linux/drivers/pwm/pwm-sun4i.c
Max Kellermann 8246b478a2 pwm-sun4i: Calculate the delay without rounding down to jiffies
This fixes a problem that was supposed to be addressed by commit
6eefb79d6f ("pwm: sun4i: Remove erroneous else branch") - backlight
could not be switched off on some Allwinner A20.  The commit was
correct, but was not a reliable fix for the problem, which was timing
related.

The real problem for the backlight switching problem was that sleeping
for a full period did not work, because delay_us is always zero.

It is zero because the period (plus 1 microsecond) is rounded down to
the next "jiffies", but the period is less than one jiffy.

On my Cubieboard 2, the period is 5ms, and 1 jiffy (at the default
HZ=100) is 10ms, so nsecs_to_jiffies(10ms+1us)=0.

The roundtrip from nanoseconds to jiffies and back to microseconds is
an unnecessary loss of precision; always rounding down (via
nsecs_to_jiffies()) then causes the breakage.

This patch eliminates this roundtrip, and directly converts from
nanoseconds to microseconds (for usleep_range()), using
DIV_ROUND_UP_ULL() to force rounding up.  This way, the sleep time is
never zero, and after the sleep, we are guaranteed to be in a
different period, and the device is ready for another control command
for sure.

Signed-off-by: Max Kellermann <max.kellermann@gmail.com>
Acked-by: Uwe Kleine-König <u.kleine-koenig@pengutronix.de>
Signed-off-by: Thierry Reding <thierry.reding@gmail.com>
2022-04-22 17:44:48 +02:00

502 lines
13 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Driver for Allwinner sun4i Pulse Width Modulation Controller
*
* Copyright (C) 2014 Alexandre Belloni <alexandre.belloni@free-electrons.com>
*
* Limitations:
* - When outputing the source clock directly, the PWM logic will be bypassed
* and the currently running period is not guaranteed to be completed
*/
#include <linux/bitops.h>
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/err.h>
#include <linux/io.h>
#include <linux/jiffies.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/platform_device.h>
#include <linux/pwm.h>
#include <linux/reset.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/time.h>
#define PWM_CTRL_REG 0x0
#define PWM_CH_PRD_BASE 0x4
#define PWM_CH_PRD_OFFSET 0x4
#define PWM_CH_PRD(ch) (PWM_CH_PRD_BASE + PWM_CH_PRD_OFFSET * (ch))
#define PWMCH_OFFSET 15
#define PWM_PRESCAL_MASK GENMASK(3, 0)
#define PWM_PRESCAL_OFF 0
#define PWM_EN BIT(4)
#define PWM_ACT_STATE BIT(5)
#define PWM_CLK_GATING BIT(6)
#define PWM_MODE BIT(7)
#define PWM_PULSE BIT(8)
#define PWM_BYPASS BIT(9)
#define PWM_RDY_BASE 28
#define PWM_RDY_OFFSET 1
#define PWM_RDY(ch) BIT(PWM_RDY_BASE + PWM_RDY_OFFSET * (ch))
#define PWM_PRD(prd) (((prd) - 1) << 16)
#define PWM_PRD_MASK GENMASK(15, 0)
#define PWM_DTY_MASK GENMASK(15, 0)
#define PWM_REG_PRD(reg) ((((reg) >> 16) & PWM_PRD_MASK) + 1)
#define PWM_REG_DTY(reg) ((reg) & PWM_DTY_MASK)
#define PWM_REG_PRESCAL(reg, chan) (((reg) >> ((chan) * PWMCH_OFFSET)) & PWM_PRESCAL_MASK)
#define BIT_CH(bit, chan) ((bit) << ((chan) * PWMCH_OFFSET))
static const u32 prescaler_table[] = {
120,
180,
240,
360,
480,
0,
0,
0,
12000,
24000,
36000,
48000,
72000,
0,
0,
0, /* Actually 1 but tested separately */
};
struct sun4i_pwm_data {
bool has_prescaler_bypass;
bool has_direct_mod_clk_output;
unsigned int npwm;
};
struct sun4i_pwm_chip {
struct pwm_chip chip;
struct clk *bus_clk;
struct clk *clk;
struct reset_control *rst;
void __iomem *base;
spinlock_t ctrl_lock;
const struct sun4i_pwm_data *data;
};
static inline struct sun4i_pwm_chip *to_sun4i_pwm_chip(struct pwm_chip *chip)
{
return container_of(chip, struct sun4i_pwm_chip, chip);
}
static inline u32 sun4i_pwm_readl(struct sun4i_pwm_chip *chip,
unsigned long offset)
{
return readl(chip->base + offset);
}
static inline void sun4i_pwm_writel(struct sun4i_pwm_chip *chip,
u32 val, unsigned long offset)
{
writel(val, chip->base + offset);
}
static void sun4i_pwm_get_state(struct pwm_chip *chip,
struct pwm_device *pwm,
struct pwm_state *state)
{
struct sun4i_pwm_chip *sun4i_pwm = to_sun4i_pwm_chip(chip);
u64 clk_rate, tmp;
u32 val;
unsigned int prescaler;
clk_rate = clk_get_rate(sun4i_pwm->clk);
val = sun4i_pwm_readl(sun4i_pwm, PWM_CTRL_REG);
/*
* PWM chapter in H6 manual has a diagram which explains that if bypass
* bit is set, no other setting has any meaning. Even more, experiment
* proved that also enable bit is ignored in this case.
*/
if ((val & BIT_CH(PWM_BYPASS, pwm->hwpwm)) &&
sun4i_pwm->data->has_direct_mod_clk_output) {
state->period = DIV_ROUND_UP_ULL(NSEC_PER_SEC, clk_rate);
state->duty_cycle = DIV_ROUND_UP_ULL(state->period, 2);
state->polarity = PWM_POLARITY_NORMAL;
state->enabled = true;
return;
}
if ((PWM_REG_PRESCAL(val, pwm->hwpwm) == PWM_PRESCAL_MASK) &&
sun4i_pwm->data->has_prescaler_bypass)
prescaler = 1;
else
prescaler = prescaler_table[PWM_REG_PRESCAL(val, pwm->hwpwm)];
if (prescaler == 0)
return;
if (val & BIT_CH(PWM_ACT_STATE, pwm->hwpwm))
state->polarity = PWM_POLARITY_NORMAL;
else
state->polarity = PWM_POLARITY_INVERSED;
if ((val & BIT_CH(PWM_CLK_GATING | PWM_EN, pwm->hwpwm)) ==
BIT_CH(PWM_CLK_GATING | PWM_EN, pwm->hwpwm))
state->enabled = true;
else
state->enabled = false;
val = sun4i_pwm_readl(sun4i_pwm, PWM_CH_PRD(pwm->hwpwm));
tmp = (u64)prescaler * NSEC_PER_SEC * PWM_REG_DTY(val);
state->duty_cycle = DIV_ROUND_CLOSEST_ULL(tmp, clk_rate);
tmp = (u64)prescaler * NSEC_PER_SEC * PWM_REG_PRD(val);
state->period = DIV_ROUND_CLOSEST_ULL(tmp, clk_rate);
}
static int sun4i_pwm_calculate(struct sun4i_pwm_chip *sun4i_pwm,
const struct pwm_state *state,
u32 *dty, u32 *prd, unsigned int *prsclr,
bool *bypass)
{
u64 clk_rate, div = 0;
unsigned int prescaler = 0;
clk_rate = clk_get_rate(sun4i_pwm->clk);
*bypass = sun4i_pwm->data->has_direct_mod_clk_output &&
state->enabled &&
(state->period * clk_rate >= NSEC_PER_SEC) &&
(state->period * clk_rate < 2 * NSEC_PER_SEC) &&
(state->duty_cycle * clk_rate * 2 >= NSEC_PER_SEC);
/* Skip calculation of other parameters if we bypass them */
if (*bypass)
return 0;
if (sun4i_pwm->data->has_prescaler_bypass) {
/* First, test without any prescaler when available */
prescaler = PWM_PRESCAL_MASK;
/*
* When not using any prescaler, the clock period in nanoseconds
* is not an integer so round it half up instead of
* truncating to get less surprising values.
*/
div = clk_rate * state->period + NSEC_PER_SEC / 2;
do_div(div, NSEC_PER_SEC);
if (div - 1 > PWM_PRD_MASK)
prescaler = 0;
}
if (prescaler == 0) {
/* Go up from the first divider */
for (prescaler = 0; prescaler < PWM_PRESCAL_MASK; prescaler++) {
unsigned int pval = prescaler_table[prescaler];
if (!pval)
continue;
div = clk_rate;
do_div(div, pval);
div = div * state->period;
do_div(div, NSEC_PER_SEC);
if (div - 1 <= PWM_PRD_MASK)
break;
}
if (div - 1 > PWM_PRD_MASK)
return -EINVAL;
}
*prd = div;
div *= state->duty_cycle;
do_div(div, state->period);
*dty = div;
*prsclr = prescaler;
return 0;
}
static int sun4i_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm,
const struct pwm_state *state)
{
struct sun4i_pwm_chip *sun4i_pwm = to_sun4i_pwm_chip(chip);
struct pwm_state cstate;
u32 ctrl, duty = 0, period = 0, val;
int ret;
unsigned int delay_us, prescaler = 0;
bool bypass;
pwm_get_state(pwm, &cstate);
if (!cstate.enabled) {
ret = clk_prepare_enable(sun4i_pwm->clk);
if (ret) {
dev_err(chip->dev, "failed to enable PWM clock\n");
return ret;
}
}
ret = sun4i_pwm_calculate(sun4i_pwm, state, &duty, &period, &prescaler,
&bypass);
if (ret) {
dev_err(chip->dev, "period exceeds the maximum value\n");
if (!cstate.enabled)
clk_disable_unprepare(sun4i_pwm->clk);
return ret;
}
spin_lock(&sun4i_pwm->ctrl_lock);
ctrl = sun4i_pwm_readl(sun4i_pwm, PWM_CTRL_REG);
if (sun4i_pwm->data->has_direct_mod_clk_output) {
if (bypass) {
ctrl |= BIT_CH(PWM_BYPASS, pwm->hwpwm);
/* We can skip other parameter */
sun4i_pwm_writel(sun4i_pwm, ctrl, PWM_CTRL_REG);
spin_unlock(&sun4i_pwm->ctrl_lock);
return 0;
}
ctrl &= ~BIT_CH(PWM_BYPASS, pwm->hwpwm);
}
if (PWM_REG_PRESCAL(ctrl, pwm->hwpwm) != prescaler) {
/* Prescaler changed, the clock has to be gated */
ctrl &= ~BIT_CH(PWM_CLK_GATING, pwm->hwpwm);
sun4i_pwm_writel(sun4i_pwm, ctrl, PWM_CTRL_REG);
ctrl &= ~BIT_CH(PWM_PRESCAL_MASK, pwm->hwpwm);
ctrl |= BIT_CH(prescaler, pwm->hwpwm);
}
val = (duty & PWM_DTY_MASK) | PWM_PRD(period);
sun4i_pwm_writel(sun4i_pwm, val, PWM_CH_PRD(pwm->hwpwm));
if (state->polarity != PWM_POLARITY_NORMAL)
ctrl &= ~BIT_CH(PWM_ACT_STATE, pwm->hwpwm);
else
ctrl |= BIT_CH(PWM_ACT_STATE, pwm->hwpwm);
ctrl |= BIT_CH(PWM_CLK_GATING, pwm->hwpwm);
if (state->enabled)
ctrl |= BIT_CH(PWM_EN, pwm->hwpwm);
sun4i_pwm_writel(sun4i_pwm, ctrl, PWM_CTRL_REG);
spin_unlock(&sun4i_pwm->ctrl_lock);
if (state->enabled)
return 0;
/* We need a full period to elapse before disabling the channel. */
delay_us = DIV_ROUND_UP_ULL(cstate.period, NSEC_PER_USEC);
if ((delay_us / 500) > MAX_UDELAY_MS)
msleep(delay_us / 1000 + 1);
else
usleep_range(delay_us, delay_us * 2);
spin_lock(&sun4i_pwm->ctrl_lock);
ctrl = sun4i_pwm_readl(sun4i_pwm, PWM_CTRL_REG);
ctrl &= ~BIT_CH(PWM_CLK_GATING, pwm->hwpwm);
ctrl &= ~BIT_CH(PWM_EN, pwm->hwpwm);
sun4i_pwm_writel(sun4i_pwm, ctrl, PWM_CTRL_REG);
spin_unlock(&sun4i_pwm->ctrl_lock);
clk_disable_unprepare(sun4i_pwm->clk);
return 0;
}
static const struct pwm_ops sun4i_pwm_ops = {
.apply = sun4i_pwm_apply,
.get_state = sun4i_pwm_get_state,
.owner = THIS_MODULE,
};
static const struct sun4i_pwm_data sun4i_pwm_dual_nobypass = {
.has_prescaler_bypass = false,
.npwm = 2,
};
static const struct sun4i_pwm_data sun4i_pwm_dual_bypass = {
.has_prescaler_bypass = true,
.npwm = 2,
};
static const struct sun4i_pwm_data sun4i_pwm_single_bypass = {
.has_prescaler_bypass = true,
.npwm = 1,
};
static const struct sun4i_pwm_data sun50i_a64_pwm_data = {
.has_prescaler_bypass = true,
.has_direct_mod_clk_output = true,
.npwm = 1,
};
static const struct sun4i_pwm_data sun50i_h6_pwm_data = {
.has_prescaler_bypass = true,
.has_direct_mod_clk_output = true,
.npwm = 2,
};
static const struct of_device_id sun4i_pwm_dt_ids[] = {
{
.compatible = "allwinner,sun4i-a10-pwm",
.data = &sun4i_pwm_dual_nobypass,
}, {
.compatible = "allwinner,sun5i-a10s-pwm",
.data = &sun4i_pwm_dual_bypass,
}, {
.compatible = "allwinner,sun5i-a13-pwm",
.data = &sun4i_pwm_single_bypass,
}, {
.compatible = "allwinner,sun7i-a20-pwm",
.data = &sun4i_pwm_dual_bypass,
}, {
.compatible = "allwinner,sun8i-h3-pwm",
.data = &sun4i_pwm_single_bypass,
}, {
.compatible = "allwinner,sun50i-a64-pwm",
.data = &sun50i_a64_pwm_data,
}, {
.compatible = "allwinner,sun50i-h6-pwm",
.data = &sun50i_h6_pwm_data,
}, {
/* sentinel */
},
};
MODULE_DEVICE_TABLE(of, sun4i_pwm_dt_ids);
static int sun4i_pwm_probe(struct platform_device *pdev)
{
struct sun4i_pwm_chip *sun4ichip;
int ret;
sun4ichip = devm_kzalloc(&pdev->dev, sizeof(*sun4ichip), GFP_KERNEL);
if (!sun4ichip)
return -ENOMEM;
sun4ichip->data = of_device_get_match_data(&pdev->dev);
if (!sun4ichip->data)
return -ENODEV;
sun4ichip->base = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(sun4ichip->base))
return PTR_ERR(sun4ichip->base);
/*
* All hardware variants need a source clock that is divided and
* then feeds the counter that defines the output wave form. In the
* device tree this clock is either unnamed or called "mod".
* Some variants (e.g. H6) need another clock to access the
* hardware registers; this is called "bus".
* So we request "mod" first (and ignore the corner case that a
* parent provides a "mod" clock while the right one would be the
* unnamed one of the PWM device) and if this is not found we fall
* back to the first clock of the PWM.
*/
sun4ichip->clk = devm_clk_get_optional(&pdev->dev, "mod");
if (IS_ERR(sun4ichip->clk))
return dev_err_probe(&pdev->dev, PTR_ERR(sun4ichip->clk),
"get mod clock failed\n");
if (!sun4ichip->clk) {
sun4ichip->clk = devm_clk_get(&pdev->dev, NULL);
if (IS_ERR(sun4ichip->clk))
return dev_err_probe(&pdev->dev, PTR_ERR(sun4ichip->clk),
"get unnamed clock failed\n");
}
sun4ichip->bus_clk = devm_clk_get_optional(&pdev->dev, "bus");
if (IS_ERR(sun4ichip->bus_clk))
return dev_err_probe(&pdev->dev, PTR_ERR(sun4ichip->bus_clk),
"get bus clock failed\n");
sun4ichip->rst = devm_reset_control_get_optional_shared(&pdev->dev, NULL);
if (IS_ERR(sun4ichip->rst))
return dev_err_probe(&pdev->dev, PTR_ERR(sun4ichip->rst),
"get reset failed\n");
/* Deassert reset */
ret = reset_control_deassert(sun4ichip->rst);
if (ret) {
dev_err(&pdev->dev, "cannot deassert reset control: %pe\n",
ERR_PTR(ret));
return ret;
}
/*
* We're keeping the bus clock on for the sake of simplicity.
* Actually it only needs to be on for hardware register accesses.
*/
ret = clk_prepare_enable(sun4ichip->bus_clk);
if (ret) {
dev_err(&pdev->dev, "cannot prepare and enable bus_clk %pe\n",
ERR_PTR(ret));
goto err_bus;
}
sun4ichip->chip.dev = &pdev->dev;
sun4ichip->chip.ops = &sun4i_pwm_ops;
sun4ichip->chip.npwm = sun4ichip->data->npwm;
spin_lock_init(&sun4ichip->ctrl_lock);
ret = pwmchip_add(&sun4ichip->chip);
if (ret < 0) {
dev_err(&pdev->dev, "failed to add PWM chip: %d\n", ret);
goto err_pwm_add;
}
platform_set_drvdata(pdev, sun4ichip);
return 0;
err_pwm_add:
clk_disable_unprepare(sun4ichip->bus_clk);
err_bus:
reset_control_assert(sun4ichip->rst);
return ret;
}
static int sun4i_pwm_remove(struct platform_device *pdev)
{
struct sun4i_pwm_chip *sun4ichip = platform_get_drvdata(pdev);
pwmchip_remove(&sun4ichip->chip);
clk_disable_unprepare(sun4ichip->bus_clk);
reset_control_assert(sun4ichip->rst);
return 0;
}
static struct platform_driver sun4i_pwm_driver = {
.driver = {
.name = "sun4i-pwm",
.of_match_table = sun4i_pwm_dt_ids,
},
.probe = sun4i_pwm_probe,
.remove = sun4i_pwm_remove,
};
module_platform_driver(sun4i_pwm_driver);
MODULE_ALIAS("platform:sun4i-pwm");
MODULE_AUTHOR("Alexandre Belloni <alexandre.belloni@free-electrons.com>");
MODULE_DESCRIPTION("Allwinner sun4i PWM driver");
MODULE_LICENSE("GPL v2");