linux/mm/mprotect.c
Tejun Heo 5a0e3ad6af include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h
percpu.h is included by sched.h and module.h and thus ends up being
included when building most .c files.  percpu.h includes slab.h which
in turn includes gfp.h making everything defined by the two files
universally available and complicating inclusion dependencies.

percpu.h -> slab.h dependency is about to be removed.  Prepare for
this change by updating users of gfp and slab facilities include those
headers directly instead of assuming availability.  As this conversion
needs to touch large number of source files, the following script is
used as the basis of conversion.

  http://userweb.kernel.org/~tj/misc/slabh-sweep.py

The script does the followings.

* Scan files for gfp and slab usages and update includes such that
  only the necessary includes are there.  ie. if only gfp is used,
  gfp.h, if slab is used, slab.h.

* When the script inserts a new include, it looks at the include
  blocks and try to put the new include such that its order conforms
  to its surrounding.  It's put in the include block which contains
  core kernel includes, in the same order that the rest are ordered -
  alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
  doesn't seem to be any matching order.

* If the script can't find a place to put a new include (mostly
  because the file doesn't have fitting include block), it prints out
  an error message indicating which .h file needs to be added to the
  file.

The conversion was done in the following steps.

1. The initial automatic conversion of all .c files updated slightly
   over 4000 files, deleting around 700 includes and adding ~480 gfp.h
   and ~3000 slab.h inclusions.  The script emitted errors for ~400
   files.

2. Each error was manually checked.  Some didn't need the inclusion,
   some needed manual addition while adding it to implementation .h or
   embedding .c file was more appropriate for others.  This step added
   inclusions to around 150 files.

3. The script was run again and the output was compared to the edits
   from  to make sure no file was left behind.

4. Several build tests were done and a couple of problems were fixed.
   e.g. lib/decompress_*.c used malloc/free() wrappers around slab
   APIs requiring slab.h to be added manually.

5. The script was run on all .h files but without automatically
   editing them as sprinkling gfp.h and slab.h inclusions around .h
   files could easily lead to inclusion dependency hell.  Most gfp.h
   inclusion directives were ignored as stuff from gfp.h was usually
   wildly available and often used in preprocessor macros.  Each
   slab.h inclusion directive was examined and added manually as
   necessary.

6. percpu.h was updated not to include slab.h.

7. Build test were done on the following configurations and failures
   were fixed.  CONFIG_GCOV_KERNEL was turned off for all tests (as my
   distributed build env didn't work with gcov compiles) and a few
   more options had to be turned off depending on archs to make things
   build (like ipr on powerpc/64 which failed due to missing writeq).

   * x86 and x86_64 UP and SMP allmodconfig and a custom test config.
   * powerpc and powerpc64 SMP allmodconfig
   * sparc and sparc64 SMP allmodconfig
   * ia64 SMP allmodconfig
   * s390 SMP allmodconfig
   * alpha SMP allmodconfig
   * um on x86_64 SMP allmodconfig

8. percpu.h modifications were reverted so that it could be applied as
   a separate patch and serve as bisection point.

Given the fact that I had only a couple of failures from tests on step
6, I'm fairly confident about the coverage of this conversion patch.
If there is a breakage, it's likely to be something in one of the arch
headers which should be easily discoverable easily on most builds of
the specific arch.

Signed-off-by: Tejun Heo <tj@kernel.org>
Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-30 22:02:32 +09:00

320 lines
7.6 KiB
C

/*
* mm/mprotect.c
*
* (C) Copyright 1994 Linus Torvalds
* (C) Copyright 2002 Christoph Hellwig
*
* Address space accounting code <alan@lxorguk.ukuu.org.uk>
* (C) Copyright 2002 Red Hat Inc, All Rights Reserved
*/
#include <linux/mm.h>
#include <linux/hugetlb.h>
#include <linux/shm.h>
#include <linux/mman.h>
#include <linux/fs.h>
#include <linux/highmem.h>
#include <linux/security.h>
#include <linux/mempolicy.h>
#include <linux/personality.h>
#include <linux/syscalls.h>
#include <linux/swap.h>
#include <linux/swapops.h>
#include <linux/mmu_notifier.h>
#include <linux/migrate.h>
#include <linux/perf_event.h>
#include <asm/uaccess.h>
#include <asm/pgtable.h>
#include <asm/cacheflush.h>
#include <asm/tlbflush.h>
#ifndef pgprot_modify
static inline pgprot_t pgprot_modify(pgprot_t oldprot, pgprot_t newprot)
{
return newprot;
}
#endif
static void change_pte_range(struct mm_struct *mm, pmd_t *pmd,
unsigned long addr, unsigned long end, pgprot_t newprot,
int dirty_accountable)
{
pte_t *pte, oldpte;
spinlock_t *ptl;
pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
arch_enter_lazy_mmu_mode();
do {
oldpte = *pte;
if (pte_present(oldpte)) {
pte_t ptent;
ptent = ptep_modify_prot_start(mm, addr, pte);
ptent = pte_modify(ptent, newprot);
/*
* Avoid taking write faults for pages we know to be
* dirty.
*/
if (dirty_accountable && pte_dirty(ptent))
ptent = pte_mkwrite(ptent);
ptep_modify_prot_commit(mm, addr, pte, ptent);
} else if (PAGE_MIGRATION && !pte_file(oldpte)) {
swp_entry_t entry = pte_to_swp_entry(oldpte);
if (is_write_migration_entry(entry)) {
/*
* A protection check is difficult so
* just be safe and disable write
*/
make_migration_entry_read(&entry);
set_pte_at(mm, addr, pte,
swp_entry_to_pte(entry));
}
}
} while (pte++, addr += PAGE_SIZE, addr != end);
arch_leave_lazy_mmu_mode();
pte_unmap_unlock(pte - 1, ptl);
}
static inline void change_pmd_range(struct mm_struct *mm, pud_t *pud,
unsigned long addr, unsigned long end, pgprot_t newprot,
int dirty_accountable)
{
pmd_t *pmd;
unsigned long next;
pmd = pmd_offset(pud, addr);
do {
next = pmd_addr_end(addr, end);
if (pmd_none_or_clear_bad(pmd))
continue;
change_pte_range(mm, pmd, addr, next, newprot, dirty_accountable);
} while (pmd++, addr = next, addr != end);
}
static inline void change_pud_range(struct mm_struct *mm, pgd_t *pgd,
unsigned long addr, unsigned long end, pgprot_t newprot,
int dirty_accountable)
{
pud_t *pud;
unsigned long next;
pud = pud_offset(pgd, addr);
do {
next = pud_addr_end(addr, end);
if (pud_none_or_clear_bad(pud))
continue;
change_pmd_range(mm, pud, addr, next, newprot, dirty_accountable);
} while (pud++, addr = next, addr != end);
}
static void change_protection(struct vm_area_struct *vma,
unsigned long addr, unsigned long end, pgprot_t newprot,
int dirty_accountable)
{
struct mm_struct *mm = vma->vm_mm;
pgd_t *pgd;
unsigned long next;
unsigned long start = addr;
BUG_ON(addr >= end);
pgd = pgd_offset(mm, addr);
flush_cache_range(vma, addr, end);
do {
next = pgd_addr_end(addr, end);
if (pgd_none_or_clear_bad(pgd))
continue;
change_pud_range(mm, pgd, addr, next, newprot, dirty_accountable);
} while (pgd++, addr = next, addr != end);
flush_tlb_range(vma, start, end);
}
int
mprotect_fixup(struct vm_area_struct *vma, struct vm_area_struct **pprev,
unsigned long start, unsigned long end, unsigned long newflags)
{
struct mm_struct *mm = vma->vm_mm;
unsigned long oldflags = vma->vm_flags;
long nrpages = (end - start) >> PAGE_SHIFT;
unsigned long charged = 0;
pgoff_t pgoff;
int error;
int dirty_accountable = 0;
if (newflags == oldflags) {
*pprev = vma;
return 0;
}
/*
* If we make a private mapping writable we increase our commit;
* but (without finer accounting) cannot reduce our commit if we
* make it unwritable again. hugetlb mapping were accounted for
* even if read-only so there is no need to account for them here
*/
if (newflags & VM_WRITE) {
if (!(oldflags & (VM_ACCOUNT|VM_WRITE|VM_HUGETLB|
VM_SHARED|VM_NORESERVE))) {
charged = nrpages;
if (security_vm_enough_memory(charged))
return -ENOMEM;
newflags |= VM_ACCOUNT;
}
}
/*
* First try to merge with previous and/or next vma.
*/
pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
*pprev = vma_merge(mm, *pprev, start, end, newflags,
vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma));
if (*pprev) {
vma = *pprev;
goto success;
}
*pprev = vma;
if (start != vma->vm_start) {
error = split_vma(mm, vma, start, 1);
if (error)
goto fail;
}
if (end != vma->vm_end) {
error = split_vma(mm, vma, end, 0);
if (error)
goto fail;
}
success:
/*
* vm_flags and vm_page_prot are protected by the mmap_sem
* held in write mode.
*/
vma->vm_flags = newflags;
vma->vm_page_prot = pgprot_modify(vma->vm_page_prot,
vm_get_page_prot(newflags));
if (vma_wants_writenotify(vma)) {
vma->vm_page_prot = vm_get_page_prot(newflags & ~VM_SHARED);
dirty_accountable = 1;
}
mmu_notifier_invalidate_range_start(mm, start, end);
if (is_vm_hugetlb_page(vma))
hugetlb_change_protection(vma, start, end, vma->vm_page_prot);
else
change_protection(vma, start, end, vma->vm_page_prot, dirty_accountable);
mmu_notifier_invalidate_range_end(mm, start, end);
vm_stat_account(mm, oldflags, vma->vm_file, -nrpages);
vm_stat_account(mm, newflags, vma->vm_file, nrpages);
return 0;
fail:
vm_unacct_memory(charged);
return error;
}
SYSCALL_DEFINE3(mprotect, unsigned long, start, size_t, len,
unsigned long, prot)
{
unsigned long vm_flags, nstart, end, tmp, reqprot;
struct vm_area_struct *vma, *prev;
int error = -EINVAL;
const int grows = prot & (PROT_GROWSDOWN|PROT_GROWSUP);
prot &= ~(PROT_GROWSDOWN|PROT_GROWSUP);
if (grows == (PROT_GROWSDOWN|PROT_GROWSUP)) /* can't be both */
return -EINVAL;
if (start & ~PAGE_MASK)
return -EINVAL;
if (!len)
return 0;
len = PAGE_ALIGN(len);
end = start + len;
if (end <= start)
return -ENOMEM;
if (!arch_validate_prot(prot))
return -EINVAL;
reqprot = prot;
/*
* Does the application expect PROT_READ to imply PROT_EXEC:
*/
if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
prot |= PROT_EXEC;
vm_flags = calc_vm_prot_bits(prot);
down_write(&current->mm->mmap_sem);
vma = find_vma_prev(current->mm, start, &prev);
error = -ENOMEM;
if (!vma)
goto out;
if (unlikely(grows & PROT_GROWSDOWN)) {
if (vma->vm_start >= end)
goto out;
start = vma->vm_start;
error = -EINVAL;
if (!(vma->vm_flags & VM_GROWSDOWN))
goto out;
}
else {
if (vma->vm_start > start)
goto out;
if (unlikely(grows & PROT_GROWSUP)) {
end = vma->vm_end;
error = -EINVAL;
if (!(vma->vm_flags & VM_GROWSUP))
goto out;
}
}
if (start > vma->vm_start)
prev = vma;
for (nstart = start ; ; ) {
unsigned long newflags;
/* Here we know that vma->vm_start <= nstart < vma->vm_end. */
newflags = vm_flags | (vma->vm_flags & ~(VM_READ | VM_WRITE | VM_EXEC));
/* newflags >> 4 shift VM_MAY% in place of VM_% */
if ((newflags & ~(newflags >> 4)) & (VM_READ | VM_WRITE | VM_EXEC)) {
error = -EACCES;
goto out;
}
error = security_file_mprotect(vma, reqprot, prot);
if (error)
goto out;
tmp = vma->vm_end;
if (tmp > end)
tmp = end;
error = mprotect_fixup(vma, &prev, nstart, tmp, newflags);
if (error)
goto out;
perf_event_mmap(vma);
nstart = tmp;
if (nstart < prev->vm_end)
nstart = prev->vm_end;
if (nstart >= end)
goto out;
vma = prev->vm_next;
if (!vma || vma->vm_start != nstart) {
error = -ENOMEM;
goto out;
}
}
out:
up_write(&current->mm->mmap_sem);
return error;
}