51b35a454e
No TX or RX path, no MCDI, not even an ifup/down handler. Besides stubs, the bulk of the patch deals with reading the Xilinx extended PCIe capability, which tells us where to find our BAR. Though in the same module, EF100 has its own struct pci_driver, which is named sfc_ef100. A small number of additional nic_type methods are added; those in the TX (tx_enqueue) and RX (rx_packet) paths are called through indirect call wrappers to minimise the performance impact. Signed-off-by: Edward Cree <ecree@solarflare.com> Signed-off-by: David S. Miller <davem@davemloft.net>
1407 lines
35 KiB
C
1407 lines
35 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/****************************************************************************
|
|
* Driver for Solarflare network controllers and boards
|
|
* Copyright 2005-2006 Fen Systems Ltd.
|
|
* Copyright 2005-2013 Solarflare Communications Inc.
|
|
*/
|
|
|
|
#include <linux/module.h>
|
|
#include <linux/pci.h>
|
|
#include <linux/netdevice.h>
|
|
#include <linux/etherdevice.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/notifier.h>
|
|
#include <linux/ip.h>
|
|
#include <linux/tcp.h>
|
|
#include <linux/in.h>
|
|
#include <linux/ethtool.h>
|
|
#include <linux/topology.h>
|
|
#include <linux/gfp.h>
|
|
#include <linux/aer.h>
|
|
#include <linux/interrupt.h>
|
|
#include "net_driver.h"
|
|
#include <net/gre.h>
|
|
#include <net/udp_tunnel.h>
|
|
#include "efx.h"
|
|
#include "efx_common.h"
|
|
#include "efx_channels.h"
|
|
#include "ef100.h"
|
|
#include "rx_common.h"
|
|
#include "tx_common.h"
|
|
#include "nic.h"
|
|
#include "io.h"
|
|
#include "selftest.h"
|
|
#include "sriov.h"
|
|
|
|
#include "mcdi.h"
|
|
#include "mcdi_pcol.h"
|
|
#include "workarounds.h"
|
|
|
|
/**************************************************************************
|
|
*
|
|
* Configurable values
|
|
*
|
|
*************************************************************************/
|
|
|
|
module_param_named(interrupt_mode, efx_interrupt_mode, uint, 0444);
|
|
MODULE_PARM_DESC(interrupt_mode,
|
|
"Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");
|
|
|
|
module_param(rss_cpus, uint, 0444);
|
|
MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling");
|
|
|
|
/*
|
|
* Use separate channels for TX and RX events
|
|
*
|
|
* Set this to 1 to use separate channels for TX and RX. It allows us
|
|
* to control interrupt affinity separately for TX and RX.
|
|
*
|
|
* This is only used in MSI-X interrupt mode
|
|
*/
|
|
bool efx_separate_tx_channels;
|
|
module_param(efx_separate_tx_channels, bool, 0444);
|
|
MODULE_PARM_DESC(efx_separate_tx_channels,
|
|
"Use separate channels for TX and RX");
|
|
|
|
/* Initial interrupt moderation settings. They can be modified after
|
|
* module load with ethtool.
|
|
*
|
|
* The default for RX should strike a balance between increasing the
|
|
* round-trip latency and reducing overhead.
|
|
*/
|
|
static unsigned int rx_irq_mod_usec = 60;
|
|
|
|
/* Initial interrupt moderation settings. They can be modified after
|
|
* module load with ethtool.
|
|
*
|
|
* This default is chosen to ensure that a 10G link does not go idle
|
|
* while a TX queue is stopped after it has become full. A queue is
|
|
* restarted when it drops below half full. The time this takes (assuming
|
|
* worst case 3 descriptors per packet and 1024 descriptors) is
|
|
* 512 / 3 * 1.2 = 205 usec.
|
|
*/
|
|
static unsigned int tx_irq_mod_usec = 150;
|
|
|
|
static bool phy_flash_cfg;
|
|
module_param(phy_flash_cfg, bool, 0644);
|
|
MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially");
|
|
|
|
static unsigned debug = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
|
|
NETIF_MSG_LINK | NETIF_MSG_IFDOWN |
|
|
NETIF_MSG_IFUP | NETIF_MSG_RX_ERR |
|
|
NETIF_MSG_TX_ERR | NETIF_MSG_HW);
|
|
module_param(debug, uint, 0);
|
|
MODULE_PARM_DESC(debug, "Bitmapped debugging message enable value");
|
|
|
|
/**************************************************************************
|
|
*
|
|
* Utility functions and prototypes
|
|
*
|
|
*************************************************************************/
|
|
|
|
static void efx_remove_port(struct efx_nic *efx);
|
|
static int efx_xdp_setup_prog(struct efx_nic *efx, struct bpf_prog *prog);
|
|
static int efx_xdp(struct net_device *dev, struct netdev_bpf *xdp);
|
|
static int efx_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **xdpfs,
|
|
u32 flags);
|
|
|
|
#define EFX_ASSERT_RESET_SERIALISED(efx) \
|
|
do { \
|
|
if ((efx->state == STATE_READY) || \
|
|
(efx->state == STATE_RECOVERY) || \
|
|
(efx->state == STATE_DISABLED)) \
|
|
ASSERT_RTNL(); \
|
|
} while (0)
|
|
|
|
/**************************************************************************
|
|
*
|
|
* Port handling
|
|
*
|
|
**************************************************************************/
|
|
|
|
static void efx_fini_port(struct efx_nic *efx);
|
|
|
|
static int efx_probe_port(struct efx_nic *efx)
|
|
{
|
|
int rc;
|
|
|
|
netif_dbg(efx, probe, efx->net_dev, "create port\n");
|
|
|
|
if (phy_flash_cfg)
|
|
efx->phy_mode = PHY_MODE_SPECIAL;
|
|
|
|
/* Connect up MAC/PHY operations table */
|
|
rc = efx->type->probe_port(efx);
|
|
if (rc)
|
|
return rc;
|
|
|
|
/* Initialise MAC address to permanent address */
|
|
ether_addr_copy(efx->net_dev->dev_addr, efx->net_dev->perm_addr);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int efx_init_port(struct efx_nic *efx)
|
|
{
|
|
int rc;
|
|
|
|
netif_dbg(efx, drv, efx->net_dev, "init port\n");
|
|
|
|
mutex_lock(&efx->mac_lock);
|
|
|
|
rc = efx->phy_op->init(efx);
|
|
if (rc)
|
|
goto fail1;
|
|
|
|
efx->port_initialized = true;
|
|
|
|
/* Ensure the PHY advertises the correct flow control settings */
|
|
rc = efx->phy_op->reconfigure(efx);
|
|
if (rc && rc != -EPERM)
|
|
goto fail2;
|
|
|
|
mutex_unlock(&efx->mac_lock);
|
|
return 0;
|
|
|
|
fail2:
|
|
efx->phy_op->fini(efx);
|
|
fail1:
|
|
mutex_unlock(&efx->mac_lock);
|
|
return rc;
|
|
}
|
|
|
|
static void efx_fini_port(struct efx_nic *efx)
|
|
{
|
|
netif_dbg(efx, drv, efx->net_dev, "shut down port\n");
|
|
|
|
if (!efx->port_initialized)
|
|
return;
|
|
|
|
efx->phy_op->fini(efx);
|
|
efx->port_initialized = false;
|
|
|
|
efx->link_state.up = false;
|
|
efx_link_status_changed(efx);
|
|
}
|
|
|
|
static void efx_remove_port(struct efx_nic *efx)
|
|
{
|
|
netif_dbg(efx, drv, efx->net_dev, "destroying port\n");
|
|
|
|
efx->type->remove_port(efx);
|
|
}
|
|
|
|
/**************************************************************************
|
|
*
|
|
* NIC handling
|
|
*
|
|
**************************************************************************/
|
|
|
|
static LIST_HEAD(efx_primary_list);
|
|
static LIST_HEAD(efx_unassociated_list);
|
|
|
|
static bool efx_same_controller(struct efx_nic *left, struct efx_nic *right)
|
|
{
|
|
return left->type == right->type &&
|
|
left->vpd_sn && right->vpd_sn &&
|
|
!strcmp(left->vpd_sn, right->vpd_sn);
|
|
}
|
|
|
|
static void efx_associate(struct efx_nic *efx)
|
|
{
|
|
struct efx_nic *other, *next;
|
|
|
|
if (efx->primary == efx) {
|
|
/* Adding primary function; look for secondaries */
|
|
|
|
netif_dbg(efx, probe, efx->net_dev, "adding to primary list\n");
|
|
list_add_tail(&efx->node, &efx_primary_list);
|
|
|
|
list_for_each_entry_safe(other, next, &efx_unassociated_list,
|
|
node) {
|
|
if (efx_same_controller(efx, other)) {
|
|
list_del(&other->node);
|
|
netif_dbg(other, probe, other->net_dev,
|
|
"moving to secondary list of %s %s\n",
|
|
pci_name(efx->pci_dev),
|
|
efx->net_dev->name);
|
|
list_add_tail(&other->node,
|
|
&efx->secondary_list);
|
|
other->primary = efx;
|
|
}
|
|
}
|
|
} else {
|
|
/* Adding secondary function; look for primary */
|
|
|
|
list_for_each_entry(other, &efx_primary_list, node) {
|
|
if (efx_same_controller(efx, other)) {
|
|
netif_dbg(efx, probe, efx->net_dev,
|
|
"adding to secondary list of %s %s\n",
|
|
pci_name(other->pci_dev),
|
|
other->net_dev->name);
|
|
list_add_tail(&efx->node,
|
|
&other->secondary_list);
|
|
efx->primary = other;
|
|
return;
|
|
}
|
|
}
|
|
|
|
netif_dbg(efx, probe, efx->net_dev,
|
|
"adding to unassociated list\n");
|
|
list_add_tail(&efx->node, &efx_unassociated_list);
|
|
}
|
|
}
|
|
|
|
static void efx_dissociate(struct efx_nic *efx)
|
|
{
|
|
struct efx_nic *other, *next;
|
|
|
|
list_del(&efx->node);
|
|
efx->primary = NULL;
|
|
|
|
list_for_each_entry_safe(other, next, &efx->secondary_list, node) {
|
|
list_del(&other->node);
|
|
netif_dbg(other, probe, other->net_dev,
|
|
"moving to unassociated list\n");
|
|
list_add_tail(&other->node, &efx_unassociated_list);
|
|
other->primary = NULL;
|
|
}
|
|
}
|
|
|
|
static int efx_probe_nic(struct efx_nic *efx)
|
|
{
|
|
int rc;
|
|
|
|
netif_dbg(efx, probe, efx->net_dev, "creating NIC\n");
|
|
|
|
/* Carry out hardware-type specific initialisation */
|
|
rc = efx->type->probe(efx);
|
|
if (rc)
|
|
return rc;
|
|
|
|
do {
|
|
if (!efx->max_channels || !efx->max_tx_channels) {
|
|
netif_err(efx, drv, efx->net_dev,
|
|
"Insufficient resources to allocate"
|
|
" any channels\n");
|
|
rc = -ENOSPC;
|
|
goto fail1;
|
|
}
|
|
|
|
/* Determine the number of channels and queues by trying
|
|
* to hook in MSI-X interrupts.
|
|
*/
|
|
rc = efx_probe_interrupts(efx);
|
|
if (rc)
|
|
goto fail1;
|
|
|
|
rc = efx_set_channels(efx);
|
|
if (rc)
|
|
goto fail1;
|
|
|
|
/* dimension_resources can fail with EAGAIN */
|
|
rc = efx->type->dimension_resources(efx);
|
|
if (rc != 0 && rc != -EAGAIN)
|
|
goto fail2;
|
|
|
|
if (rc == -EAGAIN)
|
|
/* try again with new max_channels */
|
|
efx_remove_interrupts(efx);
|
|
|
|
} while (rc == -EAGAIN);
|
|
|
|
if (efx->n_channels > 1)
|
|
netdev_rss_key_fill(efx->rss_context.rx_hash_key,
|
|
sizeof(efx->rss_context.rx_hash_key));
|
|
efx_set_default_rx_indir_table(efx, &efx->rss_context);
|
|
|
|
/* Initialise the interrupt moderation settings */
|
|
efx->irq_mod_step_us = DIV_ROUND_UP(efx->timer_quantum_ns, 1000);
|
|
efx_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec, true,
|
|
true);
|
|
|
|
return 0;
|
|
|
|
fail2:
|
|
efx_remove_interrupts(efx);
|
|
fail1:
|
|
efx->type->remove(efx);
|
|
return rc;
|
|
}
|
|
|
|
static void efx_remove_nic(struct efx_nic *efx)
|
|
{
|
|
netif_dbg(efx, drv, efx->net_dev, "destroying NIC\n");
|
|
|
|
efx_remove_interrupts(efx);
|
|
efx->type->remove(efx);
|
|
}
|
|
|
|
/**************************************************************************
|
|
*
|
|
* NIC startup/shutdown
|
|
*
|
|
*************************************************************************/
|
|
|
|
static int efx_probe_all(struct efx_nic *efx)
|
|
{
|
|
int rc;
|
|
|
|
rc = efx_probe_nic(efx);
|
|
if (rc) {
|
|
netif_err(efx, probe, efx->net_dev, "failed to create NIC\n");
|
|
goto fail1;
|
|
}
|
|
|
|
rc = efx_probe_port(efx);
|
|
if (rc) {
|
|
netif_err(efx, probe, efx->net_dev, "failed to create port\n");
|
|
goto fail2;
|
|
}
|
|
|
|
BUILD_BUG_ON(EFX_DEFAULT_DMAQ_SIZE < EFX_RXQ_MIN_ENT);
|
|
if (WARN_ON(EFX_DEFAULT_DMAQ_SIZE < EFX_TXQ_MIN_ENT(efx))) {
|
|
rc = -EINVAL;
|
|
goto fail3;
|
|
}
|
|
|
|
#ifdef CONFIG_SFC_SRIOV
|
|
rc = efx->type->vswitching_probe(efx);
|
|
if (rc) /* not fatal; the PF will still work fine */
|
|
netif_warn(efx, probe, efx->net_dev,
|
|
"failed to setup vswitching rc=%d;"
|
|
" VFs may not function\n", rc);
|
|
#endif
|
|
|
|
rc = efx_probe_filters(efx);
|
|
if (rc) {
|
|
netif_err(efx, probe, efx->net_dev,
|
|
"failed to create filter tables\n");
|
|
goto fail4;
|
|
}
|
|
|
|
rc = efx_probe_channels(efx);
|
|
if (rc)
|
|
goto fail5;
|
|
|
|
return 0;
|
|
|
|
fail5:
|
|
efx_remove_filters(efx);
|
|
fail4:
|
|
#ifdef CONFIG_SFC_SRIOV
|
|
efx->type->vswitching_remove(efx);
|
|
#endif
|
|
fail3:
|
|
efx_remove_port(efx);
|
|
fail2:
|
|
efx_remove_nic(efx);
|
|
fail1:
|
|
return rc;
|
|
}
|
|
|
|
static void efx_remove_all(struct efx_nic *efx)
|
|
{
|
|
rtnl_lock();
|
|
efx_xdp_setup_prog(efx, NULL);
|
|
rtnl_unlock();
|
|
|
|
efx_remove_channels(efx);
|
|
efx_remove_filters(efx);
|
|
#ifdef CONFIG_SFC_SRIOV
|
|
efx->type->vswitching_remove(efx);
|
|
#endif
|
|
efx_remove_port(efx);
|
|
efx_remove_nic(efx);
|
|
}
|
|
|
|
/**************************************************************************
|
|
*
|
|
* Interrupt moderation
|
|
*
|
|
**************************************************************************/
|
|
unsigned int efx_usecs_to_ticks(struct efx_nic *efx, unsigned int usecs)
|
|
{
|
|
if (usecs == 0)
|
|
return 0;
|
|
if (usecs * 1000 < efx->timer_quantum_ns)
|
|
return 1; /* never round down to 0 */
|
|
return usecs * 1000 / efx->timer_quantum_ns;
|
|
}
|
|
|
|
unsigned int efx_ticks_to_usecs(struct efx_nic *efx, unsigned int ticks)
|
|
{
|
|
/* We must round up when converting ticks to microseconds
|
|
* because we round down when converting the other way.
|
|
*/
|
|
return DIV_ROUND_UP(ticks * efx->timer_quantum_ns, 1000);
|
|
}
|
|
|
|
/* Set interrupt moderation parameters */
|
|
int efx_init_irq_moderation(struct efx_nic *efx, unsigned int tx_usecs,
|
|
unsigned int rx_usecs, bool rx_adaptive,
|
|
bool rx_may_override_tx)
|
|
{
|
|
struct efx_channel *channel;
|
|
unsigned int timer_max_us;
|
|
|
|
EFX_ASSERT_RESET_SERIALISED(efx);
|
|
|
|
timer_max_us = efx->timer_max_ns / 1000;
|
|
|
|
if (tx_usecs > timer_max_us || rx_usecs > timer_max_us)
|
|
return -EINVAL;
|
|
|
|
if (tx_usecs != rx_usecs && efx->tx_channel_offset == 0 &&
|
|
!rx_may_override_tx) {
|
|
netif_err(efx, drv, efx->net_dev, "Channels are shared. "
|
|
"RX and TX IRQ moderation must be equal\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
efx->irq_rx_adaptive = rx_adaptive;
|
|
efx->irq_rx_moderation_us = rx_usecs;
|
|
efx_for_each_channel(channel, efx) {
|
|
if (efx_channel_has_rx_queue(channel))
|
|
channel->irq_moderation_us = rx_usecs;
|
|
else if (efx_channel_has_tx_queues(channel))
|
|
channel->irq_moderation_us = tx_usecs;
|
|
else if (efx_channel_is_xdp_tx(channel))
|
|
channel->irq_moderation_us = tx_usecs;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
void efx_get_irq_moderation(struct efx_nic *efx, unsigned int *tx_usecs,
|
|
unsigned int *rx_usecs, bool *rx_adaptive)
|
|
{
|
|
*rx_adaptive = efx->irq_rx_adaptive;
|
|
*rx_usecs = efx->irq_rx_moderation_us;
|
|
|
|
/* If channels are shared between RX and TX, so is IRQ
|
|
* moderation. Otherwise, IRQ moderation is the same for all
|
|
* TX channels and is not adaptive.
|
|
*/
|
|
if (efx->tx_channel_offset == 0) {
|
|
*tx_usecs = *rx_usecs;
|
|
} else {
|
|
struct efx_channel *tx_channel;
|
|
|
|
tx_channel = efx->channel[efx->tx_channel_offset];
|
|
*tx_usecs = tx_channel->irq_moderation_us;
|
|
}
|
|
}
|
|
|
|
/**************************************************************************
|
|
*
|
|
* ioctls
|
|
*
|
|
*************************************************************************/
|
|
|
|
/* Net device ioctl
|
|
* Context: process, rtnl_lock() held.
|
|
*/
|
|
static int efx_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd)
|
|
{
|
|
struct efx_nic *efx = netdev_priv(net_dev);
|
|
struct mii_ioctl_data *data = if_mii(ifr);
|
|
|
|
if (cmd == SIOCSHWTSTAMP)
|
|
return efx_ptp_set_ts_config(efx, ifr);
|
|
if (cmd == SIOCGHWTSTAMP)
|
|
return efx_ptp_get_ts_config(efx, ifr);
|
|
|
|
/* Convert phy_id from older PRTAD/DEVAD format */
|
|
if ((cmd == SIOCGMIIREG || cmd == SIOCSMIIREG) &&
|
|
(data->phy_id & 0xfc00) == 0x0400)
|
|
data->phy_id ^= MDIO_PHY_ID_C45 | 0x0400;
|
|
|
|
return mdio_mii_ioctl(&efx->mdio, data, cmd);
|
|
}
|
|
|
|
/**************************************************************************
|
|
*
|
|
* Kernel net device interface
|
|
*
|
|
*************************************************************************/
|
|
|
|
/* Context: process, rtnl_lock() held. */
|
|
int efx_net_open(struct net_device *net_dev)
|
|
{
|
|
struct efx_nic *efx = netdev_priv(net_dev);
|
|
int rc;
|
|
|
|
netif_dbg(efx, ifup, efx->net_dev, "opening device on CPU %d\n",
|
|
raw_smp_processor_id());
|
|
|
|
rc = efx_check_disabled(efx);
|
|
if (rc)
|
|
return rc;
|
|
if (efx->phy_mode & PHY_MODE_SPECIAL)
|
|
return -EBUSY;
|
|
if (efx_mcdi_poll_reboot(efx) && efx_reset(efx, RESET_TYPE_ALL))
|
|
return -EIO;
|
|
|
|
/* Notify the kernel of the link state polled during driver load,
|
|
* before the monitor starts running */
|
|
efx_link_status_changed(efx);
|
|
|
|
efx_start_all(efx);
|
|
if (efx->state == STATE_DISABLED || efx->reset_pending)
|
|
netif_device_detach(efx->net_dev);
|
|
efx_selftest_async_start(efx);
|
|
return 0;
|
|
}
|
|
|
|
/* Context: process, rtnl_lock() held.
|
|
* Note that the kernel will ignore our return code; this method
|
|
* should really be a void.
|
|
*/
|
|
int efx_net_stop(struct net_device *net_dev)
|
|
{
|
|
struct efx_nic *efx = netdev_priv(net_dev);
|
|
|
|
netif_dbg(efx, ifdown, efx->net_dev, "closing on CPU %d\n",
|
|
raw_smp_processor_id());
|
|
|
|
/* Stop the device and flush all the channels */
|
|
efx_stop_all(efx);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int efx_vlan_rx_add_vid(struct net_device *net_dev, __be16 proto, u16 vid)
|
|
{
|
|
struct efx_nic *efx = netdev_priv(net_dev);
|
|
|
|
if (efx->type->vlan_rx_add_vid)
|
|
return efx->type->vlan_rx_add_vid(efx, proto, vid);
|
|
else
|
|
return -EOPNOTSUPP;
|
|
}
|
|
|
|
static int efx_vlan_rx_kill_vid(struct net_device *net_dev, __be16 proto, u16 vid)
|
|
{
|
|
struct efx_nic *efx = netdev_priv(net_dev);
|
|
|
|
if (efx->type->vlan_rx_kill_vid)
|
|
return efx->type->vlan_rx_kill_vid(efx, proto, vid);
|
|
else
|
|
return -EOPNOTSUPP;
|
|
}
|
|
|
|
static const struct net_device_ops efx_netdev_ops = {
|
|
.ndo_open = efx_net_open,
|
|
.ndo_stop = efx_net_stop,
|
|
.ndo_get_stats64 = efx_net_stats,
|
|
.ndo_tx_timeout = efx_watchdog,
|
|
.ndo_start_xmit = efx_hard_start_xmit,
|
|
.ndo_validate_addr = eth_validate_addr,
|
|
.ndo_do_ioctl = efx_ioctl,
|
|
.ndo_change_mtu = efx_change_mtu,
|
|
.ndo_set_mac_address = efx_set_mac_address,
|
|
.ndo_set_rx_mode = efx_set_rx_mode,
|
|
.ndo_set_features = efx_set_features,
|
|
.ndo_vlan_rx_add_vid = efx_vlan_rx_add_vid,
|
|
.ndo_vlan_rx_kill_vid = efx_vlan_rx_kill_vid,
|
|
#ifdef CONFIG_SFC_SRIOV
|
|
.ndo_set_vf_mac = efx_sriov_set_vf_mac,
|
|
.ndo_set_vf_vlan = efx_sriov_set_vf_vlan,
|
|
.ndo_set_vf_spoofchk = efx_sriov_set_vf_spoofchk,
|
|
.ndo_get_vf_config = efx_sriov_get_vf_config,
|
|
.ndo_set_vf_link_state = efx_sriov_set_vf_link_state,
|
|
#endif
|
|
.ndo_get_phys_port_id = efx_get_phys_port_id,
|
|
.ndo_get_phys_port_name = efx_get_phys_port_name,
|
|
.ndo_setup_tc = efx_setup_tc,
|
|
#ifdef CONFIG_RFS_ACCEL
|
|
.ndo_rx_flow_steer = efx_filter_rfs,
|
|
#endif
|
|
.ndo_udp_tunnel_add = udp_tunnel_nic_add_port,
|
|
.ndo_udp_tunnel_del = udp_tunnel_nic_del_port,
|
|
.ndo_xdp_xmit = efx_xdp_xmit,
|
|
.ndo_bpf = efx_xdp
|
|
};
|
|
|
|
static int efx_xdp_setup_prog(struct efx_nic *efx, struct bpf_prog *prog)
|
|
{
|
|
struct bpf_prog *old_prog;
|
|
|
|
if (efx->xdp_rxq_info_failed) {
|
|
netif_err(efx, drv, efx->net_dev,
|
|
"Unable to bind XDP program due to previous failure of rxq_info\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (prog && efx->net_dev->mtu > efx_xdp_max_mtu(efx)) {
|
|
netif_err(efx, drv, efx->net_dev,
|
|
"Unable to configure XDP with MTU of %d (max: %d)\n",
|
|
efx->net_dev->mtu, efx_xdp_max_mtu(efx));
|
|
return -EINVAL;
|
|
}
|
|
|
|
old_prog = rtnl_dereference(efx->xdp_prog);
|
|
rcu_assign_pointer(efx->xdp_prog, prog);
|
|
/* Release the reference that was originally passed by the caller. */
|
|
if (old_prog)
|
|
bpf_prog_put(old_prog);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Context: process, rtnl_lock() held. */
|
|
static int efx_xdp(struct net_device *dev, struct netdev_bpf *xdp)
|
|
{
|
|
struct efx_nic *efx = netdev_priv(dev);
|
|
struct bpf_prog *xdp_prog;
|
|
|
|
switch (xdp->command) {
|
|
case XDP_SETUP_PROG:
|
|
return efx_xdp_setup_prog(efx, xdp->prog);
|
|
case XDP_QUERY_PROG:
|
|
xdp_prog = rtnl_dereference(efx->xdp_prog);
|
|
xdp->prog_id = xdp_prog ? xdp_prog->aux->id : 0;
|
|
return 0;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
static int efx_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **xdpfs,
|
|
u32 flags)
|
|
{
|
|
struct efx_nic *efx = netdev_priv(dev);
|
|
|
|
if (!netif_running(dev))
|
|
return -EINVAL;
|
|
|
|
return efx_xdp_tx_buffers(efx, n, xdpfs, flags & XDP_XMIT_FLUSH);
|
|
}
|
|
|
|
static void efx_update_name(struct efx_nic *efx)
|
|
{
|
|
strcpy(efx->name, efx->net_dev->name);
|
|
efx_mtd_rename(efx);
|
|
efx_set_channel_names(efx);
|
|
}
|
|
|
|
static int efx_netdev_event(struct notifier_block *this,
|
|
unsigned long event, void *ptr)
|
|
{
|
|
struct net_device *net_dev = netdev_notifier_info_to_dev(ptr);
|
|
|
|
if ((net_dev->netdev_ops == &efx_netdev_ops) &&
|
|
event == NETDEV_CHANGENAME)
|
|
efx_update_name(netdev_priv(net_dev));
|
|
|
|
return NOTIFY_DONE;
|
|
}
|
|
|
|
static struct notifier_block efx_netdev_notifier = {
|
|
.notifier_call = efx_netdev_event,
|
|
};
|
|
|
|
static ssize_t
|
|
show_phy_type(struct device *dev, struct device_attribute *attr, char *buf)
|
|
{
|
|
struct efx_nic *efx = dev_get_drvdata(dev);
|
|
return sprintf(buf, "%d\n", efx->phy_type);
|
|
}
|
|
static DEVICE_ATTR(phy_type, 0444, show_phy_type, NULL);
|
|
|
|
static int efx_register_netdev(struct efx_nic *efx)
|
|
{
|
|
struct net_device *net_dev = efx->net_dev;
|
|
struct efx_channel *channel;
|
|
int rc;
|
|
|
|
net_dev->watchdog_timeo = 5 * HZ;
|
|
net_dev->irq = efx->pci_dev->irq;
|
|
net_dev->netdev_ops = &efx_netdev_ops;
|
|
if (efx_nic_rev(efx) >= EFX_REV_HUNT_A0)
|
|
net_dev->priv_flags |= IFF_UNICAST_FLT;
|
|
net_dev->ethtool_ops = &efx_ethtool_ops;
|
|
net_dev->gso_max_segs = EFX_TSO_MAX_SEGS;
|
|
net_dev->min_mtu = EFX_MIN_MTU;
|
|
net_dev->max_mtu = EFX_MAX_MTU;
|
|
|
|
rtnl_lock();
|
|
|
|
/* Enable resets to be scheduled and check whether any were
|
|
* already requested. If so, the NIC is probably hosed so we
|
|
* abort.
|
|
*/
|
|
efx->state = STATE_READY;
|
|
smp_mb(); /* ensure we change state before checking reset_pending */
|
|
if (efx->reset_pending) {
|
|
netif_err(efx, probe, efx->net_dev,
|
|
"aborting probe due to scheduled reset\n");
|
|
rc = -EIO;
|
|
goto fail_locked;
|
|
}
|
|
|
|
rc = dev_alloc_name(net_dev, net_dev->name);
|
|
if (rc < 0)
|
|
goto fail_locked;
|
|
efx_update_name(efx);
|
|
|
|
/* Always start with carrier off; PHY events will detect the link */
|
|
netif_carrier_off(net_dev);
|
|
|
|
rc = register_netdevice(net_dev);
|
|
if (rc)
|
|
goto fail_locked;
|
|
|
|
efx_for_each_channel(channel, efx) {
|
|
struct efx_tx_queue *tx_queue;
|
|
efx_for_each_channel_tx_queue(tx_queue, channel)
|
|
efx_init_tx_queue_core_txq(tx_queue);
|
|
}
|
|
|
|
efx_associate(efx);
|
|
|
|
rtnl_unlock();
|
|
|
|
rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_type);
|
|
if (rc) {
|
|
netif_err(efx, drv, efx->net_dev,
|
|
"failed to init net dev attributes\n");
|
|
goto fail_registered;
|
|
}
|
|
|
|
efx_init_mcdi_logging(efx);
|
|
|
|
return 0;
|
|
|
|
fail_registered:
|
|
rtnl_lock();
|
|
efx_dissociate(efx);
|
|
unregister_netdevice(net_dev);
|
|
fail_locked:
|
|
efx->state = STATE_UNINIT;
|
|
rtnl_unlock();
|
|
netif_err(efx, drv, efx->net_dev, "could not register net dev\n");
|
|
return rc;
|
|
}
|
|
|
|
static void efx_unregister_netdev(struct efx_nic *efx)
|
|
{
|
|
if (!efx->net_dev)
|
|
return;
|
|
|
|
BUG_ON(netdev_priv(efx->net_dev) != efx);
|
|
|
|
if (efx_dev_registered(efx)) {
|
|
strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name));
|
|
efx_fini_mcdi_logging(efx);
|
|
device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type);
|
|
unregister_netdev(efx->net_dev);
|
|
}
|
|
}
|
|
|
|
/**************************************************************************
|
|
*
|
|
* List of NICs we support
|
|
*
|
|
**************************************************************************/
|
|
|
|
/* PCI device ID table */
|
|
static const struct pci_device_id efx_pci_table[] = {
|
|
{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0803), /* SFC9020 */
|
|
.driver_data = (unsigned long) &siena_a0_nic_type},
|
|
{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0813), /* SFL9021 */
|
|
.driver_data = (unsigned long) &siena_a0_nic_type},
|
|
{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0903), /* SFC9120 PF */
|
|
.driver_data = (unsigned long) &efx_hunt_a0_nic_type},
|
|
{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x1903), /* SFC9120 VF */
|
|
.driver_data = (unsigned long) &efx_hunt_a0_vf_nic_type},
|
|
{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0923), /* SFC9140 PF */
|
|
.driver_data = (unsigned long) &efx_hunt_a0_nic_type},
|
|
{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x1923), /* SFC9140 VF */
|
|
.driver_data = (unsigned long) &efx_hunt_a0_vf_nic_type},
|
|
{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0a03), /* SFC9220 PF */
|
|
.driver_data = (unsigned long) &efx_hunt_a0_nic_type},
|
|
{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x1a03), /* SFC9220 VF */
|
|
.driver_data = (unsigned long) &efx_hunt_a0_vf_nic_type},
|
|
{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0b03), /* SFC9250 PF */
|
|
.driver_data = (unsigned long) &efx_hunt_a0_nic_type},
|
|
{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x1b03), /* SFC9250 VF */
|
|
.driver_data = (unsigned long) &efx_hunt_a0_vf_nic_type},
|
|
{0} /* end of list */
|
|
};
|
|
|
|
/**************************************************************************
|
|
*
|
|
* Data housekeeping
|
|
*
|
|
**************************************************************************/
|
|
|
|
void efx_update_sw_stats(struct efx_nic *efx, u64 *stats)
|
|
{
|
|
u64 n_rx_nodesc_trunc = 0;
|
|
struct efx_channel *channel;
|
|
|
|
efx_for_each_channel(channel, efx)
|
|
n_rx_nodesc_trunc += channel->n_rx_nodesc_trunc;
|
|
stats[GENERIC_STAT_rx_nodesc_trunc] = n_rx_nodesc_trunc;
|
|
stats[GENERIC_STAT_rx_noskb_drops] = atomic_read(&efx->n_rx_noskb_drops);
|
|
}
|
|
|
|
/**************************************************************************
|
|
*
|
|
* PCI interface
|
|
*
|
|
**************************************************************************/
|
|
|
|
/* Main body of final NIC shutdown code
|
|
* This is called only at module unload (or hotplug removal).
|
|
*/
|
|
static void efx_pci_remove_main(struct efx_nic *efx)
|
|
{
|
|
/* Flush reset_work. It can no longer be scheduled since we
|
|
* are not READY.
|
|
*/
|
|
BUG_ON(efx->state == STATE_READY);
|
|
efx_flush_reset_workqueue(efx);
|
|
|
|
efx_disable_interrupts(efx);
|
|
efx_clear_interrupt_affinity(efx);
|
|
efx_nic_fini_interrupt(efx);
|
|
efx_fini_port(efx);
|
|
efx->type->fini(efx);
|
|
efx_fini_napi(efx);
|
|
efx_remove_all(efx);
|
|
}
|
|
|
|
/* Final NIC shutdown
|
|
* This is called only at module unload (or hotplug removal). A PF can call
|
|
* this on its VFs to ensure they are unbound first.
|
|
*/
|
|
static void efx_pci_remove(struct pci_dev *pci_dev)
|
|
{
|
|
struct efx_nic *efx;
|
|
|
|
efx = pci_get_drvdata(pci_dev);
|
|
if (!efx)
|
|
return;
|
|
|
|
/* Mark the NIC as fini, then stop the interface */
|
|
rtnl_lock();
|
|
efx_dissociate(efx);
|
|
dev_close(efx->net_dev);
|
|
efx_disable_interrupts(efx);
|
|
efx->state = STATE_UNINIT;
|
|
rtnl_unlock();
|
|
|
|
if (efx->type->sriov_fini)
|
|
efx->type->sriov_fini(efx);
|
|
|
|
efx_unregister_netdev(efx);
|
|
|
|
efx_mtd_remove(efx);
|
|
|
|
efx_pci_remove_main(efx);
|
|
|
|
efx_fini_io(efx);
|
|
netif_dbg(efx, drv, efx->net_dev, "shutdown successful\n");
|
|
|
|
efx_fini_struct(efx);
|
|
free_netdev(efx->net_dev);
|
|
|
|
pci_disable_pcie_error_reporting(pci_dev);
|
|
};
|
|
|
|
/* NIC VPD information
|
|
* Called during probe to display the part number of the
|
|
* installed NIC. VPD is potentially very large but this should
|
|
* always appear within the first 512 bytes.
|
|
*/
|
|
#define SFC_VPD_LEN 512
|
|
static void efx_probe_vpd_strings(struct efx_nic *efx)
|
|
{
|
|
struct pci_dev *dev = efx->pci_dev;
|
|
char vpd_data[SFC_VPD_LEN];
|
|
ssize_t vpd_size;
|
|
int ro_start, ro_size, i, j;
|
|
|
|
/* Get the vpd data from the device */
|
|
vpd_size = pci_read_vpd(dev, 0, sizeof(vpd_data), vpd_data);
|
|
if (vpd_size <= 0) {
|
|
netif_err(efx, drv, efx->net_dev, "Unable to read VPD\n");
|
|
return;
|
|
}
|
|
|
|
/* Get the Read only section */
|
|
ro_start = pci_vpd_find_tag(vpd_data, 0, vpd_size, PCI_VPD_LRDT_RO_DATA);
|
|
if (ro_start < 0) {
|
|
netif_err(efx, drv, efx->net_dev, "VPD Read-only not found\n");
|
|
return;
|
|
}
|
|
|
|
ro_size = pci_vpd_lrdt_size(&vpd_data[ro_start]);
|
|
j = ro_size;
|
|
i = ro_start + PCI_VPD_LRDT_TAG_SIZE;
|
|
if (i + j > vpd_size)
|
|
j = vpd_size - i;
|
|
|
|
/* Get the Part number */
|
|
i = pci_vpd_find_info_keyword(vpd_data, i, j, "PN");
|
|
if (i < 0) {
|
|
netif_err(efx, drv, efx->net_dev, "Part number not found\n");
|
|
return;
|
|
}
|
|
|
|
j = pci_vpd_info_field_size(&vpd_data[i]);
|
|
i += PCI_VPD_INFO_FLD_HDR_SIZE;
|
|
if (i + j > vpd_size) {
|
|
netif_err(efx, drv, efx->net_dev, "Incomplete part number\n");
|
|
return;
|
|
}
|
|
|
|
netif_info(efx, drv, efx->net_dev,
|
|
"Part Number : %.*s\n", j, &vpd_data[i]);
|
|
|
|
i = ro_start + PCI_VPD_LRDT_TAG_SIZE;
|
|
j = ro_size;
|
|
i = pci_vpd_find_info_keyword(vpd_data, i, j, "SN");
|
|
if (i < 0) {
|
|
netif_err(efx, drv, efx->net_dev, "Serial number not found\n");
|
|
return;
|
|
}
|
|
|
|
j = pci_vpd_info_field_size(&vpd_data[i]);
|
|
i += PCI_VPD_INFO_FLD_HDR_SIZE;
|
|
if (i + j > vpd_size) {
|
|
netif_err(efx, drv, efx->net_dev, "Incomplete serial number\n");
|
|
return;
|
|
}
|
|
|
|
efx->vpd_sn = kmalloc(j + 1, GFP_KERNEL);
|
|
if (!efx->vpd_sn)
|
|
return;
|
|
|
|
snprintf(efx->vpd_sn, j + 1, "%s", &vpd_data[i]);
|
|
}
|
|
|
|
|
|
/* Main body of NIC initialisation
|
|
* This is called at module load (or hotplug insertion, theoretically).
|
|
*/
|
|
static int efx_pci_probe_main(struct efx_nic *efx)
|
|
{
|
|
int rc;
|
|
|
|
/* Do start-of-day initialisation */
|
|
rc = efx_probe_all(efx);
|
|
if (rc)
|
|
goto fail1;
|
|
|
|
efx_init_napi(efx);
|
|
|
|
down_write(&efx->filter_sem);
|
|
rc = efx->type->init(efx);
|
|
up_write(&efx->filter_sem);
|
|
if (rc) {
|
|
netif_err(efx, probe, efx->net_dev,
|
|
"failed to initialise NIC\n");
|
|
goto fail3;
|
|
}
|
|
|
|
rc = efx_init_port(efx);
|
|
if (rc) {
|
|
netif_err(efx, probe, efx->net_dev,
|
|
"failed to initialise port\n");
|
|
goto fail4;
|
|
}
|
|
|
|
rc = efx_nic_init_interrupt(efx);
|
|
if (rc)
|
|
goto fail5;
|
|
|
|
efx_set_interrupt_affinity(efx);
|
|
rc = efx_enable_interrupts(efx);
|
|
if (rc)
|
|
goto fail6;
|
|
|
|
return 0;
|
|
|
|
fail6:
|
|
efx_clear_interrupt_affinity(efx);
|
|
efx_nic_fini_interrupt(efx);
|
|
fail5:
|
|
efx_fini_port(efx);
|
|
fail4:
|
|
efx->type->fini(efx);
|
|
fail3:
|
|
efx_fini_napi(efx);
|
|
efx_remove_all(efx);
|
|
fail1:
|
|
return rc;
|
|
}
|
|
|
|
static int efx_pci_probe_post_io(struct efx_nic *efx)
|
|
{
|
|
struct net_device *net_dev = efx->net_dev;
|
|
int rc = efx_pci_probe_main(efx);
|
|
|
|
if (rc)
|
|
return rc;
|
|
|
|
if (efx->type->sriov_init) {
|
|
rc = efx->type->sriov_init(efx);
|
|
if (rc)
|
|
netif_err(efx, probe, efx->net_dev,
|
|
"SR-IOV can't be enabled rc %d\n", rc);
|
|
}
|
|
|
|
/* Determine netdevice features */
|
|
net_dev->features |= (efx->type->offload_features | NETIF_F_SG |
|
|
NETIF_F_TSO | NETIF_F_RXCSUM | NETIF_F_RXALL);
|
|
if (efx->type->offload_features & (NETIF_F_IPV6_CSUM | NETIF_F_HW_CSUM))
|
|
net_dev->features |= NETIF_F_TSO6;
|
|
/* Check whether device supports TSO */
|
|
if (!efx->type->tso_versions || !efx->type->tso_versions(efx))
|
|
net_dev->features &= ~NETIF_F_ALL_TSO;
|
|
/* Mask for features that also apply to VLAN devices */
|
|
net_dev->vlan_features |= (NETIF_F_HW_CSUM | NETIF_F_SG |
|
|
NETIF_F_HIGHDMA | NETIF_F_ALL_TSO |
|
|
NETIF_F_RXCSUM);
|
|
|
|
net_dev->hw_features |= net_dev->features & ~efx->fixed_features;
|
|
|
|
/* Disable receiving frames with bad FCS, by default. */
|
|
net_dev->features &= ~NETIF_F_RXALL;
|
|
|
|
/* Disable VLAN filtering by default. It may be enforced if
|
|
* the feature is fixed (i.e. VLAN filters are required to
|
|
* receive VLAN tagged packets due to vPort restrictions).
|
|
*/
|
|
net_dev->features &= ~NETIF_F_HW_VLAN_CTAG_FILTER;
|
|
net_dev->features |= efx->fixed_features;
|
|
|
|
rc = efx_register_netdev(efx);
|
|
if (!rc)
|
|
return 0;
|
|
|
|
efx_pci_remove_main(efx);
|
|
return rc;
|
|
}
|
|
|
|
/* NIC initialisation
|
|
*
|
|
* This is called at module load (or hotplug insertion,
|
|
* theoretically). It sets up PCI mappings, resets the NIC,
|
|
* sets up and registers the network devices with the kernel and hooks
|
|
* the interrupt service routine. It does not prepare the device for
|
|
* transmission; this is left to the first time one of the network
|
|
* interfaces is brought up (i.e. efx_net_open).
|
|
*/
|
|
static int efx_pci_probe(struct pci_dev *pci_dev,
|
|
const struct pci_device_id *entry)
|
|
{
|
|
struct net_device *net_dev;
|
|
struct efx_nic *efx;
|
|
int rc;
|
|
|
|
/* Allocate and initialise a struct net_device and struct efx_nic */
|
|
net_dev = alloc_etherdev_mqs(sizeof(*efx), EFX_MAX_CORE_TX_QUEUES,
|
|
EFX_MAX_RX_QUEUES);
|
|
if (!net_dev)
|
|
return -ENOMEM;
|
|
efx = netdev_priv(net_dev);
|
|
efx->type = (const struct efx_nic_type *) entry->driver_data;
|
|
efx->fixed_features |= NETIF_F_HIGHDMA;
|
|
|
|
pci_set_drvdata(pci_dev, efx);
|
|
SET_NETDEV_DEV(net_dev, &pci_dev->dev);
|
|
rc = efx_init_struct(efx, pci_dev, net_dev);
|
|
if (rc)
|
|
goto fail1;
|
|
|
|
netif_info(efx, probe, efx->net_dev,
|
|
"Solarflare NIC detected\n");
|
|
|
|
if (!efx->type->is_vf)
|
|
efx_probe_vpd_strings(efx);
|
|
|
|
/* Set up basic I/O (BAR mappings etc) */
|
|
rc = efx_init_io(efx, efx->type->mem_bar(efx), efx->type->max_dma_mask,
|
|
efx->type->mem_map_size(efx));
|
|
if (rc)
|
|
goto fail2;
|
|
|
|
rc = efx_pci_probe_post_io(efx);
|
|
if (rc) {
|
|
/* On failure, retry once immediately.
|
|
* If we aborted probe due to a scheduled reset, dismiss it.
|
|
*/
|
|
efx->reset_pending = 0;
|
|
rc = efx_pci_probe_post_io(efx);
|
|
if (rc) {
|
|
/* On another failure, retry once more
|
|
* after a 50-305ms delay.
|
|
*/
|
|
unsigned char r;
|
|
|
|
get_random_bytes(&r, 1);
|
|
msleep((unsigned int)r + 50);
|
|
efx->reset_pending = 0;
|
|
rc = efx_pci_probe_post_io(efx);
|
|
}
|
|
}
|
|
if (rc)
|
|
goto fail3;
|
|
|
|
netif_dbg(efx, probe, efx->net_dev, "initialisation successful\n");
|
|
|
|
/* Try to create MTDs, but allow this to fail */
|
|
rtnl_lock();
|
|
rc = efx_mtd_probe(efx);
|
|
rtnl_unlock();
|
|
if (rc && rc != -EPERM)
|
|
netif_warn(efx, probe, efx->net_dev,
|
|
"failed to create MTDs (%d)\n", rc);
|
|
|
|
(void)pci_enable_pcie_error_reporting(pci_dev);
|
|
|
|
if (efx->type->udp_tnl_push_ports)
|
|
efx->type->udp_tnl_push_ports(efx);
|
|
|
|
return 0;
|
|
|
|
fail3:
|
|
efx_fini_io(efx);
|
|
fail2:
|
|
efx_fini_struct(efx);
|
|
fail1:
|
|
WARN_ON(rc > 0);
|
|
netif_dbg(efx, drv, efx->net_dev, "initialisation failed. rc=%d\n", rc);
|
|
free_netdev(net_dev);
|
|
return rc;
|
|
}
|
|
|
|
/* efx_pci_sriov_configure returns the actual number of Virtual Functions
|
|
* enabled on success
|
|
*/
|
|
#ifdef CONFIG_SFC_SRIOV
|
|
static int efx_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
|
|
{
|
|
int rc;
|
|
struct efx_nic *efx = pci_get_drvdata(dev);
|
|
|
|
if (efx->type->sriov_configure) {
|
|
rc = efx->type->sriov_configure(efx, num_vfs);
|
|
if (rc)
|
|
return rc;
|
|
else
|
|
return num_vfs;
|
|
} else
|
|
return -EOPNOTSUPP;
|
|
}
|
|
#endif
|
|
|
|
static int efx_pm_freeze(struct device *dev)
|
|
{
|
|
struct efx_nic *efx = dev_get_drvdata(dev);
|
|
|
|
rtnl_lock();
|
|
|
|
if (efx->state != STATE_DISABLED) {
|
|
efx->state = STATE_UNINIT;
|
|
|
|
efx_device_detach_sync(efx);
|
|
|
|
efx_stop_all(efx);
|
|
efx_disable_interrupts(efx);
|
|
}
|
|
|
|
rtnl_unlock();
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int efx_pm_thaw(struct device *dev)
|
|
{
|
|
int rc;
|
|
struct efx_nic *efx = dev_get_drvdata(dev);
|
|
|
|
rtnl_lock();
|
|
|
|
if (efx->state != STATE_DISABLED) {
|
|
rc = efx_enable_interrupts(efx);
|
|
if (rc)
|
|
goto fail;
|
|
|
|
mutex_lock(&efx->mac_lock);
|
|
efx->phy_op->reconfigure(efx);
|
|
mutex_unlock(&efx->mac_lock);
|
|
|
|
efx_start_all(efx);
|
|
|
|
efx_device_attach_if_not_resetting(efx);
|
|
|
|
efx->state = STATE_READY;
|
|
|
|
efx->type->resume_wol(efx);
|
|
}
|
|
|
|
rtnl_unlock();
|
|
|
|
/* Reschedule any quenched resets scheduled during efx_pm_freeze() */
|
|
efx_queue_reset_work(efx);
|
|
|
|
return 0;
|
|
|
|
fail:
|
|
rtnl_unlock();
|
|
|
|
return rc;
|
|
}
|
|
|
|
static int efx_pm_poweroff(struct device *dev)
|
|
{
|
|
struct pci_dev *pci_dev = to_pci_dev(dev);
|
|
struct efx_nic *efx = pci_get_drvdata(pci_dev);
|
|
|
|
efx->type->fini(efx);
|
|
|
|
efx->reset_pending = 0;
|
|
|
|
pci_save_state(pci_dev);
|
|
return pci_set_power_state(pci_dev, PCI_D3hot);
|
|
}
|
|
|
|
/* Used for both resume and restore */
|
|
static int efx_pm_resume(struct device *dev)
|
|
{
|
|
struct pci_dev *pci_dev = to_pci_dev(dev);
|
|
struct efx_nic *efx = pci_get_drvdata(pci_dev);
|
|
int rc;
|
|
|
|
rc = pci_set_power_state(pci_dev, PCI_D0);
|
|
if (rc)
|
|
return rc;
|
|
pci_restore_state(pci_dev);
|
|
rc = pci_enable_device(pci_dev);
|
|
if (rc)
|
|
return rc;
|
|
pci_set_master(efx->pci_dev);
|
|
rc = efx->type->reset(efx, RESET_TYPE_ALL);
|
|
if (rc)
|
|
return rc;
|
|
down_write(&efx->filter_sem);
|
|
rc = efx->type->init(efx);
|
|
up_write(&efx->filter_sem);
|
|
if (rc)
|
|
return rc;
|
|
rc = efx_pm_thaw(dev);
|
|
return rc;
|
|
}
|
|
|
|
static int efx_pm_suspend(struct device *dev)
|
|
{
|
|
int rc;
|
|
|
|
efx_pm_freeze(dev);
|
|
rc = efx_pm_poweroff(dev);
|
|
if (rc)
|
|
efx_pm_resume(dev);
|
|
return rc;
|
|
}
|
|
|
|
static const struct dev_pm_ops efx_pm_ops = {
|
|
.suspend = efx_pm_suspend,
|
|
.resume = efx_pm_resume,
|
|
.freeze = efx_pm_freeze,
|
|
.thaw = efx_pm_thaw,
|
|
.poweroff = efx_pm_poweroff,
|
|
.restore = efx_pm_resume,
|
|
};
|
|
|
|
static struct pci_driver efx_pci_driver = {
|
|
.name = KBUILD_MODNAME,
|
|
.id_table = efx_pci_table,
|
|
.probe = efx_pci_probe,
|
|
.remove = efx_pci_remove,
|
|
.driver.pm = &efx_pm_ops,
|
|
.err_handler = &efx_err_handlers,
|
|
#ifdef CONFIG_SFC_SRIOV
|
|
.sriov_configure = efx_pci_sriov_configure,
|
|
#endif
|
|
};
|
|
|
|
/**************************************************************************
|
|
*
|
|
* Kernel module interface
|
|
*
|
|
*************************************************************************/
|
|
|
|
static int __init efx_init_module(void)
|
|
{
|
|
int rc;
|
|
|
|
printk(KERN_INFO "Solarflare NET driver v" EFX_DRIVER_VERSION "\n");
|
|
|
|
rc = register_netdevice_notifier(&efx_netdev_notifier);
|
|
if (rc)
|
|
goto err_notifier;
|
|
|
|
#ifdef CONFIG_SFC_SRIOV
|
|
rc = efx_init_sriov();
|
|
if (rc)
|
|
goto err_sriov;
|
|
#endif
|
|
|
|
rc = efx_create_reset_workqueue();
|
|
if (rc)
|
|
goto err_reset;
|
|
|
|
rc = pci_register_driver(&efx_pci_driver);
|
|
if (rc < 0)
|
|
goto err_pci;
|
|
|
|
rc = pci_register_driver(&ef100_pci_driver);
|
|
if (rc < 0)
|
|
goto err_pci_ef100;
|
|
|
|
return 0;
|
|
|
|
err_pci_ef100:
|
|
pci_unregister_driver(&efx_pci_driver);
|
|
err_pci:
|
|
efx_destroy_reset_workqueue();
|
|
err_reset:
|
|
#ifdef CONFIG_SFC_SRIOV
|
|
efx_fini_sriov();
|
|
err_sriov:
|
|
#endif
|
|
unregister_netdevice_notifier(&efx_netdev_notifier);
|
|
err_notifier:
|
|
return rc;
|
|
}
|
|
|
|
static void __exit efx_exit_module(void)
|
|
{
|
|
printk(KERN_INFO "Solarflare NET driver unloading\n");
|
|
|
|
pci_unregister_driver(&ef100_pci_driver);
|
|
pci_unregister_driver(&efx_pci_driver);
|
|
efx_destroy_reset_workqueue();
|
|
#ifdef CONFIG_SFC_SRIOV
|
|
efx_fini_sriov();
|
|
#endif
|
|
unregister_netdevice_notifier(&efx_netdev_notifier);
|
|
|
|
}
|
|
|
|
module_init(efx_init_module);
|
|
module_exit(efx_exit_module);
|
|
|
|
MODULE_AUTHOR("Solarflare Communications and "
|
|
"Michael Brown <mbrown@fensystems.co.uk>");
|
|
MODULE_DESCRIPTION("Solarflare network driver");
|
|
MODULE_LICENSE("GPL");
|
|
MODULE_DEVICE_TABLE(pci, efx_pci_table);
|
|
MODULE_VERSION(EFX_DRIVER_VERSION);
|