linux/drivers/gpu/drm/i915/i915_gem.c
Chris Wilson 465350d0db drm/i915: Remove self-harming shrink_all on get_pages_gtt fail
When we notice the system under memory pressure, we try to evict some
driver pages before asking the VM to shrink all caches. As a final step
in that process, we tried to evict everything, including active buffers.
This is harming ourselves, and we can mix shrinking all caches as well
as our residual buffers (after the first pass of trying to shrink just
our own buffers).

Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Reviewed-by: Michał Winiarski <michal.winiarski@intel.com>
Link: http://patchwork.freedesktop.org/patch/msgid/20161011082021.14606-1-chris@chris-wilson.co.uk
2016-10-11 10:15:01 +01:00

4783 lines
126 KiB
C

/*
* Copyright © 2008-2015 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
* Authors:
* Eric Anholt <eric@anholt.net>
*
*/
#include <drm/drmP.h>
#include <drm/drm_vma_manager.h>
#include <drm/i915_drm.h>
#include "i915_drv.h"
#include "i915_gem_dmabuf.h"
#include "i915_vgpu.h"
#include "i915_trace.h"
#include "intel_drv.h"
#include "intel_frontbuffer.h"
#include "intel_mocs.h"
#include <linux/reservation.h>
#include <linux/shmem_fs.h>
#include <linux/slab.h>
#include <linux/swap.h>
#include <linux/pci.h>
#include <linux/dma-buf.h>
static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
static bool cpu_cache_is_coherent(struct drm_device *dev,
enum i915_cache_level level)
{
return HAS_LLC(dev) || level != I915_CACHE_NONE;
}
static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
{
if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
return false;
if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
return true;
return obj->pin_display;
}
static int
insert_mappable_node(struct drm_i915_private *i915,
struct drm_mm_node *node, u32 size)
{
memset(node, 0, sizeof(*node));
return drm_mm_insert_node_in_range_generic(&i915->ggtt.base.mm, node,
size, 0, 0, 0,
i915->ggtt.mappable_end,
DRM_MM_SEARCH_DEFAULT,
DRM_MM_CREATE_DEFAULT);
}
static void
remove_mappable_node(struct drm_mm_node *node)
{
drm_mm_remove_node(node);
}
/* some bookkeeping */
static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
size_t size)
{
spin_lock(&dev_priv->mm.object_stat_lock);
dev_priv->mm.object_count++;
dev_priv->mm.object_memory += size;
spin_unlock(&dev_priv->mm.object_stat_lock);
}
static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
size_t size)
{
spin_lock(&dev_priv->mm.object_stat_lock);
dev_priv->mm.object_count--;
dev_priv->mm.object_memory -= size;
spin_unlock(&dev_priv->mm.object_stat_lock);
}
static int
i915_gem_wait_for_error(struct i915_gpu_error *error)
{
int ret;
if (!i915_reset_in_progress(error))
return 0;
/*
* Only wait 10 seconds for the gpu reset to complete to avoid hanging
* userspace. If it takes that long something really bad is going on and
* we should simply try to bail out and fail as gracefully as possible.
*/
ret = wait_event_interruptible_timeout(error->reset_queue,
!i915_reset_in_progress(error),
10*HZ);
if (ret == 0) {
DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
return -EIO;
} else if (ret < 0) {
return ret;
} else {
return 0;
}
}
int i915_mutex_lock_interruptible(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = to_i915(dev);
int ret;
ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
if (ret)
return ret;
ret = mutex_lock_interruptible(&dev->struct_mutex);
if (ret)
return ret;
return 0;
}
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
struct drm_file *file)
{
struct drm_i915_private *dev_priv = to_i915(dev);
struct i915_ggtt *ggtt = &dev_priv->ggtt;
struct drm_i915_gem_get_aperture *args = data;
struct i915_vma *vma;
size_t pinned;
pinned = 0;
mutex_lock(&dev->struct_mutex);
list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
if (i915_vma_is_pinned(vma))
pinned += vma->node.size;
list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
if (i915_vma_is_pinned(vma))
pinned += vma->node.size;
mutex_unlock(&dev->struct_mutex);
args->aper_size = ggtt->base.total;
args->aper_available_size = args->aper_size - pinned;
return 0;
}
static int
i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
{
struct address_space *mapping = obj->base.filp->f_mapping;
char *vaddr = obj->phys_handle->vaddr;
struct sg_table *st;
struct scatterlist *sg;
int i;
if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
return -EINVAL;
for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
struct page *page;
char *src;
page = shmem_read_mapping_page(mapping, i);
if (IS_ERR(page))
return PTR_ERR(page);
src = kmap_atomic(page);
memcpy(vaddr, src, PAGE_SIZE);
drm_clflush_virt_range(vaddr, PAGE_SIZE);
kunmap_atomic(src);
put_page(page);
vaddr += PAGE_SIZE;
}
i915_gem_chipset_flush(to_i915(obj->base.dev));
st = kmalloc(sizeof(*st), GFP_KERNEL);
if (st == NULL)
return -ENOMEM;
if (sg_alloc_table(st, 1, GFP_KERNEL)) {
kfree(st);
return -ENOMEM;
}
sg = st->sgl;
sg->offset = 0;
sg->length = obj->base.size;
sg_dma_address(sg) = obj->phys_handle->busaddr;
sg_dma_len(sg) = obj->base.size;
obj->pages = st;
return 0;
}
static void
i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
{
int ret;
BUG_ON(obj->madv == __I915_MADV_PURGED);
ret = i915_gem_object_set_to_cpu_domain(obj, true);
if (WARN_ON(ret)) {
/* In the event of a disaster, abandon all caches and
* hope for the best.
*/
obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
}
if (obj->madv == I915_MADV_DONTNEED)
obj->dirty = 0;
if (obj->dirty) {
struct address_space *mapping = obj->base.filp->f_mapping;
char *vaddr = obj->phys_handle->vaddr;
int i;
for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
struct page *page;
char *dst;
page = shmem_read_mapping_page(mapping, i);
if (IS_ERR(page))
continue;
dst = kmap_atomic(page);
drm_clflush_virt_range(vaddr, PAGE_SIZE);
memcpy(dst, vaddr, PAGE_SIZE);
kunmap_atomic(dst);
set_page_dirty(page);
if (obj->madv == I915_MADV_WILLNEED)
mark_page_accessed(page);
put_page(page);
vaddr += PAGE_SIZE;
}
obj->dirty = 0;
}
sg_free_table(obj->pages);
kfree(obj->pages);
}
static void
i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
{
drm_pci_free(obj->base.dev, obj->phys_handle);
}
static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
.get_pages = i915_gem_object_get_pages_phys,
.put_pages = i915_gem_object_put_pages_phys,
.release = i915_gem_object_release_phys,
};
int i915_gem_object_unbind(struct drm_i915_gem_object *obj)
{
struct i915_vma *vma;
LIST_HEAD(still_in_list);
int ret;
lockdep_assert_held(&obj->base.dev->struct_mutex);
/* Closed vma are removed from the obj->vma_list - but they may
* still have an active binding on the object. To remove those we
* must wait for all rendering to complete to the object (as unbinding
* must anyway), and retire the requests.
*/
ret = i915_gem_object_wait_rendering(obj, false);
if (ret)
return ret;
i915_gem_retire_requests(to_i915(obj->base.dev));
while ((vma = list_first_entry_or_null(&obj->vma_list,
struct i915_vma,
obj_link))) {
list_move_tail(&vma->obj_link, &still_in_list);
ret = i915_vma_unbind(vma);
if (ret)
break;
}
list_splice(&still_in_list, &obj->vma_list);
return ret;
}
/**
* Ensures that all rendering to the object has completed and the object is
* safe to unbind from the GTT or access from the CPU.
* @obj: i915 gem object
* @readonly: waiting for just read access or read-write access
*/
int
i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
bool readonly)
{
struct reservation_object *resv;
struct i915_gem_active *active;
unsigned long active_mask;
int idx;
lockdep_assert_held(&obj->base.dev->struct_mutex);
if (!readonly) {
active = obj->last_read;
active_mask = i915_gem_object_get_active(obj);
} else {
active_mask = 1;
active = &obj->last_write;
}
for_each_active(active_mask, idx) {
int ret;
ret = i915_gem_active_wait(&active[idx],
&obj->base.dev->struct_mutex);
if (ret)
return ret;
}
resv = i915_gem_object_get_dmabuf_resv(obj);
if (resv) {
long err;
err = reservation_object_wait_timeout_rcu(resv, !readonly, true,
MAX_SCHEDULE_TIMEOUT);
if (err < 0)
return err;
}
return 0;
}
/* A nonblocking variant of the above wait. Must be called prior to
* acquiring the mutex for the object, as the object state may change
* during this call. A reference must be held by the caller for the object.
*/
static __must_check int
__unsafe_wait_rendering(struct drm_i915_gem_object *obj,
struct intel_rps_client *rps,
bool readonly)
{
struct i915_gem_active *active;
unsigned long active_mask;
int idx;
active_mask = __I915_BO_ACTIVE(obj);
if (!active_mask)
return 0;
if (!readonly) {
active = obj->last_read;
} else {
active_mask = 1;
active = &obj->last_write;
}
for_each_active(active_mask, idx) {
int ret;
ret = i915_gem_active_wait_unlocked(&active[idx],
I915_WAIT_INTERRUPTIBLE,
NULL, rps);
if (ret)
return ret;
}
return 0;
}
static struct intel_rps_client *to_rps_client(struct drm_file *file)
{
struct drm_i915_file_private *fpriv = file->driver_priv;
return &fpriv->rps;
}
int
i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
int align)
{
drm_dma_handle_t *phys;
int ret;
if (obj->phys_handle) {
if ((unsigned long)obj->phys_handle->vaddr & (align -1))
return -EBUSY;
return 0;
}
if (obj->madv != I915_MADV_WILLNEED)
return -EFAULT;
if (obj->base.filp == NULL)
return -EINVAL;
ret = i915_gem_object_unbind(obj);
if (ret)
return ret;
ret = i915_gem_object_put_pages(obj);
if (ret)
return ret;
/* create a new object */
phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
if (!phys)
return -ENOMEM;
obj->phys_handle = phys;
obj->ops = &i915_gem_phys_ops;
return i915_gem_object_get_pages(obj);
}
static int
i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
struct drm_i915_gem_pwrite *args,
struct drm_file *file_priv)
{
struct drm_device *dev = obj->base.dev;
void *vaddr = obj->phys_handle->vaddr + args->offset;
char __user *user_data = u64_to_user_ptr(args->data_ptr);
int ret = 0;
/* We manually control the domain here and pretend that it
* remains coherent i.e. in the GTT domain, like shmem_pwrite.
*/
ret = i915_gem_object_wait_rendering(obj, false);
if (ret)
return ret;
intel_fb_obj_invalidate(obj, ORIGIN_CPU);
if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
unsigned long unwritten;
/* The physical object once assigned is fixed for the lifetime
* of the obj, so we can safely drop the lock and continue
* to access vaddr.
*/
mutex_unlock(&dev->struct_mutex);
unwritten = copy_from_user(vaddr, user_data, args->size);
mutex_lock(&dev->struct_mutex);
if (unwritten) {
ret = -EFAULT;
goto out;
}
}
drm_clflush_virt_range(vaddr, args->size);
i915_gem_chipset_flush(to_i915(dev));
out:
intel_fb_obj_flush(obj, false, ORIGIN_CPU);
return ret;
}
void *i915_gem_object_alloc(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = to_i915(dev);
return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
}
void i915_gem_object_free(struct drm_i915_gem_object *obj)
{
struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
kmem_cache_free(dev_priv->objects, obj);
}
static int
i915_gem_create(struct drm_file *file,
struct drm_device *dev,
uint64_t size,
uint32_t *handle_p)
{
struct drm_i915_gem_object *obj;
int ret;
u32 handle;
size = roundup(size, PAGE_SIZE);
if (size == 0)
return -EINVAL;
/* Allocate the new object */
obj = i915_gem_object_create(dev, size);
if (IS_ERR(obj))
return PTR_ERR(obj);
ret = drm_gem_handle_create(file, &obj->base, &handle);
/* drop reference from allocate - handle holds it now */
i915_gem_object_put_unlocked(obj);
if (ret)
return ret;
*handle_p = handle;
return 0;
}
int
i915_gem_dumb_create(struct drm_file *file,
struct drm_device *dev,
struct drm_mode_create_dumb *args)
{
/* have to work out size/pitch and return them */
args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
args->size = args->pitch * args->height;
return i915_gem_create(file, dev,
args->size, &args->handle);
}
/**
* Creates a new mm object and returns a handle to it.
* @dev: drm device pointer
* @data: ioctl data blob
* @file: drm file pointer
*/
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
struct drm_file *file)
{
struct drm_i915_gem_create *args = data;
return i915_gem_create(file, dev,
args->size, &args->handle);
}
static inline int
__copy_to_user_swizzled(char __user *cpu_vaddr,
const char *gpu_vaddr, int gpu_offset,
int length)
{
int ret, cpu_offset = 0;
while (length > 0) {
int cacheline_end = ALIGN(gpu_offset + 1, 64);
int this_length = min(cacheline_end - gpu_offset, length);
int swizzled_gpu_offset = gpu_offset ^ 64;
ret = __copy_to_user(cpu_vaddr + cpu_offset,
gpu_vaddr + swizzled_gpu_offset,
this_length);
if (ret)
return ret + length;
cpu_offset += this_length;
gpu_offset += this_length;
length -= this_length;
}
return 0;
}
static inline int
__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
const char __user *cpu_vaddr,
int length)
{
int ret, cpu_offset = 0;
while (length > 0) {
int cacheline_end = ALIGN(gpu_offset + 1, 64);
int this_length = min(cacheline_end - gpu_offset, length);
int swizzled_gpu_offset = gpu_offset ^ 64;
ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
cpu_vaddr + cpu_offset,
this_length);
if (ret)
return ret + length;
cpu_offset += this_length;
gpu_offset += this_length;
length -= this_length;
}
return 0;
}
/*
* Pins the specified object's pages and synchronizes the object with
* GPU accesses. Sets needs_clflush to non-zero if the caller should
* flush the object from the CPU cache.
*/
int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
unsigned int *needs_clflush)
{
int ret;
*needs_clflush = 0;
if (!i915_gem_object_has_struct_page(obj))
return -ENODEV;
ret = i915_gem_object_wait_rendering(obj, true);
if (ret)
return ret;
ret = i915_gem_object_get_pages(obj);
if (ret)
return ret;
i915_gem_object_pin_pages(obj);
i915_gem_object_flush_gtt_write_domain(obj);
/* If we're not in the cpu read domain, set ourself into the gtt
* read domain and manually flush cachelines (if required). This
* optimizes for the case when the gpu will dirty the data
* anyway again before the next pread happens.
*/
if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
*needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
obj->cache_level);
if (*needs_clflush && !static_cpu_has(X86_FEATURE_CLFLUSH)) {
ret = i915_gem_object_set_to_cpu_domain(obj, false);
if (ret)
goto err_unpin;
*needs_clflush = 0;
}
/* return with the pages pinned */
return 0;
err_unpin:
i915_gem_object_unpin_pages(obj);
return ret;
}
int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
unsigned int *needs_clflush)
{
int ret;
*needs_clflush = 0;
if (!i915_gem_object_has_struct_page(obj))
return -ENODEV;
ret = i915_gem_object_wait_rendering(obj, false);
if (ret)
return ret;
ret = i915_gem_object_get_pages(obj);
if (ret)
return ret;
i915_gem_object_pin_pages(obj);
i915_gem_object_flush_gtt_write_domain(obj);
/* If we're not in the cpu write domain, set ourself into the
* gtt write domain and manually flush cachelines (as required).
* This optimizes for the case when the gpu will use the data
* right away and we therefore have to clflush anyway.
*/
if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
*needs_clflush |= cpu_write_needs_clflush(obj) << 1;
/* Same trick applies to invalidate partially written cachelines read
* before writing.
*/
if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
*needs_clflush |= !cpu_cache_is_coherent(obj->base.dev,
obj->cache_level);
if (*needs_clflush && !static_cpu_has(X86_FEATURE_CLFLUSH)) {
ret = i915_gem_object_set_to_cpu_domain(obj, true);
if (ret)
goto err_unpin;
*needs_clflush = 0;
}
if ((*needs_clflush & CLFLUSH_AFTER) == 0)
obj->cache_dirty = true;
intel_fb_obj_invalidate(obj, ORIGIN_CPU);
obj->dirty = 1;
/* return with the pages pinned */
return 0;
err_unpin:
i915_gem_object_unpin_pages(obj);
return ret;
}
/* Per-page copy function for the shmem pread fastpath.
* Flushes invalid cachelines before reading the target if
* needs_clflush is set. */
static int
shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
char __user *user_data,
bool page_do_bit17_swizzling, bool needs_clflush)
{
char *vaddr;
int ret;
if (unlikely(page_do_bit17_swizzling))
return -EINVAL;
vaddr = kmap_atomic(page);
if (needs_clflush)
drm_clflush_virt_range(vaddr + shmem_page_offset,
page_length);
ret = __copy_to_user_inatomic(user_data,
vaddr + shmem_page_offset,
page_length);
kunmap_atomic(vaddr);
return ret ? -EFAULT : 0;
}
static void
shmem_clflush_swizzled_range(char *addr, unsigned long length,
bool swizzled)
{
if (unlikely(swizzled)) {
unsigned long start = (unsigned long) addr;
unsigned long end = (unsigned long) addr + length;
/* For swizzling simply ensure that we always flush both
* channels. Lame, but simple and it works. Swizzled
* pwrite/pread is far from a hotpath - current userspace
* doesn't use it at all. */
start = round_down(start, 128);
end = round_up(end, 128);
drm_clflush_virt_range((void *)start, end - start);
} else {
drm_clflush_virt_range(addr, length);
}
}
/* Only difference to the fast-path function is that this can handle bit17
* and uses non-atomic copy and kmap functions. */
static int
shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
char __user *user_data,
bool page_do_bit17_swizzling, bool needs_clflush)
{
char *vaddr;
int ret;
vaddr = kmap(page);
if (needs_clflush)
shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
page_length,
page_do_bit17_swizzling);
if (page_do_bit17_swizzling)
ret = __copy_to_user_swizzled(user_data,
vaddr, shmem_page_offset,
page_length);
else
ret = __copy_to_user(user_data,
vaddr + shmem_page_offset,
page_length);
kunmap(page);
return ret ? - EFAULT : 0;
}
static inline unsigned long
slow_user_access(struct io_mapping *mapping,
uint64_t page_base, int page_offset,
char __user *user_data,
unsigned long length, bool pwrite)
{
void __iomem *ioaddr;
void *vaddr;
uint64_t unwritten;
ioaddr = io_mapping_map_wc(mapping, page_base, PAGE_SIZE);
/* We can use the cpu mem copy function because this is X86. */
vaddr = (void __force *)ioaddr + page_offset;
if (pwrite)
unwritten = __copy_from_user(vaddr, user_data, length);
else
unwritten = __copy_to_user(user_data, vaddr, length);
io_mapping_unmap(ioaddr);
return unwritten;
}
static int
i915_gem_gtt_pread(struct drm_device *dev,
struct drm_i915_gem_object *obj, uint64_t size,
uint64_t data_offset, uint64_t data_ptr)
{
struct drm_i915_private *dev_priv = to_i915(dev);
struct i915_ggtt *ggtt = &dev_priv->ggtt;
struct i915_vma *vma;
struct drm_mm_node node;
char __user *user_data;
uint64_t remain;
uint64_t offset;
int ret;
vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, PIN_MAPPABLE);
if (!IS_ERR(vma)) {
node.start = i915_ggtt_offset(vma);
node.allocated = false;
ret = i915_vma_put_fence(vma);
if (ret) {
i915_vma_unpin(vma);
vma = ERR_PTR(ret);
}
}
if (IS_ERR(vma)) {
ret = insert_mappable_node(dev_priv, &node, PAGE_SIZE);
if (ret)
goto out;
ret = i915_gem_object_get_pages(obj);
if (ret) {
remove_mappable_node(&node);
goto out;
}
i915_gem_object_pin_pages(obj);
}
ret = i915_gem_object_set_to_gtt_domain(obj, false);
if (ret)
goto out_unpin;
user_data = u64_to_user_ptr(data_ptr);
remain = size;
offset = data_offset;
mutex_unlock(&dev->struct_mutex);
if (likely(!i915.prefault_disable)) {
ret = fault_in_multipages_writeable(user_data, remain);
if (ret) {
mutex_lock(&dev->struct_mutex);
goto out_unpin;
}
}
while (remain > 0) {
/* Operation in this page
*
* page_base = page offset within aperture
* page_offset = offset within page
* page_length = bytes to copy for this page
*/
u32 page_base = node.start;
unsigned page_offset = offset_in_page(offset);
unsigned page_length = PAGE_SIZE - page_offset;
page_length = remain < page_length ? remain : page_length;
if (node.allocated) {
wmb();
ggtt->base.insert_page(&ggtt->base,
i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
node.start,
I915_CACHE_NONE, 0);
wmb();
} else {
page_base += offset & PAGE_MASK;
}
/* This is a slow read/write as it tries to read from
* and write to user memory which may result into page
* faults, and so we cannot perform this under struct_mutex.
*/
if (slow_user_access(&ggtt->mappable, page_base,
page_offset, user_data,
page_length, false)) {
ret = -EFAULT;
break;
}
remain -= page_length;
user_data += page_length;
offset += page_length;
}
mutex_lock(&dev->struct_mutex);
if (ret == 0 && (obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0) {
/* The user has modified the object whilst we tried
* reading from it, and we now have no idea what domain
* the pages should be in. As we have just been touching
* them directly, flush everything back to the GTT
* domain.
*/
ret = i915_gem_object_set_to_gtt_domain(obj, false);
}
out_unpin:
if (node.allocated) {
wmb();
ggtt->base.clear_range(&ggtt->base,
node.start, node.size,
true);
i915_gem_object_unpin_pages(obj);
remove_mappable_node(&node);
} else {
i915_vma_unpin(vma);
}
out:
return ret;
}
static int
i915_gem_shmem_pread(struct drm_device *dev,
struct drm_i915_gem_object *obj,
struct drm_i915_gem_pread *args,
struct drm_file *file)
{
char __user *user_data;
ssize_t remain;
loff_t offset;
int shmem_page_offset, page_length, ret = 0;
int obj_do_bit17_swizzling, page_do_bit17_swizzling;
int prefaulted = 0;
int needs_clflush = 0;
struct sg_page_iter sg_iter;
ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
if (ret)
return ret;
obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
user_data = u64_to_user_ptr(args->data_ptr);
offset = args->offset;
remain = args->size;
for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
offset >> PAGE_SHIFT) {
struct page *page = sg_page_iter_page(&sg_iter);
if (remain <= 0)
break;
/* Operation in this page
*
* shmem_page_offset = offset within page in shmem file
* page_length = bytes to copy for this page
*/
shmem_page_offset = offset_in_page(offset);
page_length = remain;
if ((shmem_page_offset + page_length) > PAGE_SIZE)
page_length = PAGE_SIZE - shmem_page_offset;
page_do_bit17_swizzling = obj_do_bit17_swizzling &&
(page_to_phys(page) & (1 << 17)) != 0;
ret = shmem_pread_fast(page, shmem_page_offset, page_length,
user_data, page_do_bit17_swizzling,
needs_clflush);
if (ret == 0)
goto next_page;
mutex_unlock(&dev->struct_mutex);
if (likely(!i915.prefault_disable) && !prefaulted) {
ret = fault_in_multipages_writeable(user_data, remain);
/* Userspace is tricking us, but we've already clobbered
* its pages with the prefault and promised to write the
* data up to the first fault. Hence ignore any errors
* and just continue. */
(void)ret;
prefaulted = 1;
}
ret = shmem_pread_slow(page, shmem_page_offset, page_length,
user_data, page_do_bit17_swizzling,
needs_clflush);
mutex_lock(&dev->struct_mutex);
if (ret)
goto out;
next_page:
remain -= page_length;
user_data += page_length;
offset += page_length;
}
out:
i915_gem_obj_finish_shmem_access(obj);
return ret;
}
/**
* Reads data from the object referenced by handle.
* @dev: drm device pointer
* @data: ioctl data blob
* @file: drm file pointer
*
* On error, the contents of *data are undefined.
*/
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
struct drm_file *file)
{
struct drm_i915_gem_pread *args = data;
struct drm_i915_gem_object *obj;
int ret = 0;
if (args->size == 0)
return 0;
if (!access_ok(VERIFY_WRITE,
u64_to_user_ptr(args->data_ptr),
args->size))
return -EFAULT;
obj = i915_gem_object_lookup(file, args->handle);
if (!obj)
return -ENOENT;
/* Bounds check source. */
if (args->offset > obj->base.size ||
args->size > obj->base.size - args->offset) {
ret = -EINVAL;
goto err;
}
trace_i915_gem_object_pread(obj, args->offset, args->size);
ret = __unsafe_wait_rendering(obj, to_rps_client(file), true);
if (ret)
goto err;
ret = i915_mutex_lock_interruptible(dev);
if (ret)
goto err;
ret = i915_gem_shmem_pread(dev, obj, args, file);
/* pread for non shmem backed objects */
if (ret == -EFAULT || ret == -ENODEV) {
intel_runtime_pm_get(to_i915(dev));
ret = i915_gem_gtt_pread(dev, obj, args->size,
args->offset, args->data_ptr);
intel_runtime_pm_put(to_i915(dev));
}
i915_gem_object_put(obj);
mutex_unlock(&dev->struct_mutex);
return ret;
err:
i915_gem_object_put_unlocked(obj);
return ret;
}
/* This is the fast write path which cannot handle
* page faults in the source data
*/
static inline int
fast_user_write(struct io_mapping *mapping,
loff_t page_base, int page_offset,
char __user *user_data,
int length)
{
void __iomem *vaddr_atomic;
void *vaddr;
unsigned long unwritten;
vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
/* We can use the cpu mem copy function because this is X86. */
vaddr = (void __force*)vaddr_atomic + page_offset;
unwritten = __copy_from_user_inatomic_nocache(vaddr,
user_data, length);
io_mapping_unmap_atomic(vaddr_atomic);
return unwritten;
}
/**
* This is the fast pwrite path, where we copy the data directly from the
* user into the GTT, uncached.
* @i915: i915 device private data
* @obj: i915 gem object
* @args: pwrite arguments structure
* @file: drm file pointer
*/
static int
i915_gem_gtt_pwrite_fast(struct drm_i915_private *i915,
struct drm_i915_gem_object *obj,
struct drm_i915_gem_pwrite *args,
struct drm_file *file)
{
struct i915_ggtt *ggtt = &i915->ggtt;
struct drm_device *dev = obj->base.dev;
struct i915_vma *vma;
struct drm_mm_node node;
uint64_t remain, offset;
char __user *user_data;
int ret;
bool hit_slow_path = false;
if (i915_gem_object_is_tiled(obj))
return -EFAULT;
vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
PIN_MAPPABLE | PIN_NONBLOCK);
if (!IS_ERR(vma)) {
node.start = i915_ggtt_offset(vma);
node.allocated = false;
ret = i915_vma_put_fence(vma);
if (ret) {
i915_vma_unpin(vma);
vma = ERR_PTR(ret);
}
}
if (IS_ERR(vma)) {
ret = insert_mappable_node(i915, &node, PAGE_SIZE);
if (ret)
goto out;
ret = i915_gem_object_get_pages(obj);
if (ret) {
remove_mappable_node(&node);
goto out;
}
i915_gem_object_pin_pages(obj);
}
ret = i915_gem_object_set_to_gtt_domain(obj, true);
if (ret)
goto out_unpin;
intel_fb_obj_invalidate(obj, ORIGIN_CPU);
obj->dirty = true;
user_data = u64_to_user_ptr(args->data_ptr);
offset = args->offset;
remain = args->size;
while (remain) {
/* Operation in this page
*
* page_base = page offset within aperture
* page_offset = offset within page
* page_length = bytes to copy for this page
*/
u32 page_base = node.start;
unsigned page_offset = offset_in_page(offset);
unsigned page_length = PAGE_SIZE - page_offset;
page_length = remain < page_length ? remain : page_length;
if (node.allocated) {
wmb(); /* flush the write before we modify the GGTT */
ggtt->base.insert_page(&ggtt->base,
i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
node.start, I915_CACHE_NONE, 0);
wmb(); /* flush modifications to the GGTT (insert_page) */
} else {
page_base += offset & PAGE_MASK;
}
/* If we get a fault while copying data, then (presumably) our
* source page isn't available. Return the error and we'll
* retry in the slow path.
* If the object is non-shmem backed, we retry again with the
* path that handles page fault.
*/
if (fast_user_write(&ggtt->mappable, page_base,
page_offset, user_data, page_length)) {
hit_slow_path = true;
mutex_unlock(&dev->struct_mutex);
if (slow_user_access(&ggtt->mappable,
page_base,
page_offset, user_data,
page_length, true)) {
ret = -EFAULT;
mutex_lock(&dev->struct_mutex);
goto out_flush;
}
mutex_lock(&dev->struct_mutex);
}
remain -= page_length;
user_data += page_length;
offset += page_length;
}
out_flush:
if (hit_slow_path) {
if (ret == 0 &&
(obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0) {
/* The user has modified the object whilst we tried
* reading from it, and we now have no idea what domain
* the pages should be in. As we have just been touching
* them directly, flush everything back to the GTT
* domain.
*/
ret = i915_gem_object_set_to_gtt_domain(obj, false);
}
}
intel_fb_obj_flush(obj, false, ORIGIN_CPU);
out_unpin:
if (node.allocated) {
wmb();
ggtt->base.clear_range(&ggtt->base,
node.start, node.size,
true);
i915_gem_object_unpin_pages(obj);
remove_mappable_node(&node);
} else {
i915_vma_unpin(vma);
}
out:
return ret;
}
/* Per-page copy function for the shmem pwrite fastpath.
* Flushes invalid cachelines before writing to the target if
* needs_clflush_before is set and flushes out any written cachelines after
* writing if needs_clflush is set. */
static int
shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
char __user *user_data,
bool page_do_bit17_swizzling,
bool needs_clflush_before,
bool needs_clflush_after)
{
char *vaddr;
int ret;
if (unlikely(page_do_bit17_swizzling))
return -EINVAL;
vaddr = kmap_atomic(page);
if (needs_clflush_before)
drm_clflush_virt_range(vaddr + shmem_page_offset,
page_length);
ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
user_data, page_length);
if (needs_clflush_after)
drm_clflush_virt_range(vaddr + shmem_page_offset,
page_length);
kunmap_atomic(vaddr);
return ret ? -EFAULT : 0;
}
/* Only difference to the fast-path function is that this can handle bit17
* and uses non-atomic copy and kmap functions. */
static int
shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
char __user *user_data,
bool page_do_bit17_swizzling,
bool needs_clflush_before,
bool needs_clflush_after)
{
char *vaddr;
int ret;
vaddr = kmap(page);
if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
page_length,
page_do_bit17_swizzling);
if (page_do_bit17_swizzling)
ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
user_data,
page_length);
else
ret = __copy_from_user(vaddr + shmem_page_offset,
user_data,
page_length);
if (needs_clflush_after)
shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
page_length,
page_do_bit17_swizzling);
kunmap(page);
return ret ? -EFAULT : 0;
}
static int
i915_gem_shmem_pwrite(struct drm_device *dev,
struct drm_i915_gem_object *obj,
struct drm_i915_gem_pwrite *args,
struct drm_file *file)
{
ssize_t remain;
loff_t offset;
char __user *user_data;
int shmem_page_offset, page_length, ret = 0;
int obj_do_bit17_swizzling, page_do_bit17_swizzling;
int hit_slowpath = 0;
unsigned int needs_clflush;
struct sg_page_iter sg_iter;
ret = i915_gem_obj_prepare_shmem_write(obj, &needs_clflush);
if (ret)
return ret;
obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
user_data = u64_to_user_ptr(args->data_ptr);
offset = args->offset;
remain = args->size;
for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
offset >> PAGE_SHIFT) {
struct page *page = sg_page_iter_page(&sg_iter);
int partial_cacheline_write;
if (remain <= 0)
break;
/* Operation in this page
*
* shmem_page_offset = offset within page in shmem file
* page_length = bytes to copy for this page
*/
shmem_page_offset = offset_in_page(offset);
page_length = remain;
if ((shmem_page_offset + page_length) > PAGE_SIZE)
page_length = PAGE_SIZE - shmem_page_offset;
/* If we don't overwrite a cacheline completely we need to be
* careful to have up-to-date data by first clflushing. Don't
* overcomplicate things and flush the entire patch. */
partial_cacheline_write = needs_clflush & CLFLUSH_BEFORE &&
((shmem_page_offset | page_length)
& (boot_cpu_data.x86_clflush_size - 1));
page_do_bit17_swizzling = obj_do_bit17_swizzling &&
(page_to_phys(page) & (1 << 17)) != 0;
ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
user_data, page_do_bit17_swizzling,
partial_cacheline_write,
needs_clflush & CLFLUSH_AFTER);
if (ret == 0)
goto next_page;
hit_slowpath = 1;
mutex_unlock(&dev->struct_mutex);
ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
user_data, page_do_bit17_swizzling,
partial_cacheline_write,
needs_clflush & CLFLUSH_AFTER);
mutex_lock(&dev->struct_mutex);
if (ret)
goto out;
next_page:
remain -= page_length;
user_data += page_length;
offset += page_length;
}
out:
i915_gem_obj_finish_shmem_access(obj);
if (hit_slowpath) {
/*
* Fixup: Flush cpu caches in case we didn't flush the dirty
* cachelines in-line while writing and the object moved
* out of the cpu write domain while we've dropped the lock.
*/
if (!(needs_clflush & CLFLUSH_AFTER) &&
obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
if (i915_gem_clflush_object(obj, obj->pin_display))
needs_clflush |= CLFLUSH_AFTER;
}
}
if (needs_clflush & CLFLUSH_AFTER)
i915_gem_chipset_flush(to_i915(dev));
intel_fb_obj_flush(obj, false, ORIGIN_CPU);
return ret;
}
/**
* Writes data to the object referenced by handle.
* @dev: drm device
* @data: ioctl data blob
* @file: drm file
*
* On error, the contents of the buffer that were to be modified are undefined.
*/
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
struct drm_file *file)
{
struct drm_i915_private *dev_priv = to_i915(dev);
struct drm_i915_gem_pwrite *args = data;
struct drm_i915_gem_object *obj;
int ret;
if (args->size == 0)
return 0;
if (!access_ok(VERIFY_READ,
u64_to_user_ptr(args->data_ptr),
args->size))
return -EFAULT;
if (likely(!i915.prefault_disable)) {
ret = fault_in_multipages_readable(u64_to_user_ptr(args->data_ptr),
args->size);
if (ret)
return -EFAULT;
}
obj = i915_gem_object_lookup(file, args->handle);
if (!obj)
return -ENOENT;
/* Bounds check destination. */
if (args->offset > obj->base.size ||
args->size > obj->base.size - args->offset) {
ret = -EINVAL;
goto err;
}
trace_i915_gem_object_pwrite(obj, args->offset, args->size);
ret = __unsafe_wait_rendering(obj, to_rps_client(file), false);
if (ret)
goto err;
intel_runtime_pm_get(dev_priv);
ret = i915_mutex_lock_interruptible(dev);
if (ret)
goto err_rpm;
ret = -EFAULT;
/* We can only do the GTT pwrite on untiled buffers, as otherwise
* it would end up going through the fenced access, and we'll get
* different detiling behavior between reading and writing.
* pread/pwrite currently are reading and writing from the CPU
* perspective, requiring manual detiling by the client.
*/
if (!i915_gem_object_has_struct_page(obj) ||
cpu_write_needs_clflush(obj)) {
ret = i915_gem_gtt_pwrite_fast(dev_priv, obj, args, file);
/* Note that the gtt paths might fail with non-page-backed user
* pointers (e.g. gtt mappings when moving data between
* textures). Fallback to the shmem path in that case. */
}
if (ret == -EFAULT || ret == -ENOSPC) {
if (obj->phys_handle)
ret = i915_gem_phys_pwrite(obj, args, file);
else
ret = i915_gem_shmem_pwrite(dev, obj, args, file);
}
i915_gem_object_put(obj);
mutex_unlock(&dev->struct_mutex);
intel_runtime_pm_put(dev_priv);
return ret;
err_rpm:
intel_runtime_pm_put(dev_priv);
err:
i915_gem_object_put_unlocked(obj);
return ret;
}
static inline enum fb_op_origin
write_origin(struct drm_i915_gem_object *obj, unsigned domain)
{
return (domain == I915_GEM_DOMAIN_GTT ?
obj->frontbuffer_ggtt_origin : ORIGIN_CPU);
}
/**
* Called when user space prepares to use an object with the CPU, either
* through the mmap ioctl's mapping or a GTT mapping.
* @dev: drm device
* @data: ioctl data blob
* @file: drm file
*/
int
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
struct drm_file *file)
{
struct drm_i915_gem_set_domain *args = data;
struct drm_i915_gem_object *obj;
uint32_t read_domains = args->read_domains;
uint32_t write_domain = args->write_domain;
int ret;
/* Only handle setting domains to types used by the CPU. */
if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS)
return -EINVAL;
/* Having something in the write domain implies it's in the read
* domain, and only that read domain. Enforce that in the request.
*/
if (write_domain != 0 && read_domains != write_domain)
return -EINVAL;
obj = i915_gem_object_lookup(file, args->handle);
if (!obj)
return -ENOENT;
/* Try to flush the object off the GPU without holding the lock.
* We will repeat the flush holding the lock in the normal manner
* to catch cases where we are gazumped.
*/
ret = __unsafe_wait_rendering(obj, to_rps_client(file), !write_domain);
if (ret)
goto err;
ret = i915_mutex_lock_interruptible(dev);
if (ret)
goto err;
if (read_domains & I915_GEM_DOMAIN_GTT)
ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
else
ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
if (write_domain != 0)
intel_fb_obj_invalidate(obj, write_origin(obj, write_domain));
i915_gem_object_put(obj);
mutex_unlock(&dev->struct_mutex);
return ret;
err:
i915_gem_object_put_unlocked(obj);
return ret;
}
/**
* Called when user space has done writes to this buffer
* @dev: drm device
* @data: ioctl data blob
* @file: drm file
*/
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
struct drm_file *file)
{
struct drm_i915_gem_sw_finish *args = data;
struct drm_i915_gem_object *obj;
int err = 0;
obj = i915_gem_object_lookup(file, args->handle);
if (!obj)
return -ENOENT;
/* Pinned buffers may be scanout, so flush the cache */
if (READ_ONCE(obj->pin_display)) {
err = i915_mutex_lock_interruptible(dev);
if (!err) {
i915_gem_object_flush_cpu_write_domain(obj);
mutex_unlock(&dev->struct_mutex);
}
}
i915_gem_object_put_unlocked(obj);
return err;
}
/**
* i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
* it is mapped to.
* @dev: drm device
* @data: ioctl data blob
* @file: drm file
*
* While the mapping holds a reference on the contents of the object, it doesn't
* imply a ref on the object itself.
*
* IMPORTANT:
*
* DRM driver writers who look a this function as an example for how to do GEM
* mmap support, please don't implement mmap support like here. The modern way
* to implement DRM mmap support is with an mmap offset ioctl (like
* i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
* That way debug tooling like valgrind will understand what's going on, hiding
* the mmap call in a driver private ioctl will break that. The i915 driver only
* does cpu mmaps this way because we didn't know better.
*/
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
struct drm_file *file)
{
struct drm_i915_gem_mmap *args = data;
struct drm_i915_gem_object *obj;
unsigned long addr;
if (args->flags & ~(I915_MMAP_WC))
return -EINVAL;
if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
return -ENODEV;
obj = i915_gem_object_lookup(file, args->handle);
if (!obj)
return -ENOENT;
/* prime objects have no backing filp to GEM mmap
* pages from.
*/
if (!obj->base.filp) {
i915_gem_object_put_unlocked(obj);
return -EINVAL;
}
addr = vm_mmap(obj->base.filp, 0, args->size,
PROT_READ | PROT_WRITE, MAP_SHARED,
args->offset);
if (args->flags & I915_MMAP_WC) {
struct mm_struct *mm = current->mm;
struct vm_area_struct *vma;
if (down_write_killable(&mm->mmap_sem)) {
i915_gem_object_put_unlocked(obj);
return -EINTR;
}
vma = find_vma(mm, addr);
if (vma)
vma->vm_page_prot =
pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
else
addr = -ENOMEM;
up_write(&mm->mmap_sem);
/* This may race, but that's ok, it only gets set */
WRITE_ONCE(obj->frontbuffer_ggtt_origin, ORIGIN_CPU);
}
i915_gem_object_put_unlocked(obj);
if (IS_ERR((void *)addr))
return addr;
args->addr_ptr = (uint64_t) addr;
return 0;
}
static unsigned int tile_row_pages(struct drm_i915_gem_object *obj)
{
u64 size;
size = i915_gem_object_get_stride(obj);
size *= i915_gem_object_get_tiling(obj) == I915_TILING_Y ? 32 : 8;
return size >> PAGE_SHIFT;
}
/**
* i915_gem_mmap_gtt_version - report the current feature set for GTT mmaps
*
* A history of the GTT mmap interface:
*
* 0 - Everything had to fit into the GTT. Both parties of a memcpy had to
* aligned and suitable for fencing, and still fit into the available
* mappable space left by the pinned display objects. A classic problem
* we called the page-fault-of-doom where we would ping-pong between
* two objects that could not fit inside the GTT and so the memcpy
* would page one object in at the expense of the other between every
* single byte.
*
* 1 - Objects can be any size, and have any compatible fencing (X Y, or none
* as set via i915_gem_set_tiling() [DRM_I915_GEM_SET_TILING]). If the
* object is too large for the available space (or simply too large
* for the mappable aperture!), a view is created instead and faulted
* into userspace. (This view is aligned and sized appropriately for
* fenced access.)
*
* Restrictions:
*
* * snoopable objects cannot be accessed via the GTT. It can cause machine
* hangs on some architectures, corruption on others. An attempt to service
* a GTT page fault from a snoopable object will generate a SIGBUS.
*
* * the object must be able to fit into RAM (physical memory, though no
* limited to the mappable aperture).
*
*
* Caveats:
*
* * a new GTT page fault will synchronize rendering from the GPU and flush
* all data to system memory. Subsequent access will not be synchronized.
*
* * all mappings are revoked on runtime device suspend.
*
* * there are only 8, 16 or 32 fence registers to share between all users
* (older machines require fence register for display and blitter access
* as well). Contention of the fence registers will cause the previous users
* to be unmapped and any new access will generate new page faults.
*
* * running out of memory while servicing a fault may generate a SIGBUS,
* rather than the expected SIGSEGV.
*/
int i915_gem_mmap_gtt_version(void)
{
return 1;
}
/**
* i915_gem_fault - fault a page into the GTT
* @area: CPU VMA in question
* @vmf: fault info
*
* The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
* from userspace. The fault handler takes care of binding the object to
* the GTT (if needed), allocating and programming a fence register (again,
* only if needed based on whether the old reg is still valid or the object
* is tiled) and inserting a new PTE into the faulting process.
*
* Note that the faulting process may involve evicting existing objects
* from the GTT and/or fence registers to make room. So performance may
* suffer if the GTT working set is large or there are few fence registers
* left.
*
* The current feature set supported by i915_gem_fault() and thus GTT mmaps
* is exposed via I915_PARAM_MMAP_GTT_VERSION (see i915_gem_mmap_gtt_version).
*/
int i915_gem_fault(struct vm_area_struct *area, struct vm_fault *vmf)
{
#define MIN_CHUNK_PAGES ((1 << 20) >> PAGE_SHIFT) /* 1 MiB */
struct drm_i915_gem_object *obj = to_intel_bo(area->vm_private_data);
struct drm_device *dev = obj->base.dev;
struct drm_i915_private *dev_priv = to_i915(dev);
struct i915_ggtt *ggtt = &dev_priv->ggtt;
bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
struct i915_vma *vma;
pgoff_t page_offset;
unsigned int flags;
int ret;
/* We don't use vmf->pgoff since that has the fake offset */
page_offset = ((unsigned long)vmf->virtual_address - area->vm_start) >>
PAGE_SHIFT;
trace_i915_gem_object_fault(obj, page_offset, true, write);
/* Try to flush the object off the GPU first without holding the lock.
* Upon acquiring the lock, we will perform our sanity checks and then
* repeat the flush holding the lock in the normal manner to catch cases
* where we are gazumped.
*/
ret = __unsafe_wait_rendering(obj, NULL, !write);
if (ret)
goto err;
intel_runtime_pm_get(dev_priv);
ret = i915_mutex_lock_interruptible(dev);
if (ret)
goto err_rpm;
/* Access to snoopable pages through the GTT is incoherent. */
if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
ret = -EFAULT;
goto err_unlock;
}
/* If the object is smaller than a couple of partial vma, it is
* not worth only creating a single partial vma - we may as well
* clear enough space for the full object.
*/
flags = PIN_MAPPABLE;
if (obj->base.size > 2 * MIN_CHUNK_PAGES << PAGE_SHIFT)
flags |= PIN_NONBLOCK | PIN_NONFAULT;
/* Now pin it into the GTT as needed */
vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, flags);
if (IS_ERR(vma)) {
struct i915_ggtt_view view;
unsigned int chunk_size;
/* Use a partial view if it is bigger than available space */
chunk_size = MIN_CHUNK_PAGES;
if (i915_gem_object_is_tiled(obj))
chunk_size = max(chunk_size, tile_row_pages(obj));
memset(&view, 0, sizeof(view));
view.type = I915_GGTT_VIEW_PARTIAL;
view.params.partial.offset = rounddown(page_offset, chunk_size);
view.params.partial.size =
min_t(unsigned int, chunk_size,
(area->vm_end - area->vm_start) / PAGE_SIZE -
view.params.partial.offset);
/* If the partial covers the entire object, just create a
* normal VMA.
*/
if (chunk_size >= obj->base.size >> PAGE_SHIFT)
view.type = I915_GGTT_VIEW_NORMAL;
/* Userspace is now writing through an untracked VMA, abandon
* all hope that the hardware is able to track future writes.
*/
obj->frontbuffer_ggtt_origin = ORIGIN_CPU;
vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, PIN_MAPPABLE);
}
if (IS_ERR(vma)) {
ret = PTR_ERR(vma);
goto err_unlock;
}
ret = i915_gem_object_set_to_gtt_domain(obj, write);
if (ret)
goto err_unpin;
ret = i915_vma_get_fence(vma);
if (ret)
goto err_unpin;
/* Finally, remap it using the new GTT offset */
ret = remap_io_mapping(area,
area->vm_start + (vma->ggtt_view.params.partial.offset << PAGE_SHIFT),
(ggtt->mappable_base + vma->node.start) >> PAGE_SHIFT,
min_t(u64, vma->size, area->vm_end - area->vm_start),
&ggtt->mappable);
if (ret)
goto err_unpin;
obj->fault_mappable = true;
err_unpin:
__i915_vma_unpin(vma);
err_unlock:
mutex_unlock(&dev->struct_mutex);
err_rpm:
intel_runtime_pm_put(dev_priv);
err:
switch (ret) {
case -EIO:
/*
* We eat errors when the gpu is terminally wedged to avoid
* userspace unduly crashing (gl has no provisions for mmaps to
* fail). But any other -EIO isn't ours (e.g. swap in failure)
* and so needs to be reported.
*/
if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
ret = VM_FAULT_SIGBUS;
break;
}
case -EAGAIN:
/*
* EAGAIN means the gpu is hung and we'll wait for the error
* handler to reset everything when re-faulting in
* i915_mutex_lock_interruptible.
*/
case 0:
case -ERESTARTSYS:
case -EINTR:
case -EBUSY:
/*
* EBUSY is ok: this just means that another thread
* already did the job.
*/
ret = VM_FAULT_NOPAGE;
break;
case -ENOMEM:
ret = VM_FAULT_OOM;
break;
case -ENOSPC:
case -EFAULT:
ret = VM_FAULT_SIGBUS;
break;
default:
WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
ret = VM_FAULT_SIGBUS;
break;
}
return ret;
}
/**
* i915_gem_release_mmap - remove physical page mappings
* @obj: obj in question
*
* Preserve the reservation of the mmapping with the DRM core code, but
* relinquish ownership of the pages back to the system.
*
* It is vital that we remove the page mapping if we have mapped a tiled
* object through the GTT and then lose the fence register due to
* resource pressure. Similarly if the object has been moved out of the
* aperture, than pages mapped into userspace must be revoked. Removing the
* mapping will then trigger a page fault on the next user access, allowing
* fixup by i915_gem_fault().
*/
void
i915_gem_release_mmap(struct drm_i915_gem_object *obj)
{
/* Serialisation between user GTT access and our code depends upon
* revoking the CPU's PTE whilst the mutex is held. The next user
* pagefault then has to wait until we release the mutex.
*/
lockdep_assert_held(&obj->base.dev->struct_mutex);
if (!obj->fault_mappable)
return;
drm_vma_node_unmap(&obj->base.vma_node,
obj->base.dev->anon_inode->i_mapping);
/* Ensure that the CPU's PTE are revoked and there are not outstanding
* memory transactions from userspace before we return. The TLB
* flushing implied above by changing the PTE above *should* be
* sufficient, an extra barrier here just provides us with a bit
* of paranoid documentation about our requirement to serialise
* memory writes before touching registers / GSM.
*/
wmb();
obj->fault_mappable = false;
}
void
i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
{
struct drm_i915_gem_object *obj;
list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
i915_gem_release_mmap(obj);
}
/**
* i915_gem_get_ggtt_size - return required global GTT size for an object
* @dev_priv: i915 device
* @size: object size
* @tiling_mode: tiling mode
*
* Return the required global GTT size for an object, taking into account
* potential fence register mapping.
*/
u64 i915_gem_get_ggtt_size(struct drm_i915_private *dev_priv,
u64 size, int tiling_mode)
{
u64 ggtt_size;
GEM_BUG_ON(size == 0);
if (INTEL_GEN(dev_priv) >= 4 ||
tiling_mode == I915_TILING_NONE)
return size;
/* Previous chips need a power-of-two fence region when tiling */
if (IS_GEN3(dev_priv))
ggtt_size = 1024*1024;
else
ggtt_size = 512*1024;
while (ggtt_size < size)
ggtt_size <<= 1;
return ggtt_size;
}
/**
* i915_gem_get_ggtt_alignment - return required global GTT alignment
* @dev_priv: i915 device
* @size: object size
* @tiling_mode: tiling mode
* @fenced: is fenced alignment required or not
*
* Return the required global GTT alignment for an object, taking into account
* potential fence register mapping.
*/
u64 i915_gem_get_ggtt_alignment(struct drm_i915_private *dev_priv, u64 size,
int tiling_mode, bool fenced)
{
GEM_BUG_ON(size == 0);
/*
* Minimum alignment is 4k (GTT page size), but might be greater
* if a fence register is needed for the object.
*/
if (INTEL_GEN(dev_priv) >= 4 || (!fenced && IS_G33(dev_priv)) ||
tiling_mode == I915_TILING_NONE)
return 4096;
/*
* Previous chips need to be aligned to the size of the smallest
* fence register that can contain the object.
*/
return i915_gem_get_ggtt_size(dev_priv, size, tiling_mode);
}
static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
{
struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
int err;
err = drm_gem_create_mmap_offset(&obj->base);
if (!err)
return 0;
/* We can idle the GPU locklessly to flush stale objects, but in order
* to claim that space for ourselves, we need to take the big
* struct_mutex to free the requests+objects and allocate our slot.
*/
err = i915_gem_wait_for_idle(dev_priv, I915_WAIT_INTERRUPTIBLE);
if (err)
return err;
err = i915_mutex_lock_interruptible(&dev_priv->drm);
if (!err) {
i915_gem_retire_requests(dev_priv);
err = drm_gem_create_mmap_offset(&obj->base);
mutex_unlock(&dev_priv->drm.struct_mutex);
}
return err;
}
static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
{
drm_gem_free_mmap_offset(&obj->base);
}
int
i915_gem_mmap_gtt(struct drm_file *file,
struct drm_device *dev,
uint32_t handle,
uint64_t *offset)
{
struct drm_i915_gem_object *obj;
int ret;
obj = i915_gem_object_lookup(file, handle);
if (!obj)
return -ENOENT;
ret = i915_gem_object_create_mmap_offset(obj);
if (ret == 0)
*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
i915_gem_object_put_unlocked(obj);
return ret;
}
/**
* i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
* @dev: DRM device
* @data: GTT mapping ioctl data
* @file: GEM object info
*
* Simply returns the fake offset to userspace so it can mmap it.
* The mmap call will end up in drm_gem_mmap(), which will set things
* up so we can get faults in the handler above.
*
* The fault handler will take care of binding the object into the GTT
* (since it may have been evicted to make room for something), allocating
* a fence register, and mapping the appropriate aperture address into
* userspace.
*/
int
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
struct drm_file *file)
{
struct drm_i915_gem_mmap_gtt *args = data;
return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
}
/* Immediately discard the backing storage */
static void
i915_gem_object_truncate(struct drm_i915_gem_object *obj)
{
i915_gem_object_free_mmap_offset(obj);
if (obj->base.filp == NULL)
return;
/* Our goal here is to return as much of the memory as
* is possible back to the system as we are called from OOM.
* To do this we must instruct the shmfs to drop all of its
* backing pages, *now*.
*/
shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
obj->madv = __I915_MADV_PURGED;
}
/* Try to discard unwanted pages */
static void
i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
{
struct address_space *mapping;
switch (obj->madv) {
case I915_MADV_DONTNEED:
i915_gem_object_truncate(obj);
case __I915_MADV_PURGED:
return;
}
if (obj->base.filp == NULL)
return;
mapping = obj->base.filp->f_mapping,
invalidate_mapping_pages(mapping, 0, (loff_t)-1);
}
static void
i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
{
struct sgt_iter sgt_iter;
struct page *page;
int ret;
BUG_ON(obj->madv == __I915_MADV_PURGED);
ret = i915_gem_object_set_to_cpu_domain(obj, true);
if (WARN_ON(ret)) {
/* In the event of a disaster, abandon all caches and
* hope for the best.
*/
i915_gem_clflush_object(obj, true);
obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
}
i915_gem_gtt_finish_object(obj);
if (i915_gem_object_needs_bit17_swizzle(obj))
i915_gem_object_save_bit_17_swizzle(obj);
if (obj->madv == I915_MADV_DONTNEED)
obj->dirty = 0;
for_each_sgt_page(page, sgt_iter, obj->pages) {
if (obj->dirty)
set_page_dirty(page);
if (obj->madv == I915_MADV_WILLNEED)
mark_page_accessed(page);
put_page(page);
}
obj->dirty = 0;
sg_free_table(obj->pages);
kfree(obj->pages);
}
int
i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
{
const struct drm_i915_gem_object_ops *ops = obj->ops;
if (obj->pages == NULL)
return 0;
if (obj->pages_pin_count)
return -EBUSY;
GEM_BUG_ON(obj->bind_count);
/* ->put_pages might need to allocate memory for the bit17 swizzle
* array, hence protect them from being reaped by removing them from gtt
* lists early. */
list_del(&obj->global_list);
if (obj->mapping) {
void *ptr;
ptr = ptr_mask_bits(obj->mapping);
if (is_vmalloc_addr(ptr))
vunmap(ptr);
else
kunmap(kmap_to_page(ptr));
obj->mapping = NULL;
}
ops->put_pages(obj);
obj->pages = NULL;
i915_gem_object_invalidate(obj);
return 0;
}
static int
i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
{
struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
int page_count, i;
struct address_space *mapping;
struct sg_table *st;
struct scatterlist *sg;
struct sgt_iter sgt_iter;
struct page *page;
unsigned long last_pfn = 0; /* suppress gcc warning */
int ret;
gfp_t gfp;
/* Assert that the object is not currently in any GPU domain. As it
* wasn't in the GTT, there shouldn't be any way it could have been in
* a GPU cache
*/
BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
st = kmalloc(sizeof(*st), GFP_KERNEL);
if (st == NULL)
return -ENOMEM;
page_count = obj->base.size / PAGE_SIZE;
if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
kfree(st);
return -ENOMEM;
}
/* Get the list of pages out of our struct file. They'll be pinned
* at this point until we release them.
*
* Fail silently without starting the shrinker
*/
mapping = obj->base.filp->f_mapping;
gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
gfp |= __GFP_NORETRY | __GFP_NOWARN;
sg = st->sgl;
st->nents = 0;
for (i = 0; i < page_count; i++) {
page = shmem_read_mapping_page_gfp(mapping, i, gfp);
if (IS_ERR(page)) {
i915_gem_shrink(dev_priv,
page_count,
I915_SHRINK_BOUND |
I915_SHRINK_UNBOUND |
I915_SHRINK_PURGEABLE);
page = shmem_read_mapping_page_gfp(mapping, i, gfp);
}
if (IS_ERR(page)) {
/* We've tried hard to allocate the memory by reaping
* our own buffer, now let the real VM do its job and
* go down in flames if truly OOM.
*/
page = shmem_read_mapping_page(mapping, i);
if (IS_ERR(page)) {
ret = PTR_ERR(page);
goto err_pages;
}
}
#ifdef CONFIG_SWIOTLB
if (swiotlb_nr_tbl()) {
st->nents++;
sg_set_page(sg, page, PAGE_SIZE, 0);
sg = sg_next(sg);
continue;
}
#endif
if (!i || page_to_pfn(page) != last_pfn + 1) {
if (i)
sg = sg_next(sg);
st->nents++;
sg_set_page(sg, page, PAGE_SIZE, 0);
} else {
sg->length += PAGE_SIZE;
}
last_pfn = page_to_pfn(page);
/* Check that the i965g/gm workaround works. */
WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
}
#ifdef CONFIG_SWIOTLB
if (!swiotlb_nr_tbl())
#endif
sg_mark_end(sg);
obj->pages = st;
ret = i915_gem_gtt_prepare_object(obj);
if (ret)
goto err_pages;
if (i915_gem_object_needs_bit17_swizzle(obj))
i915_gem_object_do_bit_17_swizzle(obj);
if (i915_gem_object_is_tiled(obj) &&
dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
i915_gem_object_pin_pages(obj);
return 0;
err_pages:
sg_mark_end(sg);
for_each_sgt_page(page, sgt_iter, st)
put_page(page);
sg_free_table(st);
kfree(st);
/* shmemfs first checks if there is enough memory to allocate the page
* and reports ENOSPC should there be insufficient, along with the usual
* ENOMEM for a genuine allocation failure.
*
* We use ENOSPC in our driver to mean that we have run out of aperture
* space and so want to translate the error from shmemfs back to our
* usual understanding of ENOMEM.
*/
if (ret == -ENOSPC)
ret = -ENOMEM;
return ret;
}
/* Ensure that the associated pages are gathered from the backing storage
* and pinned into our object. i915_gem_object_get_pages() may be called
* multiple times before they are released by a single call to
* i915_gem_object_put_pages() - once the pages are no longer referenced
* either as a result of memory pressure (reaping pages under the shrinker)
* or as the object is itself released.
*/
int
i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
{
struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
const struct drm_i915_gem_object_ops *ops = obj->ops;
int ret;
if (obj->pages)
return 0;
if (obj->madv != I915_MADV_WILLNEED) {
DRM_DEBUG("Attempting to obtain a purgeable object\n");
return -EFAULT;
}
BUG_ON(obj->pages_pin_count);
ret = ops->get_pages(obj);
if (ret)
return ret;
list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
obj->get_page.sg = obj->pages->sgl;
obj->get_page.last = 0;
return 0;
}
/* The 'mapping' part of i915_gem_object_pin_map() below */
static void *i915_gem_object_map(const struct drm_i915_gem_object *obj,
enum i915_map_type type)
{
unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
struct sg_table *sgt = obj->pages;
struct sgt_iter sgt_iter;
struct page *page;
struct page *stack_pages[32];
struct page **pages = stack_pages;
unsigned long i = 0;
pgprot_t pgprot;
void *addr;
/* A single page can always be kmapped */
if (n_pages == 1 && type == I915_MAP_WB)
return kmap(sg_page(sgt->sgl));
if (n_pages > ARRAY_SIZE(stack_pages)) {
/* Too big for stack -- allocate temporary array instead */
pages = drm_malloc_gfp(n_pages, sizeof(*pages), GFP_TEMPORARY);
if (!pages)
return NULL;
}
for_each_sgt_page(page, sgt_iter, sgt)
pages[i++] = page;
/* Check that we have the expected number of pages */
GEM_BUG_ON(i != n_pages);
switch (type) {
case I915_MAP_WB:
pgprot = PAGE_KERNEL;
break;
case I915_MAP_WC:
pgprot = pgprot_writecombine(PAGE_KERNEL_IO);
break;
}
addr = vmap(pages, n_pages, 0, pgprot);
if (pages != stack_pages)
drm_free_large(pages);
return addr;
}
/* get, pin, and map the pages of the object into kernel space */
void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
enum i915_map_type type)
{
enum i915_map_type has_type;
bool pinned;
void *ptr;
int ret;
lockdep_assert_held(&obj->base.dev->struct_mutex);
GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
ret = i915_gem_object_get_pages(obj);
if (ret)
return ERR_PTR(ret);
i915_gem_object_pin_pages(obj);
pinned = obj->pages_pin_count > 1;
ptr = ptr_unpack_bits(obj->mapping, has_type);
if (ptr && has_type != type) {
if (pinned) {
ret = -EBUSY;
goto err;
}
if (is_vmalloc_addr(ptr))
vunmap(ptr);
else
kunmap(kmap_to_page(ptr));
ptr = obj->mapping = NULL;
}
if (!ptr) {
ptr = i915_gem_object_map(obj, type);
if (!ptr) {
ret = -ENOMEM;
goto err;
}
obj->mapping = ptr_pack_bits(ptr, type);
}
return ptr;
err:
i915_gem_object_unpin_pages(obj);
return ERR_PTR(ret);
}
static void
i915_gem_object_retire__write(struct i915_gem_active *active,
struct drm_i915_gem_request *request)
{
struct drm_i915_gem_object *obj =
container_of(active, struct drm_i915_gem_object, last_write);
intel_fb_obj_flush(obj, true, ORIGIN_CS);
}
static void
i915_gem_object_retire__read(struct i915_gem_active *active,
struct drm_i915_gem_request *request)
{
int idx = request->engine->id;
struct drm_i915_gem_object *obj =
container_of(active, struct drm_i915_gem_object, last_read[idx]);
GEM_BUG_ON(!i915_gem_object_has_active_engine(obj, idx));
i915_gem_object_clear_active(obj, idx);
if (i915_gem_object_is_active(obj))
return;
/* Bump our place on the bound list to keep it roughly in LRU order
* so that we don't steal from recently used but inactive objects
* (unless we are forced to ofc!)
*/
if (obj->bind_count)
list_move_tail(&obj->global_list,
&request->i915->mm.bound_list);
i915_gem_object_put(obj);
}
static bool i915_context_is_banned(const struct i915_gem_context *ctx)
{
unsigned long elapsed;
if (ctx->hang_stats.banned)
return true;
elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
if (ctx->hang_stats.ban_period_seconds &&
elapsed <= ctx->hang_stats.ban_period_seconds) {
DRM_DEBUG("context hanging too fast, banning!\n");
return true;
}
return false;
}
static void i915_set_reset_status(struct i915_gem_context *ctx,
const bool guilty)
{
struct i915_ctx_hang_stats *hs = &ctx->hang_stats;
if (guilty) {
hs->banned = i915_context_is_banned(ctx);
hs->batch_active++;
hs->guilty_ts = get_seconds();
} else {
hs->batch_pending++;
}
}
struct drm_i915_gem_request *
i915_gem_find_active_request(struct intel_engine_cs *engine)
{
struct drm_i915_gem_request *request;
/* We are called by the error capture and reset at a random
* point in time. In particular, note that neither is crucially
* ordered with an interrupt. After a hang, the GPU is dead and we
* assume that no more writes can happen (we waited long enough for
* all writes that were in transaction to be flushed) - adding an
* extra delay for a recent interrupt is pointless. Hence, we do
* not need an engine->irq_seqno_barrier() before the seqno reads.
*/
list_for_each_entry(request, &engine->request_list, link) {
if (i915_gem_request_completed(request))
continue;
if (!i915_sw_fence_done(&request->submit))
break;
return request;
}
return NULL;
}
static void reset_request(struct drm_i915_gem_request *request)
{
void *vaddr = request->ring->vaddr;
u32 head;
/* As this request likely depends on state from the lost
* context, clear out all the user operations leaving the
* breadcrumb at the end (so we get the fence notifications).
*/
head = request->head;
if (request->postfix < head) {
memset(vaddr + head, 0, request->ring->size - head);
head = 0;
}
memset(vaddr + head, 0, request->postfix - head);
}
static void i915_gem_reset_engine(struct intel_engine_cs *engine)
{
struct drm_i915_gem_request *request;
struct i915_gem_context *incomplete_ctx;
bool ring_hung;
if (engine->irq_seqno_barrier)
engine->irq_seqno_barrier(engine);
request = i915_gem_find_active_request(engine);
if (!request)
return;
ring_hung = engine->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
if (engine->hangcheck.seqno != intel_engine_get_seqno(engine))
ring_hung = false;
i915_set_reset_status(request->ctx, ring_hung);
if (!ring_hung)
return;
DRM_DEBUG_DRIVER("resetting %s to restart from tail of request 0x%x\n",
engine->name, request->fence.seqno);
/* Setup the CS to resume from the breadcrumb of the hung request */
engine->reset_hw(engine, request);
/* Users of the default context do not rely on logical state
* preserved between batches. They have to emit full state on
* every batch and so it is safe to execute queued requests following
* the hang.
*
* Other contexts preserve state, now corrupt. We want to skip all
* queued requests that reference the corrupt context.
*/
incomplete_ctx = request->ctx;
if (i915_gem_context_is_default(incomplete_ctx))
return;
list_for_each_entry_continue(request, &engine->request_list, link)
if (request->ctx == incomplete_ctx)
reset_request(request);
}
void i915_gem_reset(struct drm_i915_private *dev_priv)
{
struct intel_engine_cs *engine;
i915_gem_retire_requests(dev_priv);
for_each_engine(engine, dev_priv)
i915_gem_reset_engine(engine);
i915_gem_restore_fences(&dev_priv->drm);
if (dev_priv->gt.awake) {
intel_sanitize_gt_powersave(dev_priv);
intel_enable_gt_powersave(dev_priv);
if (INTEL_GEN(dev_priv) >= 6)
gen6_rps_busy(dev_priv);
}
}
static void nop_submit_request(struct drm_i915_gem_request *request)
{
}
static void i915_gem_cleanup_engine(struct intel_engine_cs *engine)
{
engine->submit_request = nop_submit_request;
/* Mark all pending requests as complete so that any concurrent
* (lockless) lookup doesn't try and wait upon the request as we
* reset it.
*/
intel_engine_init_seqno(engine, engine->last_submitted_seqno);
/*
* Clear the execlists queue up before freeing the requests, as those
* are the ones that keep the context and ringbuffer backing objects
* pinned in place.
*/
if (i915.enable_execlists) {
spin_lock(&engine->execlist_lock);
INIT_LIST_HEAD(&engine->execlist_queue);
i915_gem_request_put(engine->execlist_port[0].request);
i915_gem_request_put(engine->execlist_port[1].request);
memset(engine->execlist_port, 0, sizeof(engine->execlist_port));
spin_unlock(&engine->execlist_lock);
}
engine->i915->gt.active_engines &= ~intel_engine_flag(engine);
}
void i915_gem_set_wedged(struct drm_i915_private *dev_priv)
{
struct intel_engine_cs *engine;
lockdep_assert_held(&dev_priv->drm.struct_mutex);
set_bit(I915_WEDGED, &dev_priv->gpu_error.flags);
i915_gem_context_lost(dev_priv);
for_each_engine(engine, dev_priv)
i915_gem_cleanup_engine(engine);
mod_delayed_work(dev_priv->wq, &dev_priv->gt.idle_work, 0);
i915_gem_retire_requests(dev_priv);
}
static void
i915_gem_retire_work_handler(struct work_struct *work)
{
struct drm_i915_private *dev_priv =
container_of(work, typeof(*dev_priv), gt.retire_work.work);
struct drm_device *dev = &dev_priv->drm;
/* Come back later if the device is busy... */
if (mutex_trylock(&dev->struct_mutex)) {
i915_gem_retire_requests(dev_priv);
mutex_unlock(&dev->struct_mutex);
}
/* Keep the retire handler running until we are finally idle.
* We do not need to do this test under locking as in the worst-case
* we queue the retire worker once too often.
*/
if (READ_ONCE(dev_priv->gt.awake)) {
i915_queue_hangcheck(dev_priv);
queue_delayed_work(dev_priv->wq,
&dev_priv->gt.retire_work,
round_jiffies_up_relative(HZ));
}
}
static void
i915_gem_idle_work_handler(struct work_struct *work)
{
struct drm_i915_private *dev_priv =
container_of(work, typeof(*dev_priv), gt.idle_work.work);
struct drm_device *dev = &dev_priv->drm;
struct intel_engine_cs *engine;
bool rearm_hangcheck;
if (!READ_ONCE(dev_priv->gt.awake))
return;
if (READ_ONCE(dev_priv->gt.active_engines))
return;
rearm_hangcheck =
cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
if (!mutex_trylock(&dev->struct_mutex)) {
/* Currently busy, come back later */
mod_delayed_work(dev_priv->wq,
&dev_priv->gt.idle_work,
msecs_to_jiffies(50));
goto out_rearm;
}
if (dev_priv->gt.active_engines)
goto out_unlock;
for_each_engine(engine, dev_priv)
i915_gem_batch_pool_fini(&engine->batch_pool);
GEM_BUG_ON(!dev_priv->gt.awake);
dev_priv->gt.awake = false;
rearm_hangcheck = false;
if (INTEL_GEN(dev_priv) >= 6)
gen6_rps_idle(dev_priv);
intel_runtime_pm_put(dev_priv);
out_unlock:
mutex_unlock(&dev->struct_mutex);
out_rearm:
if (rearm_hangcheck) {
GEM_BUG_ON(!dev_priv->gt.awake);
i915_queue_hangcheck(dev_priv);
}
}
void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file)
{
struct drm_i915_gem_object *obj = to_intel_bo(gem);
struct drm_i915_file_private *fpriv = file->driver_priv;
struct i915_vma *vma, *vn;
mutex_lock(&obj->base.dev->struct_mutex);
list_for_each_entry_safe(vma, vn, &obj->vma_list, obj_link)
if (vma->vm->file == fpriv)
i915_vma_close(vma);
mutex_unlock(&obj->base.dev->struct_mutex);
}
/**
* i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
* @dev: drm device pointer
* @data: ioctl data blob
* @file: drm file pointer
*
* Returns 0 if successful, else an error is returned with the remaining time in
* the timeout parameter.
* -ETIME: object is still busy after timeout
* -ERESTARTSYS: signal interrupted the wait
* -ENONENT: object doesn't exist
* Also possible, but rare:
* -EAGAIN: GPU wedged
* -ENOMEM: damn
* -ENODEV: Internal IRQ fail
* -E?: The add request failed
*
* The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
* non-zero timeout parameter the wait ioctl will wait for the given number of
* nanoseconds on an object becoming unbusy. Since the wait itself does so
* without holding struct_mutex the object may become re-busied before this
* function completes. A similar but shorter * race condition exists in the busy
* ioctl
*/
int
i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
{
struct drm_i915_gem_wait *args = data;
struct intel_rps_client *rps = to_rps_client(file);
struct drm_i915_gem_object *obj;
unsigned long active;
int idx, ret = 0;
if (args->flags != 0)
return -EINVAL;
obj = i915_gem_object_lookup(file, args->bo_handle);
if (!obj)
return -ENOENT;
active = __I915_BO_ACTIVE(obj);
for_each_active(active, idx) {
s64 *timeout = args->timeout_ns >= 0 ? &args->timeout_ns : NULL;
ret = i915_gem_active_wait_unlocked(&obj->last_read[idx],
I915_WAIT_INTERRUPTIBLE,
timeout, rps);
if (ret)
break;
}
i915_gem_object_put_unlocked(obj);
return ret;
}
static void __i915_vma_iounmap(struct i915_vma *vma)
{
GEM_BUG_ON(i915_vma_is_pinned(vma));
if (vma->iomap == NULL)
return;
io_mapping_unmap(vma->iomap);
vma->iomap = NULL;
}
int i915_vma_unbind(struct i915_vma *vma)
{
struct drm_i915_gem_object *obj = vma->obj;
unsigned long active;
int ret;
/* First wait upon any activity as retiring the request may
* have side-effects such as unpinning or even unbinding this vma.
*/
active = i915_vma_get_active(vma);
if (active) {
int idx;
/* When a closed VMA is retired, it is unbound - eek.
* In order to prevent it from being recursively closed,
* take a pin on the vma so that the second unbind is
* aborted.
*/
__i915_vma_pin(vma);
for_each_active(active, idx) {
ret = i915_gem_active_retire(&vma->last_read[idx],
&vma->vm->dev->struct_mutex);
if (ret)
break;
}
__i915_vma_unpin(vma);
if (ret)
return ret;
GEM_BUG_ON(i915_vma_is_active(vma));
}
if (i915_vma_is_pinned(vma))
return -EBUSY;
if (!drm_mm_node_allocated(&vma->node))
goto destroy;
GEM_BUG_ON(obj->bind_count == 0);
GEM_BUG_ON(!obj->pages);
if (i915_vma_is_map_and_fenceable(vma)) {
/* release the fence reg _after_ flushing */
ret = i915_vma_put_fence(vma);
if (ret)
return ret;
/* Force a pagefault for domain tracking on next user access */
i915_gem_release_mmap(obj);
__i915_vma_iounmap(vma);
vma->flags &= ~I915_VMA_CAN_FENCE;
}
if (likely(!vma->vm->closed)) {
trace_i915_vma_unbind(vma);
vma->vm->unbind_vma(vma);
}
vma->flags &= ~(I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND);
drm_mm_remove_node(&vma->node);
list_move_tail(&vma->vm_link, &vma->vm->unbound_list);
if (vma->pages != obj->pages) {
GEM_BUG_ON(!vma->pages);
sg_free_table(vma->pages);
kfree(vma->pages);
}
vma->pages = NULL;
/* Since the unbound list is global, only move to that list if
* no more VMAs exist. */
if (--obj->bind_count == 0)
list_move_tail(&obj->global_list,
&to_i915(obj->base.dev)->mm.unbound_list);
/* And finally now the object is completely decoupled from this vma,
* we can drop its hold on the backing storage and allow it to be
* reaped by the shrinker.
*/
i915_gem_object_unpin_pages(obj);
destroy:
if (unlikely(i915_vma_is_closed(vma)))
i915_vma_destroy(vma);
return 0;
}
int i915_gem_wait_for_idle(struct drm_i915_private *dev_priv,
unsigned int flags)
{
struct intel_engine_cs *engine;
int ret;
for_each_engine(engine, dev_priv) {
if (engine->last_context == NULL)
continue;
ret = intel_engine_idle(engine, flags);
if (ret)
return ret;
}
return 0;
}
static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
unsigned long cache_level)
{
struct drm_mm_node *gtt_space = &vma->node;
struct drm_mm_node *other;
/*
* On some machines we have to be careful when putting differing types
* of snoopable memory together to avoid the prefetcher crossing memory
* domains and dying. During vm initialisation, we decide whether or not
* these constraints apply and set the drm_mm.color_adjust
* appropriately.
*/
if (vma->vm->mm.color_adjust == NULL)
return true;
if (!drm_mm_node_allocated(gtt_space))
return true;
if (list_empty(&gtt_space->node_list))
return true;
other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
if (other->allocated && !other->hole_follows && other->color != cache_level)
return false;
other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
return false;
return true;
}
/**
* i915_vma_insert - finds a slot for the vma in its address space
* @vma: the vma
* @size: requested size in bytes (can be larger than the VMA)
* @alignment: required alignment
* @flags: mask of PIN_* flags to use
*
* First we try to allocate some free space that meets the requirements for
* the VMA. Failiing that, if the flags permit, it will evict an old VMA,
* preferrably the oldest idle entry to make room for the new VMA.
*
* Returns:
* 0 on success, negative error code otherwise.
*/
static int
i915_vma_insert(struct i915_vma *vma, u64 size, u64 alignment, u64 flags)
{
struct drm_i915_private *dev_priv = to_i915(vma->vm->dev);
struct drm_i915_gem_object *obj = vma->obj;
u64 start, end;
int ret;
GEM_BUG_ON(vma->flags & (I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND));
GEM_BUG_ON(drm_mm_node_allocated(&vma->node));
size = max(size, vma->size);
if (flags & PIN_MAPPABLE)
size = i915_gem_get_ggtt_size(dev_priv, size,
i915_gem_object_get_tiling(obj));
alignment = max(max(alignment, vma->display_alignment),
i915_gem_get_ggtt_alignment(dev_priv, size,
i915_gem_object_get_tiling(obj),
flags & PIN_MAPPABLE));
start = flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
end = vma->vm->total;
if (flags & PIN_MAPPABLE)
end = min_t(u64, end, dev_priv->ggtt.mappable_end);
if (flags & PIN_ZONE_4G)
end = min_t(u64, end, (1ULL << 32) - PAGE_SIZE);
/* If binding the object/GGTT view requires more space than the entire
* aperture has, reject it early before evicting everything in a vain
* attempt to find space.
*/
if (size > end) {
DRM_DEBUG("Attempting to bind an object larger than the aperture: request=%llu [object=%zd] > %s aperture=%llu\n",
size, obj->base.size,
flags & PIN_MAPPABLE ? "mappable" : "total",
end);
return -E2BIG;
}
ret = i915_gem_object_get_pages(obj);
if (ret)
return ret;
i915_gem_object_pin_pages(obj);
if (flags & PIN_OFFSET_FIXED) {
u64 offset = flags & PIN_OFFSET_MASK;
if (offset & (alignment - 1) || offset > end - size) {
ret = -EINVAL;
goto err_unpin;
}
vma->node.start = offset;
vma->node.size = size;
vma->node.color = obj->cache_level;
ret = drm_mm_reserve_node(&vma->vm->mm, &vma->node);
if (ret) {
ret = i915_gem_evict_for_vma(vma);
if (ret == 0)
ret = drm_mm_reserve_node(&vma->vm->mm, &vma->node);
if (ret)
goto err_unpin;
}
} else {
u32 search_flag, alloc_flag;
if (flags & PIN_HIGH) {
search_flag = DRM_MM_SEARCH_BELOW;
alloc_flag = DRM_MM_CREATE_TOP;
} else {
search_flag = DRM_MM_SEARCH_DEFAULT;
alloc_flag = DRM_MM_CREATE_DEFAULT;
}
/* We only allocate in PAGE_SIZE/GTT_PAGE_SIZE (4096) chunks,
* so we know that we always have a minimum alignment of 4096.
* The drm_mm range manager is optimised to return results
* with zero alignment, so where possible use the optimal
* path.
*/
if (alignment <= 4096)
alignment = 0;
search_free:
ret = drm_mm_insert_node_in_range_generic(&vma->vm->mm,
&vma->node,
size, alignment,
obj->cache_level,
start, end,
search_flag,
alloc_flag);
if (ret) {
ret = i915_gem_evict_something(vma->vm, size, alignment,
obj->cache_level,
start, end,
flags);
if (ret == 0)
goto search_free;
goto err_unpin;
}
}
GEM_BUG_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level));
list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
obj->bind_count++;
return 0;
err_unpin:
i915_gem_object_unpin_pages(obj);
return ret;
}
bool
i915_gem_clflush_object(struct drm_i915_gem_object *obj,
bool force)
{
/* If we don't have a page list set up, then we're not pinned
* to GPU, and we can ignore the cache flush because it'll happen
* again at bind time.
*/
if (obj->pages == NULL)
return false;
/*
* Stolen memory is always coherent with the GPU as it is explicitly
* marked as wc by the system, or the system is cache-coherent.
*/
if (obj->stolen || obj->phys_handle)
return false;
/* If the GPU is snooping the contents of the CPU cache,
* we do not need to manually clear the CPU cache lines. However,
* the caches are only snooped when the render cache is
* flushed/invalidated. As we always have to emit invalidations
* and flushes when moving into and out of the RENDER domain, correct
* snooping behaviour occurs naturally as the result of our domain
* tracking.
*/
if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
obj->cache_dirty = true;
return false;
}
trace_i915_gem_object_clflush(obj);
drm_clflush_sg(obj->pages);
obj->cache_dirty = false;
return true;
}
/** Flushes the GTT write domain for the object if it's dirty. */
static void
i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
{
struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
return;
/* No actual flushing is required for the GTT write domain. Writes
* to it "immediately" go to main memory as far as we know, so there's
* no chipset flush. It also doesn't land in render cache.
*
* However, we do have to enforce the order so that all writes through
* the GTT land before any writes to the device, such as updates to
* the GATT itself.
*
* We also have to wait a bit for the writes to land from the GTT.
* An uncached read (i.e. mmio) seems to be ideal for the round-trip
* timing. This issue has only been observed when switching quickly
* between GTT writes and CPU reads from inside the kernel on recent hw,
* and it appears to only affect discrete GTT blocks (i.e. on LLC
* system agents we cannot reproduce this behaviour).
*/
wmb();
if (INTEL_GEN(dev_priv) >= 6 && !HAS_LLC(dev_priv))
POSTING_READ(RING_ACTHD(dev_priv->engine[RCS].mmio_base));
intel_fb_obj_flush(obj, false, write_origin(obj, I915_GEM_DOMAIN_GTT));
obj->base.write_domain = 0;
trace_i915_gem_object_change_domain(obj,
obj->base.read_domains,
I915_GEM_DOMAIN_GTT);
}
/** Flushes the CPU write domain for the object if it's dirty. */
static void
i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
{
if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
return;
if (i915_gem_clflush_object(obj, obj->pin_display))
i915_gem_chipset_flush(to_i915(obj->base.dev));
intel_fb_obj_flush(obj, false, ORIGIN_CPU);
obj->base.write_domain = 0;
trace_i915_gem_object_change_domain(obj,
obj->base.read_domains,
I915_GEM_DOMAIN_CPU);
}
static void i915_gem_object_bump_inactive_ggtt(struct drm_i915_gem_object *obj)
{
struct i915_vma *vma;
list_for_each_entry(vma, &obj->vma_list, obj_link) {
if (!i915_vma_is_ggtt(vma))
continue;
if (i915_vma_is_active(vma))
continue;
if (!drm_mm_node_allocated(&vma->node))
continue;
list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
}
}
/**
* Moves a single object to the GTT read, and possibly write domain.
* @obj: object to act on
* @write: ask for write access or read only
*
* This function returns when the move is complete, including waiting on
* flushes to occur.
*/
int
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
{
uint32_t old_write_domain, old_read_domains;
int ret;
ret = i915_gem_object_wait_rendering(obj, !write);
if (ret)
return ret;
if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
return 0;
/* Flush and acquire obj->pages so that we are coherent through
* direct access in memory with previous cached writes through
* shmemfs and that our cache domain tracking remains valid.
* For example, if the obj->filp was moved to swap without us
* being notified and releasing the pages, we would mistakenly
* continue to assume that the obj remained out of the CPU cached
* domain.
*/
ret = i915_gem_object_get_pages(obj);
if (ret)
return ret;
i915_gem_object_flush_cpu_write_domain(obj);
/* Serialise direct access to this object with the barriers for
* coherent writes from the GPU, by effectively invalidating the
* GTT domain upon first access.
*/
if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
mb();
old_write_domain = obj->base.write_domain;
old_read_domains = obj->base.read_domains;
/* It should now be out of any other write domains, and we can update
* the domain values for our changes.
*/
BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
if (write) {
obj->base.read_domains = I915_GEM_DOMAIN_GTT;
obj->base.write_domain = I915_GEM_DOMAIN_GTT;
obj->dirty = 1;
}
trace_i915_gem_object_change_domain(obj,
old_read_domains,
old_write_domain);
/* And bump the LRU for this access */
i915_gem_object_bump_inactive_ggtt(obj);
return 0;
}
/**
* Changes the cache-level of an object across all VMA.
* @obj: object to act on
* @cache_level: new cache level to set for the object
*
* After this function returns, the object will be in the new cache-level
* across all GTT and the contents of the backing storage will be coherent,
* with respect to the new cache-level. In order to keep the backing storage
* coherent for all users, we only allow a single cache level to be set
* globally on the object and prevent it from being changed whilst the
* hardware is reading from the object. That is if the object is currently
* on the scanout it will be set to uncached (or equivalent display
* cache coherency) and all non-MOCS GPU access will also be uncached so
* that all direct access to the scanout remains coherent.
*/
int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
enum i915_cache_level cache_level)
{
struct i915_vma *vma;
int ret = 0;
if (obj->cache_level == cache_level)
goto out;
/* Inspect the list of currently bound VMA and unbind any that would
* be invalid given the new cache-level. This is principally to
* catch the issue of the CS prefetch crossing page boundaries and
* reading an invalid PTE on older architectures.
*/
restart:
list_for_each_entry(vma, &obj->vma_list, obj_link) {
if (!drm_mm_node_allocated(&vma->node))
continue;
if (i915_vma_is_pinned(vma)) {
DRM_DEBUG("can not change the cache level of pinned objects\n");
return -EBUSY;
}
if (i915_gem_valid_gtt_space(vma, cache_level))
continue;
ret = i915_vma_unbind(vma);
if (ret)
return ret;
/* As unbinding may affect other elements in the
* obj->vma_list (due to side-effects from retiring
* an active vma), play safe and restart the iterator.
*/
goto restart;
}
/* We can reuse the existing drm_mm nodes but need to change the
* cache-level on the PTE. We could simply unbind them all and
* rebind with the correct cache-level on next use. However since
* we already have a valid slot, dma mapping, pages etc, we may as
* rewrite the PTE in the belief that doing so tramples upon less
* state and so involves less work.
*/
if (obj->bind_count) {
/* Before we change the PTE, the GPU must not be accessing it.
* If we wait upon the object, we know that all the bound
* VMA are no longer active.
*/
ret = i915_gem_object_wait_rendering(obj, false);
if (ret)
return ret;
if (!HAS_LLC(obj->base.dev) && cache_level != I915_CACHE_NONE) {
/* Access to snoopable pages through the GTT is
* incoherent and on some machines causes a hard
* lockup. Relinquish the CPU mmaping to force
* userspace to refault in the pages and we can
* then double check if the GTT mapping is still
* valid for that pointer access.
*/
i915_gem_release_mmap(obj);
/* As we no longer need a fence for GTT access,
* we can relinquish it now (and so prevent having
* to steal a fence from someone else on the next
* fence request). Note GPU activity would have
* dropped the fence as all snoopable access is
* supposed to be linear.
*/
list_for_each_entry(vma, &obj->vma_list, obj_link) {
ret = i915_vma_put_fence(vma);
if (ret)
return ret;
}
} else {
/* We either have incoherent backing store and
* so no GTT access or the architecture is fully
* coherent. In such cases, existing GTT mmaps
* ignore the cache bit in the PTE and we can
* rewrite it without confusing the GPU or having
* to force userspace to fault back in its mmaps.
*/
}
list_for_each_entry(vma, &obj->vma_list, obj_link) {
if (!drm_mm_node_allocated(&vma->node))
continue;
ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
if (ret)
return ret;
}
}
list_for_each_entry(vma, &obj->vma_list, obj_link)
vma->node.color = cache_level;
obj->cache_level = cache_level;
out:
/* Flush the dirty CPU caches to the backing storage so that the
* object is now coherent at its new cache level (with respect
* to the access domain).
*/
if (obj->cache_dirty && cpu_write_needs_clflush(obj)) {
if (i915_gem_clflush_object(obj, true))
i915_gem_chipset_flush(to_i915(obj->base.dev));
}
return 0;
}
int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
struct drm_file *file)
{
struct drm_i915_gem_caching *args = data;
struct drm_i915_gem_object *obj;
obj = i915_gem_object_lookup(file, args->handle);
if (!obj)
return -ENOENT;
switch (obj->cache_level) {
case I915_CACHE_LLC:
case I915_CACHE_L3_LLC:
args->caching = I915_CACHING_CACHED;
break;
case I915_CACHE_WT:
args->caching = I915_CACHING_DISPLAY;
break;
default:
args->caching = I915_CACHING_NONE;
break;
}
i915_gem_object_put_unlocked(obj);
return 0;
}
int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
struct drm_file *file)
{
struct drm_i915_private *dev_priv = to_i915(dev);
struct drm_i915_gem_caching *args = data;
struct drm_i915_gem_object *obj;
enum i915_cache_level level;
int ret;
switch (args->caching) {
case I915_CACHING_NONE:
level = I915_CACHE_NONE;
break;
case I915_CACHING_CACHED:
/*
* Due to a HW issue on BXT A stepping, GPU stores via a
* snooped mapping may leave stale data in a corresponding CPU
* cacheline, whereas normally such cachelines would get
* invalidated.
*/
if (!HAS_LLC(dev) && !HAS_SNOOP(dev))
return -ENODEV;
level = I915_CACHE_LLC;
break;
case I915_CACHING_DISPLAY:
level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
break;
default:
return -EINVAL;
}
intel_runtime_pm_get(dev_priv);
ret = i915_mutex_lock_interruptible(dev);
if (ret)
goto rpm_put;
obj = i915_gem_object_lookup(file, args->handle);
if (!obj) {
ret = -ENOENT;
goto unlock;
}
ret = i915_gem_object_set_cache_level(obj, level);
i915_gem_object_put(obj);
unlock:
mutex_unlock(&dev->struct_mutex);
rpm_put:
intel_runtime_pm_put(dev_priv);
return ret;
}
/*
* Prepare buffer for display plane (scanout, cursors, etc).
* Can be called from an uninterruptible phase (modesetting) and allows
* any flushes to be pipelined (for pageflips).
*/
struct i915_vma *
i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
u32 alignment,
const struct i915_ggtt_view *view)
{
struct i915_vma *vma;
u32 old_read_domains, old_write_domain;
int ret;
/* Mark the pin_display early so that we account for the
* display coherency whilst setting up the cache domains.
*/
obj->pin_display++;
/* The display engine is not coherent with the LLC cache on gen6. As
* a result, we make sure that the pinning that is about to occur is
* done with uncached PTEs. This is lowest common denominator for all
* chipsets.
*
* However for gen6+, we could do better by using the GFDT bit instead
* of uncaching, which would allow us to flush all the LLC-cached data
* with that bit in the PTE to main memory with just one PIPE_CONTROL.
*/
ret = i915_gem_object_set_cache_level(obj,
HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
if (ret) {
vma = ERR_PTR(ret);
goto err_unpin_display;
}
/* As the user may map the buffer once pinned in the display plane
* (e.g. libkms for the bootup splash), we have to ensure that we
* always use map_and_fenceable for all scanout buffers. However,
* it may simply be too big to fit into mappable, in which case
* put it anyway and hope that userspace can cope (but always first
* try to preserve the existing ABI).
*/
vma = ERR_PTR(-ENOSPC);
if (view->type == I915_GGTT_VIEW_NORMAL)
vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment,
PIN_MAPPABLE | PIN_NONBLOCK);
if (IS_ERR(vma))
vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment, 0);
if (IS_ERR(vma))
goto err_unpin_display;
vma->display_alignment = max_t(u64, vma->display_alignment, alignment);
WARN_ON(obj->pin_display > i915_vma_pin_count(vma));
i915_gem_object_flush_cpu_write_domain(obj);
old_write_domain = obj->base.write_domain;
old_read_domains = obj->base.read_domains;
/* It should now be out of any other write domains, and we can update
* the domain values for our changes.
*/
obj->base.write_domain = 0;
obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
trace_i915_gem_object_change_domain(obj,
old_read_domains,
old_write_domain);
return vma;
err_unpin_display:
obj->pin_display--;
return vma;
}
void
i915_gem_object_unpin_from_display_plane(struct i915_vma *vma)
{
if (WARN_ON(vma->obj->pin_display == 0))
return;
if (--vma->obj->pin_display == 0)
vma->display_alignment = 0;
/* Bump the LRU to try and avoid premature eviction whilst flipping */
if (!i915_vma_is_active(vma))
list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
i915_vma_unpin(vma);
WARN_ON(vma->obj->pin_display > i915_vma_pin_count(vma));
}
/**
* Moves a single object to the CPU read, and possibly write domain.
* @obj: object to act on
* @write: requesting write or read-only access
*
* This function returns when the move is complete, including waiting on
* flushes to occur.
*/
int
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
{
uint32_t old_write_domain, old_read_domains;
int ret;
ret = i915_gem_object_wait_rendering(obj, !write);
if (ret)
return ret;
if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
return 0;
i915_gem_object_flush_gtt_write_domain(obj);
old_write_domain = obj->base.write_domain;
old_read_domains = obj->base.read_domains;
/* Flush the CPU cache if it's still invalid. */
if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
i915_gem_clflush_object(obj, false);
obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
}
/* It should now be out of any other write domains, and we can update
* the domain values for our changes.
*/
BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
/* If we're writing through the CPU, then the GPU read domains will
* need to be invalidated at next use.
*/
if (write) {
obj->base.read_domains = I915_GEM_DOMAIN_CPU;
obj->base.write_domain = I915_GEM_DOMAIN_CPU;
}
trace_i915_gem_object_change_domain(obj,
old_read_domains,
old_write_domain);
return 0;
}
/* Throttle our rendering by waiting until the ring has completed our requests
* emitted over 20 msec ago.
*
* Note that if we were to use the current jiffies each time around the loop,
* we wouldn't escape the function with any frames outstanding if the time to
* render a frame was over 20ms.
*
* This should get us reasonable parallelism between CPU and GPU but also
* relatively low latency when blocking on a particular request to finish.
*/
static int
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
{
struct drm_i915_private *dev_priv = to_i915(dev);
struct drm_i915_file_private *file_priv = file->driver_priv;
unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
struct drm_i915_gem_request *request, *target = NULL;
int ret;
ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
if (ret)
return ret;
/* ABI: return -EIO if already wedged */
if (i915_terminally_wedged(&dev_priv->gpu_error))
return -EIO;
spin_lock(&file_priv->mm.lock);
list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
if (time_after_eq(request->emitted_jiffies, recent_enough))
break;
/*
* Note that the request might not have been submitted yet.
* In which case emitted_jiffies will be zero.
*/
if (!request->emitted_jiffies)
continue;
target = request;
}
if (target)
i915_gem_request_get(target);
spin_unlock(&file_priv->mm.lock);
if (target == NULL)
return 0;
ret = i915_wait_request(target, I915_WAIT_INTERRUPTIBLE, NULL, NULL);
i915_gem_request_put(target);
return ret;
}
static bool
i915_vma_misplaced(struct i915_vma *vma, u64 size, u64 alignment, u64 flags)
{
if (!drm_mm_node_allocated(&vma->node))
return false;
if (vma->node.size < size)
return true;
if (alignment && vma->node.start & (alignment - 1))
return true;
if (flags & PIN_MAPPABLE && !i915_vma_is_map_and_fenceable(vma))
return true;
if (flags & PIN_OFFSET_BIAS &&
vma->node.start < (flags & PIN_OFFSET_MASK))
return true;
if (flags & PIN_OFFSET_FIXED &&
vma->node.start != (flags & PIN_OFFSET_MASK))
return true;
return false;
}
void __i915_vma_set_map_and_fenceable(struct i915_vma *vma)
{
struct drm_i915_gem_object *obj = vma->obj;
struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
bool mappable, fenceable;
u32 fence_size, fence_alignment;
fence_size = i915_gem_get_ggtt_size(dev_priv,
vma->size,
i915_gem_object_get_tiling(obj));
fence_alignment = i915_gem_get_ggtt_alignment(dev_priv,
vma->size,
i915_gem_object_get_tiling(obj),
true);
fenceable = (vma->node.size == fence_size &&
(vma->node.start & (fence_alignment - 1)) == 0);
mappable = (vma->node.start + fence_size <=
dev_priv->ggtt.mappable_end);
if (mappable && fenceable)
vma->flags |= I915_VMA_CAN_FENCE;
else
vma->flags &= ~I915_VMA_CAN_FENCE;
}
int __i915_vma_do_pin(struct i915_vma *vma,
u64 size, u64 alignment, u64 flags)
{
unsigned int bound = vma->flags;
int ret;
GEM_BUG_ON((flags & (PIN_GLOBAL | PIN_USER)) == 0);
GEM_BUG_ON((flags & PIN_GLOBAL) && !i915_vma_is_ggtt(vma));
if (WARN_ON(bound & I915_VMA_PIN_OVERFLOW)) {
ret = -EBUSY;
goto err;
}
if ((bound & I915_VMA_BIND_MASK) == 0) {
ret = i915_vma_insert(vma, size, alignment, flags);
if (ret)
goto err;
}
ret = i915_vma_bind(vma, vma->obj->cache_level, flags);
if (ret)
goto err;
if ((bound ^ vma->flags) & I915_VMA_GLOBAL_BIND)
__i915_vma_set_map_and_fenceable(vma);
GEM_BUG_ON(i915_vma_misplaced(vma, size, alignment, flags));
return 0;
err:
__i915_vma_unpin(vma);
return ret;
}
struct i915_vma *
i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
const struct i915_ggtt_view *view,
u64 size,
u64 alignment,
u64 flags)
{
struct i915_address_space *vm = &to_i915(obj->base.dev)->ggtt.base;
struct i915_vma *vma;
int ret;
vma = i915_gem_obj_lookup_or_create_vma(obj, vm, view);
if (IS_ERR(vma))
return vma;
if (i915_vma_misplaced(vma, size, alignment, flags)) {
if (flags & PIN_NONBLOCK &&
(i915_vma_is_pinned(vma) || i915_vma_is_active(vma)))
return ERR_PTR(-ENOSPC);
WARN(i915_vma_is_pinned(vma),
"bo is already pinned in ggtt with incorrect alignment:"
" offset=%08x, req.alignment=%llx,"
" req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n",
i915_ggtt_offset(vma), alignment,
!!(flags & PIN_MAPPABLE),
i915_vma_is_map_and_fenceable(vma));
ret = i915_vma_unbind(vma);
if (ret)
return ERR_PTR(ret);
}
ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
if (ret)
return ERR_PTR(ret);
return vma;
}
static __always_inline unsigned int __busy_read_flag(unsigned int id)
{
/* Note that we could alias engines in the execbuf API, but
* that would be very unwise as it prevents userspace from
* fine control over engine selection. Ahem.
*
* This should be something like EXEC_MAX_ENGINE instead of
* I915_NUM_ENGINES.
*/
BUILD_BUG_ON(I915_NUM_ENGINES > 16);
return 0x10000 << id;
}
static __always_inline unsigned int __busy_write_id(unsigned int id)
{
/* The uABI guarantees an active writer is also amongst the read
* engines. This would be true if we accessed the activity tracking
* under the lock, but as we perform the lookup of the object and
* its activity locklessly we can not guarantee that the last_write
* being active implies that we have set the same engine flag from
* last_read - hence we always set both read and write busy for
* last_write.
*/
return id | __busy_read_flag(id);
}
static __always_inline unsigned int
__busy_set_if_active(const struct i915_gem_active *active,
unsigned int (*flag)(unsigned int id))
{
struct drm_i915_gem_request *request;
request = rcu_dereference(active->request);
if (!request || i915_gem_request_completed(request))
return 0;
/* This is racy. See __i915_gem_active_get_rcu() for an in detail
* discussion of how to handle the race correctly, but for reporting
* the busy state we err on the side of potentially reporting the
* wrong engine as being busy (but we guarantee that the result
* is at least self-consistent).
*
* As we use SLAB_DESTROY_BY_RCU, the request may be reallocated
* whilst we are inspecting it, even under the RCU read lock as we are.
* This means that there is a small window for the engine and/or the
* seqno to have been overwritten. The seqno will always be in the
* future compared to the intended, and so we know that if that
* seqno is idle (on whatever engine) our request is idle and the
* return 0 above is correct.
*
* The issue is that if the engine is switched, it is just as likely
* to report that it is busy (but since the switch happened, we know
* the request should be idle). So there is a small chance that a busy
* result is actually the wrong engine.
*
* So why don't we care?
*
* For starters, the busy ioctl is a heuristic that is by definition
* racy. Even with perfect serialisation in the driver, the hardware
* state is constantly advancing - the state we report to the user
* is stale.
*
* The critical information for the busy-ioctl is whether the object
* is idle as userspace relies on that to detect whether its next
* access will stall, or if it has missed submitting commands to
* the hardware allowing the GPU to stall. We never generate a
* false-positive for idleness, thus busy-ioctl is reliable at the
* most fundamental level, and we maintain the guarantee that a
* busy object left to itself will eventually become idle (and stay
* idle!).
*
* We allow ourselves the leeway of potentially misreporting the busy
* state because that is an optimisation heuristic that is constantly
* in flux. Being quickly able to detect the busy/idle state is much
* more important than accurate logging of exactly which engines were
* busy.
*
* For accuracy in reporting the engine, we could use
*
* result = 0;
* request = __i915_gem_active_get_rcu(active);
* if (request) {
* if (!i915_gem_request_completed(request))
* result = flag(request->engine->exec_id);
* i915_gem_request_put(request);
* }
*
* but that still remains susceptible to both hardware and userspace
* races. So we accept making the result of that race slightly worse,
* given the rarity of the race and its low impact on the result.
*/
return flag(READ_ONCE(request->engine->exec_id));
}
static __always_inline unsigned int
busy_check_reader(const struct i915_gem_active *active)
{
return __busy_set_if_active(active, __busy_read_flag);
}
static __always_inline unsigned int
busy_check_writer(const struct i915_gem_active *active)
{
return __busy_set_if_active(active, __busy_write_id);
}
int
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
struct drm_file *file)
{
struct drm_i915_gem_busy *args = data;
struct drm_i915_gem_object *obj;
unsigned long active;
obj = i915_gem_object_lookup(file, args->handle);
if (!obj)
return -ENOENT;
args->busy = 0;
active = __I915_BO_ACTIVE(obj);
if (active) {
int idx;
/* Yes, the lookups are intentionally racy.
*
* First, we cannot simply rely on __I915_BO_ACTIVE. We have
* to regard the value as stale and as our ABI guarantees
* forward progress, we confirm the status of each active
* request with the hardware.
*
* Even though we guard the pointer lookup by RCU, that only
* guarantees that the pointer and its contents remain
* dereferencable and does *not* mean that the request we
* have is the same as the one being tracked by the object.
*
* Consider that we lookup the request just as it is being
* retired and freed. We take a local copy of the pointer,
* but before we add its engine into the busy set, the other
* thread reallocates it and assigns it to a task on another
* engine with a fresh and incomplete seqno. Guarding against
* that requires careful serialisation and reference counting,
* i.e. using __i915_gem_active_get_request_rcu(). We don't,
* instead we expect that if the result is busy, which engines
* are busy is not completely reliable - we only guarantee
* that the object was busy.
*/
rcu_read_lock();
for_each_active(active, idx)
args->busy |= busy_check_reader(&obj->last_read[idx]);
/* For ABI sanity, we only care that the write engine is in
* the set of read engines. This should be ensured by the
* ordering of setting last_read/last_write in
* i915_vma_move_to_active(), and then in reverse in retire.
* However, for good measure, we always report the last_write
* request as a busy read as well as being a busy write.
*
* We don't care that the set of active read/write engines
* may change during construction of the result, as it is
* equally liable to change before userspace can inspect
* the result.
*/
args->busy |= busy_check_writer(&obj->last_write);
rcu_read_unlock();
}
i915_gem_object_put_unlocked(obj);
return 0;
}
int
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
struct drm_file *file_priv)
{
return i915_gem_ring_throttle(dev, file_priv);
}
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
struct drm_file *file_priv)
{
struct drm_i915_private *dev_priv = to_i915(dev);
struct drm_i915_gem_madvise *args = data;
struct drm_i915_gem_object *obj;
int ret;
switch (args->madv) {
case I915_MADV_DONTNEED:
case I915_MADV_WILLNEED:
break;
default:
return -EINVAL;
}
ret = i915_mutex_lock_interruptible(dev);
if (ret)
return ret;
obj = i915_gem_object_lookup(file_priv, args->handle);
if (!obj) {
ret = -ENOENT;
goto unlock;
}
if (obj->pages &&
i915_gem_object_is_tiled(obj) &&
dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
if (obj->madv == I915_MADV_WILLNEED)
i915_gem_object_unpin_pages(obj);
if (args->madv == I915_MADV_WILLNEED)
i915_gem_object_pin_pages(obj);
}
if (obj->madv != __I915_MADV_PURGED)
obj->madv = args->madv;
/* if the object is no longer attached, discard its backing storage */
if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
i915_gem_object_truncate(obj);
args->retained = obj->madv != __I915_MADV_PURGED;
i915_gem_object_put(obj);
unlock:
mutex_unlock(&dev->struct_mutex);
return ret;
}
void i915_gem_object_init(struct drm_i915_gem_object *obj,
const struct drm_i915_gem_object_ops *ops)
{
int i;
INIT_LIST_HEAD(&obj->global_list);
for (i = 0; i < I915_NUM_ENGINES; i++)
init_request_active(&obj->last_read[i],
i915_gem_object_retire__read);
init_request_active(&obj->last_write,
i915_gem_object_retire__write);
INIT_LIST_HEAD(&obj->obj_exec_link);
INIT_LIST_HEAD(&obj->vma_list);
INIT_LIST_HEAD(&obj->batch_pool_link);
obj->ops = ops;
obj->frontbuffer_ggtt_origin = ORIGIN_GTT;
obj->madv = I915_MADV_WILLNEED;
i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
}
static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
.flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE,
.get_pages = i915_gem_object_get_pages_gtt,
.put_pages = i915_gem_object_put_pages_gtt,
};
struct drm_i915_gem_object *i915_gem_object_create(struct drm_device *dev,
size_t size)
{
struct drm_i915_gem_object *obj;
struct address_space *mapping;
gfp_t mask;
int ret;
obj = i915_gem_object_alloc(dev);
if (obj == NULL)
return ERR_PTR(-ENOMEM);
ret = drm_gem_object_init(dev, &obj->base, size);
if (ret)
goto fail;
mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
/* 965gm cannot relocate objects above 4GiB. */
mask &= ~__GFP_HIGHMEM;
mask |= __GFP_DMA32;
}
mapping = obj->base.filp->f_mapping;
mapping_set_gfp_mask(mapping, mask);
i915_gem_object_init(obj, &i915_gem_object_ops);
obj->base.write_domain = I915_GEM_DOMAIN_CPU;
obj->base.read_domains = I915_GEM_DOMAIN_CPU;
if (HAS_LLC(dev)) {
/* On some devices, we can have the GPU use the LLC (the CPU
* cache) for about a 10% performance improvement
* compared to uncached. Graphics requests other than
* display scanout are coherent with the CPU in
* accessing this cache. This means in this mode we
* don't need to clflush on the CPU side, and on the
* GPU side we only need to flush internal caches to
* get data visible to the CPU.
*
* However, we maintain the display planes as UC, and so
* need to rebind when first used as such.
*/
obj->cache_level = I915_CACHE_LLC;
} else
obj->cache_level = I915_CACHE_NONE;
trace_i915_gem_object_create(obj);
return obj;
fail:
i915_gem_object_free(obj);
return ERR_PTR(ret);
}
static bool discard_backing_storage(struct drm_i915_gem_object *obj)
{
/* If we are the last user of the backing storage (be it shmemfs
* pages or stolen etc), we know that the pages are going to be
* immediately released. In this case, we can then skip copying
* back the contents from the GPU.
*/
if (obj->madv != I915_MADV_WILLNEED)
return false;
if (obj->base.filp == NULL)
return true;
/* At first glance, this looks racy, but then again so would be
* userspace racing mmap against close. However, the first external
* reference to the filp can only be obtained through the
* i915_gem_mmap_ioctl() which safeguards us against the user
* acquiring such a reference whilst we are in the middle of
* freeing the object.
*/
return atomic_long_read(&obj->base.filp->f_count) == 1;
}
void i915_gem_free_object(struct drm_gem_object *gem_obj)
{
struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
struct drm_device *dev = obj->base.dev;
struct drm_i915_private *dev_priv = to_i915(dev);
struct i915_vma *vma, *next;
intel_runtime_pm_get(dev_priv);
trace_i915_gem_object_destroy(obj);
/* All file-owned VMA should have been released by this point through
* i915_gem_close_object(), or earlier by i915_gem_context_close().
* However, the object may also be bound into the global GTT (e.g.
* older GPUs without per-process support, or for direct access through
* the GTT either for the user or for scanout). Those VMA still need to
* unbound now.
*/
list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link) {
GEM_BUG_ON(!i915_vma_is_ggtt(vma));
GEM_BUG_ON(i915_vma_is_active(vma));
vma->flags &= ~I915_VMA_PIN_MASK;
i915_vma_close(vma);
}
GEM_BUG_ON(obj->bind_count);
/* Stolen objects don't hold a ref, but do hold pin count. Fix that up
* before progressing. */
if (obj->stolen)
i915_gem_object_unpin_pages(obj);
WARN_ON(atomic_read(&obj->frontbuffer_bits));
if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
i915_gem_object_is_tiled(obj))
i915_gem_object_unpin_pages(obj);
if (WARN_ON(obj->pages_pin_count))
obj->pages_pin_count = 0;
if (discard_backing_storage(obj))
obj->madv = I915_MADV_DONTNEED;
i915_gem_object_put_pages(obj);
BUG_ON(obj->pages);
if (obj->base.import_attach)
drm_prime_gem_destroy(&obj->base, NULL);
if (obj->ops->release)
obj->ops->release(obj);
drm_gem_object_release(&obj->base);
i915_gem_info_remove_obj(dev_priv, obj->base.size);
kfree(obj->bit_17);
i915_gem_object_free(obj);
intel_runtime_pm_put(dev_priv);
}
int i915_gem_suspend(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = to_i915(dev);
int ret;
intel_suspend_gt_powersave(dev_priv);
mutex_lock(&dev->struct_mutex);
/* We have to flush all the executing contexts to main memory so
* that they can saved in the hibernation image. To ensure the last
* context image is coherent, we have to switch away from it. That
* leaves the dev_priv->kernel_context still active when
* we actually suspend, and its image in memory may not match the GPU
* state. Fortunately, the kernel_context is disposable and we do
* not rely on its state.
*/
ret = i915_gem_switch_to_kernel_context(dev_priv);
if (ret)
goto err;
ret = i915_gem_wait_for_idle(dev_priv,
I915_WAIT_INTERRUPTIBLE |
I915_WAIT_LOCKED);
if (ret)
goto err;
i915_gem_retire_requests(dev_priv);
i915_gem_context_lost(dev_priv);
mutex_unlock(&dev->struct_mutex);
cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
cancel_delayed_work_sync(&dev_priv->gt.retire_work);
flush_delayed_work(&dev_priv->gt.idle_work);
/* Assert that we sucessfully flushed all the work and
* reset the GPU back to its idle, low power state.
*/
WARN_ON(dev_priv->gt.awake);
return 0;
err:
mutex_unlock(&dev->struct_mutex);
return ret;
}
void i915_gem_resume(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = to_i915(dev);
mutex_lock(&dev->struct_mutex);
i915_gem_restore_gtt_mappings(dev);
/* As we didn't flush the kernel context before suspend, we cannot
* guarantee that the context image is complete. So let's just reset
* it and start again.
*/
dev_priv->gt.resume(dev_priv);
mutex_unlock(&dev->struct_mutex);
}
void i915_gem_init_swizzling(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = to_i915(dev);
if (INTEL_INFO(dev)->gen < 5 ||
dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
return;
I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
DISP_TILE_SURFACE_SWIZZLING);
if (IS_GEN5(dev))
return;
I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
if (IS_GEN6(dev))
I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
else if (IS_GEN7(dev))
I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
else if (IS_GEN8(dev))
I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
else
BUG();
}
static void init_unused_ring(struct drm_device *dev, u32 base)
{
struct drm_i915_private *dev_priv = to_i915(dev);
I915_WRITE(RING_CTL(base), 0);
I915_WRITE(RING_HEAD(base), 0);
I915_WRITE(RING_TAIL(base), 0);
I915_WRITE(RING_START(base), 0);
}
static void init_unused_rings(struct drm_device *dev)
{
if (IS_I830(dev)) {
init_unused_ring(dev, PRB1_BASE);
init_unused_ring(dev, SRB0_BASE);
init_unused_ring(dev, SRB1_BASE);
init_unused_ring(dev, SRB2_BASE);
init_unused_ring(dev, SRB3_BASE);
} else if (IS_GEN2(dev)) {
init_unused_ring(dev, SRB0_BASE);
init_unused_ring(dev, SRB1_BASE);
} else if (IS_GEN3(dev)) {
init_unused_ring(dev, PRB1_BASE);
init_unused_ring(dev, PRB2_BASE);
}
}
int
i915_gem_init_hw(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = to_i915(dev);
struct intel_engine_cs *engine;
int ret;
/* Double layer security blanket, see i915_gem_init() */
intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
if (HAS_EDRAM(dev) && INTEL_GEN(dev_priv) < 9)
I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
if (IS_HASWELL(dev))
I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
if (HAS_PCH_NOP(dev)) {
if (IS_IVYBRIDGE(dev)) {
u32 temp = I915_READ(GEN7_MSG_CTL);
temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
I915_WRITE(GEN7_MSG_CTL, temp);
} else if (INTEL_INFO(dev)->gen >= 7) {
u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
}
}
i915_gem_init_swizzling(dev);
/*
* At least 830 can leave some of the unused rings
* "active" (ie. head != tail) after resume which
* will prevent c3 entry. Makes sure all unused rings
* are totally idle.
*/
init_unused_rings(dev);
BUG_ON(!dev_priv->kernel_context);
ret = i915_ppgtt_init_hw(dev);
if (ret) {
DRM_ERROR("PPGTT enable HW failed %d\n", ret);
goto out;
}
/* Need to do basic initialisation of all rings first: */
for_each_engine(engine, dev_priv) {
ret = engine->init_hw(engine);
if (ret)
goto out;
}
intel_mocs_init_l3cc_table(dev);
/* We can't enable contexts until all firmware is loaded */
ret = intel_guc_setup(dev);
if (ret)
goto out;
out:
intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
return ret;
}
bool intel_sanitize_semaphores(struct drm_i915_private *dev_priv, int value)
{
if (INTEL_INFO(dev_priv)->gen < 6)
return false;
/* TODO: make semaphores and Execlists play nicely together */
if (i915.enable_execlists)
return false;
if (value >= 0)
return value;
#ifdef CONFIG_INTEL_IOMMU
/* Enable semaphores on SNB when IO remapping is off */
if (INTEL_INFO(dev_priv)->gen == 6 && intel_iommu_gfx_mapped)
return false;
#endif
return true;
}
int i915_gem_init(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = to_i915(dev);
int ret;
mutex_lock(&dev->struct_mutex);
if (!i915.enable_execlists) {
dev_priv->gt.resume = intel_legacy_submission_resume;
dev_priv->gt.cleanup_engine = intel_engine_cleanup;
} else {
dev_priv->gt.resume = intel_lr_context_resume;
dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
}
/* This is just a security blanket to placate dragons.
* On some systems, we very sporadically observe that the first TLBs
* used by the CS may be stale, despite us poking the TLB reset. If
* we hold the forcewake during initialisation these problems
* just magically go away.
*/
intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
i915_gem_init_userptr(dev_priv);
ret = i915_gem_init_ggtt(dev_priv);
if (ret)
goto out_unlock;
ret = i915_gem_context_init(dev);
if (ret)
goto out_unlock;
ret = intel_engines_init(dev);
if (ret)
goto out_unlock;
ret = i915_gem_init_hw(dev);
if (ret == -EIO) {
/* Allow engine initialisation to fail by marking the GPU as
* wedged. But we only want to do this where the GPU is angry,
* for all other failure, such as an allocation failure, bail.
*/
DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
i915_gem_set_wedged(dev_priv);
ret = 0;
}
out_unlock:
intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
mutex_unlock(&dev->struct_mutex);
return ret;
}
void
i915_gem_cleanup_engines(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = to_i915(dev);
struct intel_engine_cs *engine;
for_each_engine(engine, dev_priv)
dev_priv->gt.cleanup_engine(engine);
}
static void
init_engine_lists(struct intel_engine_cs *engine)
{
INIT_LIST_HEAD(&engine->request_list);
}
void
i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
{
struct drm_device *dev = &dev_priv->drm;
int i;
if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
!IS_CHERRYVIEW(dev_priv))
dev_priv->num_fence_regs = 32;
else if (INTEL_INFO(dev_priv)->gen >= 4 || IS_I945G(dev_priv) ||
IS_I945GM(dev_priv) || IS_G33(dev_priv))
dev_priv->num_fence_regs = 16;
else
dev_priv->num_fence_regs = 8;
if (intel_vgpu_active(dev_priv))
dev_priv->num_fence_regs =
I915_READ(vgtif_reg(avail_rs.fence_num));
/* Initialize fence registers to zero */
for (i = 0; i < dev_priv->num_fence_regs; i++) {
struct drm_i915_fence_reg *fence = &dev_priv->fence_regs[i];
fence->i915 = dev_priv;
fence->id = i;
list_add_tail(&fence->link, &dev_priv->mm.fence_list);
}
i915_gem_restore_fences(dev);
i915_gem_detect_bit_6_swizzle(dev);
}
void
i915_gem_load_init(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = to_i915(dev);
int i;
dev_priv->objects =
kmem_cache_create("i915_gem_object",
sizeof(struct drm_i915_gem_object), 0,
SLAB_HWCACHE_ALIGN,
NULL);
dev_priv->vmas =
kmem_cache_create("i915_gem_vma",
sizeof(struct i915_vma), 0,
SLAB_HWCACHE_ALIGN,
NULL);
dev_priv->requests =
kmem_cache_create("i915_gem_request",
sizeof(struct drm_i915_gem_request), 0,
SLAB_HWCACHE_ALIGN |
SLAB_RECLAIM_ACCOUNT |
SLAB_DESTROY_BY_RCU,
NULL);
INIT_LIST_HEAD(&dev_priv->context_list);
INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
INIT_LIST_HEAD(&dev_priv->mm.bound_list);
INIT_LIST_HEAD(&dev_priv->mm.fence_list);
for (i = 0; i < I915_NUM_ENGINES; i++)
init_engine_lists(&dev_priv->engine[i]);
INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
i915_gem_retire_work_handler);
INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
i915_gem_idle_work_handler);
init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
init_waitqueue_head(&dev_priv->pending_flip_queue);
dev_priv->mm.interruptible = true;
atomic_set(&dev_priv->mm.bsd_engine_dispatch_index, 0);
spin_lock_init(&dev_priv->fb_tracking.lock);
}
void i915_gem_load_cleanup(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = to_i915(dev);
kmem_cache_destroy(dev_priv->requests);
kmem_cache_destroy(dev_priv->vmas);
kmem_cache_destroy(dev_priv->objects);
/* And ensure that our DESTROY_BY_RCU slabs are truly destroyed */
rcu_barrier();
}
int i915_gem_freeze(struct drm_i915_private *dev_priv)
{
intel_runtime_pm_get(dev_priv);
mutex_lock(&dev_priv->drm.struct_mutex);
i915_gem_shrink_all(dev_priv);
mutex_unlock(&dev_priv->drm.struct_mutex);
intel_runtime_pm_put(dev_priv);
return 0;
}
int i915_gem_freeze_late(struct drm_i915_private *dev_priv)
{
struct drm_i915_gem_object *obj;
struct list_head *phases[] = {
&dev_priv->mm.unbound_list,
&dev_priv->mm.bound_list,
NULL
}, **p;
/* Called just before we write the hibernation image.
*
* We need to update the domain tracking to reflect that the CPU
* will be accessing all the pages to create and restore from the
* hibernation, and so upon restoration those pages will be in the
* CPU domain.
*
* To make sure the hibernation image contains the latest state,
* we update that state just before writing out the image.
*
* To try and reduce the hibernation image, we manually shrink
* the objects as well.
*/
mutex_lock(&dev_priv->drm.struct_mutex);
i915_gem_shrink(dev_priv, -1UL, I915_SHRINK_UNBOUND);
for (p = phases; *p; p++) {
list_for_each_entry(obj, *p, global_list) {
obj->base.read_domains = I915_GEM_DOMAIN_CPU;
obj->base.write_domain = I915_GEM_DOMAIN_CPU;
}
}
mutex_unlock(&dev_priv->drm.struct_mutex);
return 0;
}
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
{
struct drm_i915_file_private *file_priv = file->driver_priv;
struct drm_i915_gem_request *request;
/* Clean up our request list when the client is going away, so that
* later retire_requests won't dereference our soon-to-be-gone
* file_priv.
*/
spin_lock(&file_priv->mm.lock);
list_for_each_entry(request, &file_priv->mm.request_list, client_list)
request->file_priv = NULL;
spin_unlock(&file_priv->mm.lock);
if (!list_empty(&file_priv->rps.link)) {
spin_lock(&to_i915(dev)->rps.client_lock);
list_del(&file_priv->rps.link);
spin_unlock(&to_i915(dev)->rps.client_lock);
}
}
int i915_gem_open(struct drm_device *dev, struct drm_file *file)
{
struct drm_i915_file_private *file_priv;
int ret;
DRM_DEBUG_DRIVER("\n");
file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
if (!file_priv)
return -ENOMEM;
file->driver_priv = file_priv;
file_priv->dev_priv = to_i915(dev);
file_priv->file = file;
INIT_LIST_HEAD(&file_priv->rps.link);
spin_lock_init(&file_priv->mm.lock);
INIT_LIST_HEAD(&file_priv->mm.request_list);
file_priv->bsd_engine = -1;
ret = i915_gem_context_open(dev, file);
if (ret)
kfree(file_priv);
return ret;
}
/**
* i915_gem_track_fb - update frontbuffer tracking
* @old: current GEM buffer for the frontbuffer slots
* @new: new GEM buffer for the frontbuffer slots
* @frontbuffer_bits: bitmask of frontbuffer slots
*
* This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
* from @old and setting them in @new. Both @old and @new can be NULL.
*/
void i915_gem_track_fb(struct drm_i915_gem_object *old,
struct drm_i915_gem_object *new,
unsigned frontbuffer_bits)
{
/* Control of individual bits within the mask are guarded by
* the owning plane->mutex, i.e. we can never see concurrent
* manipulation of individual bits. But since the bitfield as a whole
* is updated using RMW, we need to use atomics in order to update
* the bits.
*/
BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES >
sizeof(atomic_t) * BITS_PER_BYTE);
if (old) {
WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits));
atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits);
}
if (new) {
WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits);
atomic_or(frontbuffer_bits, &new->frontbuffer_bits);
}
}
/* Like i915_gem_object_get_page(), but mark the returned page dirty */
struct page *
i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj, int n)
{
struct page *page;
/* Only default objects have per-page dirty tracking */
if (WARN_ON(!i915_gem_object_has_struct_page(obj)))
return NULL;
page = i915_gem_object_get_page(obj, n);
set_page_dirty(page);
return page;
}
/* Allocate a new GEM object and fill it with the supplied data */
struct drm_i915_gem_object *
i915_gem_object_create_from_data(struct drm_device *dev,
const void *data, size_t size)
{
struct drm_i915_gem_object *obj;
struct sg_table *sg;
size_t bytes;
int ret;
obj = i915_gem_object_create(dev, round_up(size, PAGE_SIZE));
if (IS_ERR(obj))
return obj;
ret = i915_gem_object_set_to_cpu_domain(obj, true);
if (ret)
goto fail;
ret = i915_gem_object_get_pages(obj);
if (ret)
goto fail;
i915_gem_object_pin_pages(obj);
sg = obj->pages;
bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
obj->dirty = 1; /* Backing store is now out of date */
i915_gem_object_unpin_pages(obj);
if (WARN_ON(bytes != size)) {
DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
ret = -EFAULT;
goto fail;
}
return obj;
fail:
i915_gem_object_put(obj);
return ERR_PTR(ret);
}