, 0x04, },
|
|
{ "in_broadcasts", 4, 0x06, },
|
|
{ "in_multicasts", 4, 0x07, },
|
|
{ "in_pause", 4, 0x16, },
|
|
{ "in_undersize", 4, 0x18, },
|
|
{ "in_fragments", 4, 0x19, },
|
|
{ "in_oversize", 4, 0x1a, },
|
|
{ "in_jabber", 4, 0x1b, },
|
|
{ "in_rx_error", 4, 0x1c, },
|
|
{ "in_fcs_error", 4, 0x1d, },
|
|
{ "out_octets", 8, 0x0e, },
|
|
{ "out_unicast", 4, 0x10, },
|
|
{ "out_broadcasts", 4, 0x13, },
|
|
{ "out_multicasts", 4, 0x12, },
|
|
{ "out_pause", 4, 0x15, },
|
|
{ "excessive", 4, 0x11, },
|
|
{ "collisions", 4, 0x1e, },
|
|
{ "deferred", 4, 0x05, },
|
|
{ "single", 4, 0x14, },
|
|
{ "multiple", 4, 0x17, },
|
|
{ "out_fcs_error", 4, 0x03, },
|
|
{ "late", 4, 0x1f, },
|
|
{ "hist_64bytes", 4, 0x08, },
|
|
{ "hist_65_127bytes", 4, 0x09, },
|
|
{ "hist_128_255bytes", 4, 0x0a, },
|
|
{ "hist_256_511bytes", 4, 0x0b, },
|
|
{ "hist_512_1023bytes", 4, 0x0c, },
|
|
{ "hist_1024_max_bytes", 4, 0x0d, },
|
|
/* Not all devices have the following counters */
|
|
{ "sw_in_discards", 4, 0x110, },
|
|
{ "sw_in_filtered", 2, 0x112, },
|
|
{ "sw_out_filtered", 2, 0x113, },
|
|
|
|
};
|
|
|
|
static bool have_sw_in_discards(struct dsa_switch *ds)
|
|
{
|
|
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
|
|
|
|
switch (ps->id) {
|
|
case PORT_SWITCH_ID_6095: case PORT_SWITCH_ID_6161:
|
|
case PORT_SWITCH_ID_6165: case PORT_SWITCH_ID_6171:
|
|
case PORT_SWITCH_ID_6172: case PORT_SWITCH_ID_6176:
|
|
case PORT_SWITCH_ID_6182: case PORT_SWITCH_ID_6185:
|
|
case PORT_SWITCH_ID_6352:
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
static void _mv88e6xxx_get_strings(struct dsa_switch *ds,
|
|
int nr_stats,
|
|
struct mv88e6xxx_hw_stat *stats,
|
|
int port, uint8_t *data)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < nr_stats; i++) {
|
|
memcpy(data + i * ETH_GSTRING_LEN,
|
|
stats[i].string, ETH_GSTRING_LEN);
|
|
}
|
|
}
|
|
|
|
static void _mv88e6xxx_get_ethtool_stats(struct dsa_switch *ds,
|
|
int nr_stats,
|
|
struct mv88e6xxx_hw_stat *stats,
|
|
int port, uint64_t *data)
|
|
{
|
|
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
|
|
int ret;
|
|
int i;
|
|
|
|
mutex_lock(&ps->stats_mutex);
|
|
|
|
ret = mv88e6xxx_stats_snapshot(ds, port);
|
|
if (ret < 0) {
|
|
mutex_unlock(&ps->stats_mutex);
|
|
return;
|
|
}
|
|
|
|
/* Read each of the counters. */
|
|
for (i = 0; i < nr_stats; i++) {
|
|
struct mv88e6xxx_hw_stat *s = stats + i;
|
|
u32 low;
|
|
u32 high = 0;
|
|
|
|
if (s->reg >= 0x100) {
|
|
ret = mv88e6xxx_reg_read(ds, REG_PORT(port),
|
|
s->reg - 0x100);
|
|
if (ret < 0)
|
|
goto error;
|
|
low = ret;
|
|
if (s->sizeof_stat == 4) {
|
|
ret = mv88e6xxx_reg_read(ds, REG_PORT(port),
|
|
s->reg - 0x100 + 1);
|
|
if (ret < 0)
|
|
goto error;
|
|
high = ret;
|
|
}
|
|
data[i] = (((u64)high) << 16) | low;
|
|
continue;
|
|
}
|
|
mv88e6xxx_stats_read(ds, s->reg, &low);
|
|
if (s->sizeof_stat == 8)
|
|
mv88e6xxx_stats_read(ds, s->reg + 1, &high);
|
|
|
|
data[i] = (((u64)high) << 32) | low;
|
|
}
|
|
error:
|
|
mutex_unlock(&ps->stats_mutex);
|
|
}
|
|
|
|
/* All the statistics in the table */
|
|
void
|
|
mv88e6xxx_get_strings(struct dsa_switch *ds, int port, uint8_t *data)
|
|
{
|
|
if (have_sw_in_discards(ds))
|
|
_mv88e6xxx_get_strings(ds, ARRAY_SIZE(mv88e6xxx_hw_stats),
|
|
mv88e6xxx_hw_stats, port, data);
|
|
else
|
|
_mv88e6xxx_get_strings(ds, ARRAY_SIZE(mv88e6xxx_hw_stats) - 3,
|
|
mv88e6xxx_hw_stats, port, data);
|
|
}
|
|
|
|
int mv88e6xxx_get_sset_count(struct dsa_switch *ds)
|
|
{
|
|
if (have_sw_in_discards(ds))
|
|
return ARRAY_SIZE(mv88e6xxx_hw_stats);
|
|
return ARRAY_SIZE(mv88e6xxx_hw_stats) - 3;
|
|
}
|
|
|
|
void
|
|
mv88e6xxx_get_ethtool_stats(struct dsa_switch *ds,
|
|
int port, uint64_t *data)
|
|
{
|
|
if (have_sw_in_discards(ds))
|
|
_mv88e6xxx_get_ethtool_stats(
|
|
ds, ARRAY_SIZE(mv88e6xxx_hw_stats),
|
|
mv88e6xxx_hw_stats, port, data);
|
|
else
|
|
_mv88e6xxx_get_ethtool_stats(
|
|
ds, ARRAY_SIZE(mv88e6xxx_hw_stats) - 3,
|
|
mv88e6xxx_hw_stats, port, data);
|
|
}
|
|
|
|
int mv88e6xxx_get_regs_len(struct dsa_switch *ds, int port)
|
|
{
|
|
return 32 * sizeof(u16);
|
|
}
|
|
|
|
void mv88e6xxx_get_regs(struct dsa_switch *ds, int port,
|
|
struct ethtool_regs *regs, void *_p)
|
|
{
|
|
u16 *p = _p;
|
|
int i;
|
|
|
|
regs->version = 0;
|
|
|
|
memset(p, 0xff, 32 * sizeof(u16));
|
|
|
|
for (i = 0; i < 32; i++) {
|
|
int ret;
|
|
|
|
ret = mv88e6xxx_reg_read(ds, REG_PORT(port), i);
|
|
if (ret >= 0)
|
|
p[i] = ret;
|
|
}
|
|
}
|
|
|
|
#ifdef CONFIG_NET_DSA_HWMON
|
|
|
|
int mv88e6xxx_get_temp(struct dsa_switch *ds, int *temp)
|
|
{
|
|
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
|
|
int ret;
|
|
int val;
|
|
|
|
*temp = 0;
|
|
|
|
mutex_lock(&ps->phy_mutex);
|
|
|
|
ret = _mv88e6xxx_phy_write(ds, 0x0, 0x16, 0x6);
|
|
if (ret < 0)
|
|
goto error;
|
|
|
|
/* Enable temperature sensor */
|
|
ret = _mv88e6xxx_phy_read(ds, 0x0, 0x1a);
|
|
if (ret < 0)
|
|
goto error;
|
|
|
|
ret = _mv88e6xxx_phy_write(ds, 0x0, 0x1a, ret | (1 << 5));
|
|
if (ret < 0)
|
|
goto error;
|
|
|
|
/* Wait for temperature to stabilize */
|
|
usleep_range(10000, 12000);
|
|
|
|
val = _mv88e6xxx_phy_read(ds, 0x0, 0x1a);
|
|
if (val < 0) {
|
|
ret = val;
|
|
goto error;
|
|
}
|
|
|
|
/* Disable temperature sensor */
|
|
ret = _mv88e6xxx_phy_write(ds, 0x0, 0x1a, ret & ~(1 << 5));
|
|
if (ret < 0)
|
|
goto error;
|
|
|
|
*temp = ((val & 0x1f) - 5) * 5;
|
|
|
|
error:
|
|
_mv88e6xxx_phy_write(ds, 0x0, 0x16, 0x0);
|
|
mutex_unlock(&ps->phy_mutex);
|
|
return ret;
|
|
}
|
|
#endif /* CONFIG_NET_DSA_HWMON */
|
|
|
|
static int mv88e6xxx_wait(struct dsa_switch *ds, int reg, int offset, u16 mask)
|
|
{
|
|
unsigned long timeout = jiffies + HZ / 10;
|
|
|
|
while (time_before(jiffies, timeout)) {
|
|
int ret;
|
|
|
|
ret = REG_READ(reg, offset);
|
|
if (!(ret & mask))
|
|
return 0;
|
|
|
|
usleep_range(1000, 2000);
|
|
}
|
|
return -ETIMEDOUT;
|
|
}
|
|
|
|
int mv88e6xxx_phy_wait(struct dsa_switch *ds)
|
|
{
|
|
return mv88e6xxx_wait(ds, REG_GLOBAL2, GLOBAL2_SMI_OP,
|
|
GLOBAL2_SMI_OP_BUSY);
|
|
}
|
|
|
|
int mv88e6xxx_eeprom_load_wait(struct dsa_switch *ds)
|
|
{
|
|
return mv88e6xxx_wait(ds, REG_GLOBAL2, GLOBAL2_EEPROM_OP,
|
|
GLOBAL2_EEPROM_OP_LOAD);
|
|
}
|
|
|
|
int mv88e6xxx_eeprom_busy_wait(struct dsa_switch *ds)
|
|
{
|
|
return mv88e6xxx_wait(ds, REG_GLOBAL2, GLOBAL2_EEPROM_OP,
|
|
GLOBAL2_EEPROM_OP_BUSY);
|
|
}
|
|
|
|
/* Must be called with SMI lock held */
|
|
static int _mv88e6xxx_wait(struct dsa_switch *ds, int reg, int offset, u16 mask)
|
|
{
|
|
unsigned long timeout = jiffies + HZ / 10;
|
|
|
|
while (time_before(jiffies, timeout)) {
|
|
int ret;
|
|
|
|
ret = _mv88e6xxx_reg_read(ds, reg, offset);
|
|
if (ret < 0)
|
|
return ret;
|
|
if (!(ret & mask))
|
|
return 0;
|
|
|
|
usleep_range(1000, 2000);
|
|
}
|
|
return -ETIMEDOUT;
|
|
}
|
|
|
|
/* Must be called with SMI lock held */
|
|
static int _mv88e6xxx_atu_wait(struct dsa_switch *ds)
|
|
{
|
|
return _mv88e6xxx_wait(ds, REG_GLOBAL, GLOBAL_ATU_OP,
|
|
GLOBAL_ATU_OP_BUSY);
|
|
}
|
|
|
|
/* Must be called with phy mutex held */
|
|
static int _mv88e6xxx_phy_read_indirect(struct dsa_switch *ds, int addr,
|
|
int regnum)
|
|
{
|
|
int ret;
|
|
|
|
REG_WRITE(REG_GLOBAL2, GLOBAL2_SMI_OP,
|
|
GLOBAL2_SMI_OP_22_READ | (addr << 5) | regnum);
|
|
|
|
ret = mv88e6xxx_phy_wait(ds);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
return REG_READ(REG_GLOBAL2, GLOBAL2_SMI_DATA);
|
|
}
|
|
|
|
/* Must be called with phy mutex held */
|
|
static int _mv88e6xxx_phy_write_indirect(struct dsa_switch *ds, int addr,
|
|
int regnum, u16 val)
|
|
{
|
|
REG_WRITE(REG_GLOBAL2, GLOBAL2_SMI_DATA, val);
|
|
REG_WRITE(REG_GLOBAL2, GLOBAL2_SMI_OP,
|
|
GLOBAL2_SMI_OP_22_WRITE | (addr << 5) | regnum);
|
|
|
|
return mv88e6xxx_phy_wait(ds);
|
|
}
|
|
|
|
int mv88e6xxx_get_eee(struct dsa_switch *ds, int port, struct ethtool_eee *e)
|
|
{
|
|
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
|
|
int reg;
|
|
|
|
mutex_lock(&ps->phy_mutex);
|
|
|
|
reg = _mv88e6xxx_phy_read_indirect(ds, port, 16);
|
|
if (reg < 0)
|
|
goto out;
|
|
|
|
e->eee_enabled = !!(reg & 0x0200);
|
|
e->tx_lpi_enabled = !!(reg & 0x0100);
|
|
|
|
reg = mv88e6xxx_reg_read(ds, REG_PORT(port), PORT_STATUS);
|
|
if (reg < 0)
|
|
goto out;
|
|
|
|
e->eee_active = !!(reg & PORT_STATUS_EEE);
|
|
reg = 0;
|
|
|
|
out:
|
|
mutex_unlock(&ps->phy_mutex);
|
|
return reg;
|
|
}
|
|
|
|
int mv88e6xxx_set_eee(struct dsa_switch *ds, int port,
|
|
struct phy_device *phydev, struct ethtool_eee *e)
|
|
{
|
|
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
|
|
int reg;
|
|
int ret;
|
|
|
|
mutex_lock(&ps->phy_mutex);
|
|
|
|
ret = _mv88e6xxx_phy_read_indirect(ds, port, 16);
|
|
if (ret < 0)
|
|
goto out;
|
|
|
|
reg = ret & ~0x0300;
|
|
if (e->eee_enabled)
|
|
reg |= 0x0200;
|
|
if (e->tx_lpi_enabled)
|
|
reg |= 0x0100;
|
|
|
|
ret = _mv88e6xxx_phy_write_indirect(ds, port, 16, reg);
|
|
out:
|
|
mutex_unlock(&ps->phy_mutex);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int _mv88e6xxx_atu_cmd(struct dsa_switch *ds, int fid, u16 cmd)
|
|
{
|
|
int ret;
|
|
|
|
ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, 0x01, fid);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_ATU_OP, cmd);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
return _mv88e6xxx_atu_wait(ds);
|
|
}
|
|
|
|
static int _mv88e6xxx_flush_fid(struct dsa_switch *ds, int fid)
|
|
{
|
|
int ret;
|
|
|
|
ret = _mv88e6xxx_atu_wait(ds);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
return _mv88e6xxx_atu_cmd(ds, fid, GLOBAL_ATU_OP_FLUSH_NON_STATIC_DB);
|
|
}
|
|
|
|
static int mv88e6xxx_set_port_state(struct dsa_switch *ds, int port, u8 state)
|
|
{
|
|
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
|
|
int reg, ret = 0;
|
|
u8 oldstate;
|
|
|
|
mutex_lock(&ps->smi_mutex);
|
|
|
|
reg = _mv88e6xxx_reg_read(ds, REG_PORT(port), PORT_CONTROL);
|
|
if (reg < 0) {
|
|
ret = reg;
|
|
goto abort;
|
|
}
|
|
|
|
oldstate = reg & PORT_CONTROL_STATE_MASK;
|
|
if (oldstate != state) {
|
|
/* Flush forwarding database if we're moving a port
|
|
* from Learning or Forwarding state to Disabled or
|
|
* Blocking or Listening state.
|
|
*/
|
|
if (oldstate >= PORT_CONTROL_STATE_LEARNING &&
|
|
state <= PORT_CONTROL_STATE_BLOCKING) {
|
|
ret = _mv88e6xxx_flush_fid(ds, ps->fid[port]);
|
|
if (ret)
|
|
goto abort;
|
|
}
|
|
reg = (reg & ~PORT_CONTROL_STATE_MASK) | state;
|
|
ret = _mv88e6xxx_reg_write(ds, REG_PORT(port), PORT_CONTROL,
|
|
reg);
|
|
}
|
|
|
|
abort:
|
|
mutex_unlock(&ps->smi_mutex);
|
|
return ret;
|
|
}
|
|
|
|
/* Must be called with smi lock held */
|
|
static int _mv88e6xxx_update_port_config(struct dsa_switch *ds, int port)
|
|
{
|
|
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
|
|
u8 fid = ps->fid[port];
|
|
u16 reg = fid << 12;
|
|
|
|
if (dsa_is_cpu_port(ds, port))
|
|
reg |= ds->phys_port_mask;
|
|
else
|
|
reg |= (ps->bridge_mask[fid] |
|
|
(1 << dsa_upstream_port(ds))) & ~(1 << port);
|
|
|
|
return _mv88e6xxx_reg_write(ds, REG_PORT(port), PORT_BASE_VLAN, reg);
|
|
}
|
|
|
|
/* Must be called with smi lock held */
|
|
static int _mv88e6xxx_update_bridge_config(struct dsa_switch *ds, int fid)
|
|
{
|
|
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
|
|
int port;
|
|
u32 mask;
|
|
int ret;
|
|
|
|
mask = ds->phys_port_mask;
|
|
while (mask) {
|
|
port = __ffs(mask);
|
|
mask &= ~(1 << port);
|
|
if (ps->fid[port] != fid)
|
|
continue;
|
|
|
|
ret = _mv88e6xxx_update_port_config(ds, port);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
return _mv88e6xxx_flush_fid(ds, fid);
|
|
}
|
|
|
|
/* Bridge handling functions */
|
|
|
|
int mv88e6xxx_join_bridge(struct dsa_switch *ds, int port, u32 br_port_mask)
|
|
{
|
|
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
|
|
int ret = 0;
|
|
u32 nmask;
|
|
int fid;
|
|
|
|
/* If the bridge group is not empty, join that group.
|
|
* Otherwise create a new group.
|
|
*/
|
|
fid = ps->fid[port];
|
|
nmask = br_port_mask & ~(1 << port);
|
|
if (nmask)
|
|
fid = ps->fid[__ffs(nmask)];
|
|
|
|
nmask = ps->bridge_mask[fid] | (1 << port);
|
|
if (nmask != br_port_mask) {
|
|
netdev_err(ds->ports[port],
|
|
"join: Bridge port mask mismatch fid=%d mask=0x%x expected 0x%x\n",
|
|
fid, br_port_mask, nmask);
|
|
return -EINVAL;
|
|
}
|
|
|
|
mutex_lock(&ps->smi_mutex);
|
|
|
|
ps->bridge_mask[fid] = br_port_mask;
|
|
|
|
if (fid != ps->fid[port]) {
|
|
ps->fid_mask |= 1 << ps->fid[port];
|
|
ps->fid[port] = fid;
|
|
ret = _mv88e6xxx_update_bridge_config(ds, fid);
|
|
}
|
|
|
|
mutex_unlock(&ps->smi_mutex);
|
|
|
|
return ret;
|
|
}
|
|
|
|
int mv88e6xxx_leave_bridge(struct dsa_switch *ds, int port, u32 br_port_mask)
|
|
{
|
|
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
|
|
u8 fid, newfid;
|
|
int ret;
|
|
|
|
fid = ps->fid[port];
|
|
|
|
if (ps->bridge_mask[fid] != br_port_mask) {
|
|
netdev_err(ds->ports[port],
|
|
"leave: Bridge port mask mismatch fid=%d mask=0x%x expected 0x%x\n",
|
|
fid, br_port_mask, ps->bridge_mask[fid]);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* If the port was the last port of a bridge, we are done.
|
|
* Otherwise assign a new fid to the port, and fix up
|
|
* the bridge configuration.
|
|
*/
|
|
if (br_port_mask == (1 << port))
|
|
return 0;
|
|
|
|
mutex_lock(&ps->smi_mutex);
|
|
|
|
newfid = __ffs(ps->fid_mask);
|
|
ps->fid[port] = newfid;
|
|
ps->fid_mask &= (1 << newfid);
|
|
ps->bridge_mask[fid] &= ~(1 << port);
|
|
ps->bridge_mask[newfid] = 1 << port;
|
|
|
|
ret = _mv88e6xxx_update_bridge_config(ds, fid);
|
|
if (!ret)
|
|
ret = _mv88e6xxx_update_bridge_config(ds, newfid);
|
|
|
|
mutex_unlock(&ps->smi_mutex);
|
|
|
|
return ret;
|
|
}
|
|
|
|
int mv88e6xxx_port_stp_update(struct dsa_switch *ds, int port, u8 state)
|
|
{
|
|
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
|
|
int stp_state;
|
|
|
|
switch (state) {
|
|
case BR_STATE_DISABLED:
|
|
stp_state = PORT_CONTROL_STATE_DISABLED;
|
|
break;
|
|
case BR_STATE_BLOCKING:
|
|
case BR_STATE_LISTENING:
|
|
stp_state = PORT_CONTROL_STATE_BLOCKING;
|
|
break;
|
|
case BR_STATE_LEARNING:
|
|
stp_state = PORT_CONTROL_STATE_LEARNING;
|
|
break;
|
|
case BR_STATE_FORWARDING:
|
|
default:
|
|
stp_state = PORT_CONTROL_STATE_FORWARDING;
|
|
break;
|
|
}
|
|
|
|
netdev_dbg(ds->ports[port], "port state %d [%d]\n", state, stp_state);
|
|
|
|
/* mv88e6xxx_port_stp_update may be called with softirqs disabled,
|
|
* so we can not update the port state directly but need to schedule it.
|
|
*/
|
|
ps->port_state[port] = stp_state;
|
|
set_bit(port, &ps->port_state_update_mask);
|
|
schedule_work(&ps->bridge_work);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int __mv88e6xxx_write_addr(struct dsa_switch *ds,
|
|
const unsigned char *addr)
|
|
{
|
|
int i, ret;
|
|
|
|
for (i = 0; i < 3; i++) {
|
|
ret = _mv88e6xxx_reg_write(
|
|
ds, REG_GLOBAL, GLOBAL_ATU_MAC_01 + i,
|
|
(addr[i * 2] << 8) | addr[i * 2 + 1]);
|
|
if (ret < 0)
|
|
return ret;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int __mv88e6xxx_read_addr(struct dsa_switch *ds, unsigned char *addr)
|
|
{
|
|
int i, ret;
|
|
|
|
for (i = 0; i < 3; i++) {
|
|
ret = _mv88e6xxx_reg_read(ds, REG_GLOBAL,
|
|
GLOBAL_ATU_MAC_01 + i);
|
|
if (ret < 0)
|
|
return ret;
|
|
addr[i * 2] = ret >> 8;
|
|
addr[i * 2 + 1] = ret & 0xff;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int __mv88e6xxx_port_fdb_cmd(struct dsa_switch *ds, int port,
|
|
const unsigned char *addr, int state)
|
|
{
|
|
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
|
|
u8 fid = ps->fid[port];
|
|
int ret;
|
|
|
|
ret = _mv88e6xxx_atu_wait(ds);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
ret = __mv88e6xxx_write_addr(ds, addr);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_ATU_DATA,
|
|
(0x10 << port) | state);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = _mv88e6xxx_atu_cmd(ds, fid, GLOBAL_ATU_OP_LOAD_DB);
|
|
|
|
return ret;
|
|
}
|
|
|
|
int mv88e6xxx_port_fdb_add(struct dsa_switch *ds, int port,
|
|
const unsigned char *addr, u16 vid)
|
|
{
|
|
int state = is_multicast_ether_addr(addr) ?
|
|
GLOBAL_ATU_DATA_STATE_MC_STATIC :
|
|
GLOBAL_ATU_DATA_STATE_UC_STATIC;
|
|
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
|
|
int ret;
|
|
|
|
mutex_lock(&ps->smi_mutex);
|
|
ret = __mv88e6xxx_port_fdb_cmd(ds, port, addr, state);
|
|
mutex_unlock(&ps->smi_mutex);
|
|
|
|
return ret;
|
|
}
|
|
|
|
int mv88e6xxx_port_fdb_del(struct dsa_switch *ds, int port,
|
|
const unsigned char *addr, u16 vid)
|
|
{
|
|
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
|
|
int ret;
|
|
|
|
mutex_lock(&ps->smi_mutex);
|
|
ret = __mv88e6xxx_port_fdb_cmd(ds, port, addr,
|
|
GLOBAL_ATU_DATA_STATE_UNUSED);
|
|
mutex_unlock(&ps->smi_mutex);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int __mv88e6xxx_port_getnext(struct dsa_switch *ds, int port,
|
|
unsigned char *addr, bool *is_static)
|
|
{
|
|
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
|
|
u8 fid = ps->fid[port];
|
|
int ret, state;
|
|
|
|
ret = _mv88e6xxx_atu_wait(ds);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
ret = __mv88e6xxx_write_addr(ds, addr);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
do {
|
|
ret = _mv88e6xxx_atu_cmd(ds, fid, GLOBAL_ATU_OP_GET_NEXT_DB);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
ret = _mv88e6xxx_reg_read(ds, REG_GLOBAL, GLOBAL_ATU_DATA);
|
|
if (ret < 0)
|
|
return ret;
|
|
state = ret & GLOBAL_ATU_DATA_STATE_MASK;
|
|
if (state == GLOBAL_ATU_DATA_STATE_UNUSED)
|
|
return -ENOENT;
|
|
} while (!(((ret >> 4) & 0xff) & (1 << port)));
|
|
|
|
ret = __mv88e6xxx_read_addr(ds, addr);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
*is_static = state == (is_multicast_ether_addr(addr) ?
|
|
GLOBAL_ATU_DATA_STATE_MC_STATIC :
|
|
GLOBAL_ATU_DATA_STATE_UC_STATIC);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* get next entry for port */
|
|
int mv88e6xxx_port_fdb_getnext(struct dsa_switch *ds, int port,
|
|
unsigned char *addr, bool *is_static)
|
|
{
|
|
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
|
|
int ret;
|
|
|
|
mutex_lock(&ps->smi_mutex);
|
|
ret = __mv88e6xxx_port_getnext(ds, port, addr, is_static);
|
|
mutex_unlock(&ps->smi_mutex);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void mv88e6xxx_bridge_work(struct work_struct *work)
|
|
{
|
|
struct mv88e6xxx_priv_state *ps;
|
|
struct dsa_switch *ds;
|
|
int port;
|
|
|
|
ps = container_of(work, struct mv88e6xxx_priv_state, bridge_work);
|
|
ds = ((struct dsa_switch *)ps) - 1;
|
|
|
|
while (ps->port_state_update_mask) {
|
|
port = __ffs(ps->port_state_update_mask);
|
|
clear_bit(port, &ps->port_state_update_mask);
|
|
mv88e6xxx_set_port_state(ds, port, ps->port_state[port]);
|
|
}
|
|
}
|
|
|
|
int mv88e6xxx_setup_port_common(struct dsa_switch *ds, int port)
|
|
{
|
|
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
|
|
int ret, fid;
|
|
|
|
mutex_lock(&ps->smi_mutex);
|
|
|
|
/* Port Control 1: disable trunking, disable sending
|
|
* learning messages to this port.
|
|
*/
|
|
ret = _mv88e6xxx_reg_write(ds, REG_PORT(port), PORT_CONTROL_1, 0x0000);
|
|
if (ret)
|
|
goto abort;
|
|
|
|
/* Port based VLAN map: give each port its own address
|
|
* database, allow the CPU port to talk to each of the 'real'
|
|
* ports, and allow each of the 'real' ports to only talk to
|
|
* the upstream port.
|
|
*/
|
|
fid = __ffs(ps->fid_mask);
|
|
ps->fid[port] = fid;
|
|
ps->fid_mask &= ~(1 << fid);
|
|
|
|
if (!dsa_is_cpu_port(ds, port))
|
|
ps->bridge_mask[fid] = 1 << port;
|
|
|
|
ret = _mv88e6xxx_update_port_config(ds, port);
|
|
if (ret)
|
|
goto abort;
|
|
|
|
/* Default VLAN ID and priority: don't set a default VLAN
|
|
* ID, and set the default packet priority to zero.
|
|
*/
|
|
ret = _mv88e6xxx_reg_write(ds, REG_PORT(port), PORT_DEFAULT_VLAN,
|
|
0x0000);
|
|
abort:
|
|
mutex_unlock(&ps->smi_mutex);
|
|
return ret;
|
|
}
|
|
|
|
int mv88e6xxx_setup_common(struct dsa_switch *ds)
|
|
{
|
|
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
|
|
|
|
mutex_init(&ps->smi_mutex);
|
|
mutex_init(&ps->stats_mutex);
|
|
mutex_init(&ps->phy_mutex);
|
|
|
|
ps->id = REG_READ(REG_PORT(0), PORT_SWITCH_ID) & 0xfff0;
|
|
|
|
ps->fid_mask = (1 << DSA_MAX_PORTS) - 1;
|
|
|
|
INIT_WORK(&ps->bridge_work, mv88e6xxx_bridge_work);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int mv88e6xxx_switch_reset(struct dsa_switch *ds, bool ppu_active)
|
|
{
|
|
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
|
|
u16 is_reset = (ppu_active ? 0x8800 : 0xc800);
|
|
unsigned long timeout;
|
|
int ret;
|
|
int i;
|
|
|
|
/* Set all ports to the disabled state. */
|
|
for (i = 0; i < ps->num_ports; i++) {
|
|
ret = REG_READ(REG_PORT(i), PORT_CONTROL);
|
|
REG_WRITE(REG_PORT(i), PORT_CONTROL, ret & 0xfffc);
|
|
}
|
|
|
|
/* Wait for transmit queues to drain. */
|
|
usleep_range(2000, 4000);
|
|
|
|
/* Reset the switch. Keep the PPU active if requested. The PPU
|
|
* needs to be active to support indirect phy register access
|
|
* through global registers 0x18 and 0x19.
|
|
*/
|
|
if (ppu_active)
|
|
REG_WRITE(REG_GLOBAL, 0x04, 0xc000);
|
|
else
|
|
REG_WRITE(REG_GLOBAL, 0x04, 0xc400);
|
|
|
|
/* Wait up to one second for reset to complete. */
|
|
timeout = jiffies + 1 * HZ;
|
|
while (time_before(jiffies, timeout)) {
|
|
ret = REG_READ(REG_GLOBAL, 0x00);
|
|
if ((ret & is_reset) == is_reset)
|
|
break;
|
|
usleep_range(1000, 2000);
|
|
}
|
|
if (time_after(jiffies, timeout))
|
|
return -ETIMEDOUT;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int mv88e6xxx_phy_page_read(struct dsa_switch *ds, int port, int page, int reg)
|
|
{
|
|
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
|
|
int ret;
|
|
|
|
mutex_lock(&ps->phy_mutex);
|
|
ret = _mv88e6xxx_phy_write_indirect(ds, port, 0x16, page);
|
|
if (ret < 0)
|
|
goto error;
|
|
ret = _mv88e6xxx_phy_read_indirect(ds, port, reg);
|
|
error:
|
|
_mv88e6xxx_phy_write_indirect(ds, port, 0x16, 0x0);
|
|
mutex_unlock(&ps->phy_mutex);
|
|
return ret;
|
|
}
|
|
|
|
int mv88e6xxx_phy_page_write(struct dsa_switch *ds, int port, int page,
|
|
int reg, int val)
|
|
{
|
|
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
|
|
int ret;
|
|
|
|
mutex_lock(&ps->phy_mutex);
|
|
ret = _mv88e6xxx_phy_write_indirect(ds, port, 0x16, page);
|
|
if (ret < 0)
|
|
goto error;
|
|
|
|
ret = _mv88e6xxx_phy_write_indirect(ds, port, reg, val);
|
|
error:
|
|
_mv88e6xxx_phy_write_indirect(ds, port, 0x16, 0x0);
|
|
mutex_unlock(&ps->phy_mutex);
|
|
return ret;
|
|
}
|
|
|
|
static int mv88e6xxx_port_to_phy_addr(struct dsa_switch *ds, int port)
|
|
{
|
|
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
|
|
|
|
if (port >= 0 && port < ps->num_ports)
|
|
return port;
|
|
return -EINVAL;
|
|
}
|
|
|
|
int
|
|
mv88e6xxx_phy_read(struct dsa_switch *ds, int port, int regnum)
|
|
{
|
|
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
|
|
int addr = mv88e6xxx_port_to_phy_addr(ds, port);
|
|
int ret;
|
|
|
|
if (addr < 0)
|
|
return addr;
|
|
|
|
mutex_lock(&ps->phy_mutex);
|
|
ret = _mv88e6xxx_phy_read(ds, addr, regnum);
|
|
mutex_unlock(&ps->phy_mutex);
|
|
return ret;
|
|
}
|
|
|
|
int
|
|
mv88e6xxx_phy_write(struct dsa_switch *ds, int port, int regnum, u16 val)
|
|
{
|
|
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
|
|
int addr = mv88e6xxx_port_to_phy_addr(ds, port);
|
|
int ret;
|
|
|
|
if (addr < 0)
|
|
return addr;
|
|
|
|
mutex_lock(&ps->phy_mutex);
|
|
ret = _mv88e6xxx_phy_write(ds, addr, regnum, val);
|
|
mutex_unlock(&ps->phy_mutex);
|
|
return ret;
|
|
}
|
|
|
|
int
|
|
mv88e6xxx_phy_read_indirect(struct dsa_switch *ds, int port, int regnum)
|
|
{
|
|
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
|
|
int addr = mv88e6xxx_port_to_phy_addr(ds, port);
|
|
int ret;
|
|
|
|
if (addr < 0)
|
|
return addr;
|
|
|
|
mutex_lock(&ps->phy_mutex);
|
|
ret = _mv88e6xxx_phy_read_indirect(ds, addr, regnum);
|
|
mutex_unlock(&ps->phy_mutex);
|
|
return ret;
|
|
}
|
|
|
|
int
|
|
mv88e6xxx_phy_write_indirect(struct dsa_switch *ds, int port, int regnum,
|
|
u16 val)
|
|
{
|
|
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
|
|
int addr = mv88e6xxx_port_to_phy_addr(ds, port);
|
|
int ret;
|
|
|
|
if (addr < 0)
|
|
return addr;
|
|
|
|
mutex_lock(&ps->phy_mutex);
|
|
ret = _mv88e6xxx_phy_write_indirect(ds, addr, regnum, val);
|
|
mutex_unlock(&ps->phy_mutex);
|
|
return ret;
|
|
}
|
|
|
|
static int __init mv88e6xxx_init(void)
|
|
{
|
|
#if IS_ENABLED(CONFIG_NET_DSA_MV88E6131)
|
|
register_switch_driver(&mv88e6131_switch_driver);
|
|
#endif
|
|
#if IS_ENABLED(CONFIG_NET_DSA_MV88E6123_61_65)
|
|
register_switch_driver(&mv88e6123_61_65_switch_driver);
|
|
#endif
|
|
#if IS_ENABLED(CONFIG_NET_DSA_MV88E6352)
|
|
register_switch_driver(&mv88e6352_switch_driver);
|
|
#endif
|
|
#if IS_ENABLED(CONFIG_NET_DSA_MV88E6171)
|
|
register_switch_driver(&mv88e6171_switch_driver);
|
|
#endif
|
|
return 0;
|
|
}
|
|
module_init(mv88e6xxx_init);
|
|
|
|
static void __exit mv88e6xxx_cleanup(void)
|
|
{
|
|
#if IS_ENABLED(CONFIG_NET_DSA_MV88E6171)
|
|
unregister_switch_driver(&mv88e6171_switch_driver);
|
|
#endif
|
|
#if IS_ENABLED(CONFIG_NET_DSA_MV88E6123_61_65)
|
|
unregister_switch_driver(&mv88e6123_61_65_switch_driver);
|
|
#endif
|
|
#if IS_ENABLED(CONFIG_NET_DSA_MV88E6131)
|
|
unregister_switch_driver(&mv88e6131_switch_driver);
|
|
#endif
|
|
}
|
|
module_exit(mv88e6xxx_cleanup);
|
|
|
|
MODULE_AUTHOR("Lennert Buytenhek <buytenh@wantstofly.org>");
|
|
MODULE_DESCRIPTION("Driver for Marvell 88E6XXX ethernet switch chips");
|
|
MODULE_LICENSE("GPL");
|