linux/drivers/net/xen-netback/netback.c
David S. Miller 629821d9b0 Revert "xen: netback: remove redundant xenvif_put"
This reverts commit d37204566a.

This change is incorrect, as per Jan Beulich:

====================
But this is wrong from all we can tell, we discussed this before
(Wei pointed to the discussion in an earlier reply). The core of
it is that the put here parallels the one in netbk_tx_err(), and
the one in xenvif_carrier_off() matches the get from
xenvif_connect() (which normally would be done on the path
coming through xenvif_disconnect()).
====================

And a previous discussion of this issue is at:

http://marc.info/?l=xen-devel&m=136084174026977&w=2

Signed-off-by: David S. Miller <davem@davemloft.net>
2013-02-19 13:04:34 -05:00

1759 lines
44 KiB
C

/*
* Back-end of the driver for virtual network devices. This portion of the
* driver exports a 'unified' network-device interface that can be accessed
* by any operating system that implements a compatible front end. A
* reference front-end implementation can be found in:
* drivers/net/xen-netfront.c
*
* Copyright (c) 2002-2005, K A Fraser
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License version 2
* as published by the Free Software Foundation; or, when distributed
* separately from the Linux kernel or incorporated into other
* software packages, subject to the following license:
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this source file (the "Software"), to deal in the Software without
* restriction, including without limitation the rights to use, copy, modify,
* merge, publish, distribute, sublicense, and/or sell copies of the Software,
* and to permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include "common.h"
#include <linux/kthread.h>
#include <linux/if_vlan.h>
#include <linux/udp.h>
#include <net/tcp.h>
#include <xen/xen.h>
#include <xen/events.h>
#include <xen/interface/memory.h>
#include <asm/xen/hypercall.h>
#include <asm/xen/page.h>
struct pending_tx_info {
struct xen_netif_tx_request req;
struct xenvif *vif;
};
typedef unsigned int pending_ring_idx_t;
struct netbk_rx_meta {
int id;
int size;
int gso_size;
};
#define MAX_PENDING_REQS 256
/* Discriminate from any valid pending_idx value. */
#define INVALID_PENDING_IDX 0xFFFF
#define MAX_BUFFER_OFFSET PAGE_SIZE
/* extra field used in struct page */
union page_ext {
struct {
#if BITS_PER_LONG < 64
#define IDX_WIDTH 8
#define GROUP_WIDTH (BITS_PER_LONG - IDX_WIDTH)
unsigned int group:GROUP_WIDTH;
unsigned int idx:IDX_WIDTH;
#else
unsigned int group, idx;
#endif
} e;
void *mapping;
};
struct xen_netbk {
wait_queue_head_t wq;
struct task_struct *task;
struct sk_buff_head rx_queue;
struct sk_buff_head tx_queue;
struct timer_list net_timer;
struct page *mmap_pages[MAX_PENDING_REQS];
pending_ring_idx_t pending_prod;
pending_ring_idx_t pending_cons;
struct list_head net_schedule_list;
/* Protect the net_schedule_list in netif. */
spinlock_t net_schedule_list_lock;
atomic_t netfront_count;
struct pending_tx_info pending_tx_info[MAX_PENDING_REQS];
struct gnttab_copy tx_copy_ops[MAX_PENDING_REQS];
u16 pending_ring[MAX_PENDING_REQS];
/*
* Given MAX_BUFFER_OFFSET of 4096 the worst case is that each
* head/fragment page uses 2 copy operations because it
* straddles two buffers in the frontend.
*/
struct gnttab_copy grant_copy_op[2*XEN_NETIF_RX_RING_SIZE];
struct netbk_rx_meta meta[2*XEN_NETIF_RX_RING_SIZE];
};
static struct xen_netbk *xen_netbk;
static int xen_netbk_group_nr;
void xen_netbk_add_xenvif(struct xenvif *vif)
{
int i;
int min_netfront_count;
int min_group = 0;
struct xen_netbk *netbk;
min_netfront_count = atomic_read(&xen_netbk[0].netfront_count);
for (i = 0; i < xen_netbk_group_nr; i++) {
int netfront_count = atomic_read(&xen_netbk[i].netfront_count);
if (netfront_count < min_netfront_count) {
min_group = i;
min_netfront_count = netfront_count;
}
}
netbk = &xen_netbk[min_group];
vif->netbk = netbk;
atomic_inc(&netbk->netfront_count);
}
void xen_netbk_remove_xenvif(struct xenvif *vif)
{
struct xen_netbk *netbk = vif->netbk;
vif->netbk = NULL;
atomic_dec(&netbk->netfront_count);
}
static void xen_netbk_idx_release(struct xen_netbk *netbk, u16 pending_idx,
u8 status);
static void make_tx_response(struct xenvif *vif,
struct xen_netif_tx_request *txp,
s8 st);
static struct xen_netif_rx_response *make_rx_response(struct xenvif *vif,
u16 id,
s8 st,
u16 offset,
u16 size,
u16 flags);
static inline unsigned long idx_to_pfn(struct xen_netbk *netbk,
u16 idx)
{
return page_to_pfn(netbk->mmap_pages[idx]);
}
static inline unsigned long idx_to_kaddr(struct xen_netbk *netbk,
u16 idx)
{
return (unsigned long)pfn_to_kaddr(idx_to_pfn(netbk, idx));
}
/* extra field used in struct page */
static inline void set_page_ext(struct page *pg, struct xen_netbk *netbk,
unsigned int idx)
{
unsigned int group = netbk - xen_netbk;
union page_ext ext = { .e = { .group = group + 1, .idx = idx } };
BUILD_BUG_ON(sizeof(ext) > sizeof(ext.mapping));
pg->mapping = ext.mapping;
}
static int get_page_ext(struct page *pg,
unsigned int *pgroup, unsigned int *pidx)
{
union page_ext ext = { .mapping = pg->mapping };
struct xen_netbk *netbk;
unsigned int group, idx;
group = ext.e.group - 1;
if (group < 0 || group >= xen_netbk_group_nr)
return 0;
netbk = &xen_netbk[group];
idx = ext.e.idx;
if ((idx < 0) || (idx >= MAX_PENDING_REQS))
return 0;
if (netbk->mmap_pages[idx] != pg)
return 0;
*pgroup = group;
*pidx = idx;
return 1;
}
/*
* This is the amount of packet we copy rather than map, so that the
* guest can't fiddle with the contents of the headers while we do
* packet processing on them (netfilter, routing, etc).
*/
#define PKT_PROT_LEN (ETH_HLEN + \
VLAN_HLEN + \
sizeof(struct iphdr) + MAX_IPOPTLEN + \
sizeof(struct tcphdr) + MAX_TCP_OPTION_SPACE)
static u16 frag_get_pending_idx(skb_frag_t *frag)
{
return (u16)frag->page_offset;
}
static void frag_set_pending_idx(skb_frag_t *frag, u16 pending_idx)
{
frag->page_offset = pending_idx;
}
static inline pending_ring_idx_t pending_index(unsigned i)
{
return i & (MAX_PENDING_REQS-1);
}
static inline pending_ring_idx_t nr_pending_reqs(struct xen_netbk *netbk)
{
return MAX_PENDING_REQS -
netbk->pending_prod + netbk->pending_cons;
}
static void xen_netbk_kick_thread(struct xen_netbk *netbk)
{
wake_up(&netbk->wq);
}
static int max_required_rx_slots(struct xenvif *vif)
{
int max = DIV_ROUND_UP(vif->dev->mtu, PAGE_SIZE);
if (vif->can_sg || vif->gso || vif->gso_prefix)
max += MAX_SKB_FRAGS + 1; /* extra_info + frags */
return max;
}
int xen_netbk_rx_ring_full(struct xenvif *vif)
{
RING_IDX peek = vif->rx_req_cons_peek;
RING_IDX needed = max_required_rx_slots(vif);
return ((vif->rx.sring->req_prod - peek) < needed) ||
((vif->rx.rsp_prod_pvt + XEN_NETIF_RX_RING_SIZE - peek) < needed);
}
int xen_netbk_must_stop_queue(struct xenvif *vif)
{
if (!xen_netbk_rx_ring_full(vif))
return 0;
vif->rx.sring->req_event = vif->rx_req_cons_peek +
max_required_rx_slots(vif);
mb(); /* request notification /then/ check the queue */
return xen_netbk_rx_ring_full(vif);
}
/*
* Returns true if we should start a new receive buffer instead of
* adding 'size' bytes to a buffer which currently contains 'offset'
* bytes.
*/
static bool start_new_rx_buffer(int offset, unsigned long size, int head)
{
/* simple case: we have completely filled the current buffer. */
if (offset == MAX_BUFFER_OFFSET)
return true;
/*
* complex case: start a fresh buffer if the current frag
* would overflow the current buffer but only if:
* (i) this frag would fit completely in the next buffer
* and (ii) there is already some data in the current buffer
* and (iii) this is not the head buffer.
*
* Where:
* - (i) stops us splitting a frag into two copies
* unless the frag is too large for a single buffer.
* - (ii) stops us from leaving a buffer pointlessly empty.
* - (iii) stops us leaving the first buffer
* empty. Strictly speaking this is already covered
* by (ii) but is explicitly checked because
* netfront relies on the first buffer being
* non-empty and can crash otherwise.
*
* This means we will effectively linearise small
* frags but do not needlessly split large buffers
* into multiple copies tend to give large frags their
* own buffers as before.
*/
if ((offset + size > MAX_BUFFER_OFFSET) &&
(size <= MAX_BUFFER_OFFSET) && offset && !head)
return true;
return false;
}
/*
* Figure out how many ring slots we're going to need to send @skb to
* the guest. This function is essentially a dry run of
* netbk_gop_frag_copy.
*/
unsigned int xen_netbk_count_skb_slots(struct xenvif *vif, struct sk_buff *skb)
{
unsigned int count;
int i, copy_off;
count = DIV_ROUND_UP(skb_headlen(skb), PAGE_SIZE);
copy_off = skb_headlen(skb) % PAGE_SIZE;
if (skb_shinfo(skb)->gso_size)
count++;
for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
unsigned long size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
unsigned long offset = skb_shinfo(skb)->frags[i].page_offset;
unsigned long bytes;
offset &= ~PAGE_MASK;
while (size > 0) {
BUG_ON(offset >= PAGE_SIZE);
BUG_ON(copy_off > MAX_BUFFER_OFFSET);
bytes = PAGE_SIZE - offset;
if (bytes > size)
bytes = size;
if (start_new_rx_buffer(copy_off, bytes, 0)) {
count++;
copy_off = 0;
}
if (copy_off + bytes > MAX_BUFFER_OFFSET)
bytes = MAX_BUFFER_OFFSET - copy_off;
copy_off += bytes;
offset += bytes;
size -= bytes;
if (offset == PAGE_SIZE)
offset = 0;
}
}
return count;
}
struct netrx_pending_operations {
unsigned copy_prod, copy_cons;
unsigned meta_prod, meta_cons;
struct gnttab_copy *copy;
struct netbk_rx_meta *meta;
int copy_off;
grant_ref_t copy_gref;
};
static struct netbk_rx_meta *get_next_rx_buffer(struct xenvif *vif,
struct netrx_pending_operations *npo)
{
struct netbk_rx_meta *meta;
struct xen_netif_rx_request *req;
req = RING_GET_REQUEST(&vif->rx, vif->rx.req_cons++);
meta = npo->meta + npo->meta_prod++;
meta->gso_size = 0;
meta->size = 0;
meta->id = req->id;
npo->copy_off = 0;
npo->copy_gref = req->gref;
return meta;
}
/*
* Set up the grant operations for this fragment. If it's a flipping
* interface, we also set up the unmap request from here.
*/
static void netbk_gop_frag_copy(struct xenvif *vif, struct sk_buff *skb,
struct netrx_pending_operations *npo,
struct page *page, unsigned long size,
unsigned long offset, int *head)
{
struct gnttab_copy *copy_gop;
struct netbk_rx_meta *meta;
/*
* These variables are used iff get_page_ext returns true,
* in which case they are guaranteed to be initialized.
*/
unsigned int uninitialized_var(group), uninitialized_var(idx);
int foreign = get_page_ext(page, &group, &idx);
unsigned long bytes;
/* Data must not cross a page boundary. */
BUG_ON(size + offset > PAGE_SIZE<<compound_order(page));
meta = npo->meta + npo->meta_prod - 1;
/* Skip unused frames from start of page */
page += offset >> PAGE_SHIFT;
offset &= ~PAGE_MASK;
while (size > 0) {
BUG_ON(offset >= PAGE_SIZE);
BUG_ON(npo->copy_off > MAX_BUFFER_OFFSET);
bytes = PAGE_SIZE - offset;
if (bytes > size)
bytes = size;
if (start_new_rx_buffer(npo->copy_off, bytes, *head)) {
/*
* Netfront requires there to be some data in the head
* buffer.
*/
BUG_ON(*head);
meta = get_next_rx_buffer(vif, npo);
}
if (npo->copy_off + bytes > MAX_BUFFER_OFFSET)
bytes = MAX_BUFFER_OFFSET - npo->copy_off;
copy_gop = npo->copy + npo->copy_prod++;
copy_gop->flags = GNTCOPY_dest_gref;
if (foreign) {
struct xen_netbk *netbk = &xen_netbk[group];
struct pending_tx_info *src_pend;
src_pend = &netbk->pending_tx_info[idx];
copy_gop->source.domid = src_pend->vif->domid;
copy_gop->source.u.ref = src_pend->req.gref;
copy_gop->flags |= GNTCOPY_source_gref;
} else {
void *vaddr = page_address(page);
copy_gop->source.domid = DOMID_SELF;
copy_gop->source.u.gmfn = virt_to_mfn(vaddr);
}
copy_gop->source.offset = offset;
copy_gop->dest.domid = vif->domid;
copy_gop->dest.offset = npo->copy_off;
copy_gop->dest.u.ref = npo->copy_gref;
copy_gop->len = bytes;
npo->copy_off += bytes;
meta->size += bytes;
offset += bytes;
size -= bytes;
/* Next frame */
if (offset == PAGE_SIZE && size) {
BUG_ON(!PageCompound(page));
page++;
offset = 0;
}
/* Leave a gap for the GSO descriptor. */
if (*head && skb_shinfo(skb)->gso_size && !vif->gso_prefix)
vif->rx.req_cons++;
*head = 0; /* There must be something in this buffer now. */
}
}
/*
* Prepare an SKB to be transmitted to the frontend.
*
* This function is responsible for allocating grant operations, meta
* structures, etc.
*
* It returns the number of meta structures consumed. The number of
* ring slots used is always equal to the number of meta slots used
* plus the number of GSO descriptors used. Currently, we use either
* zero GSO descriptors (for non-GSO packets) or one descriptor (for
* frontend-side LRO).
*/
static int netbk_gop_skb(struct sk_buff *skb,
struct netrx_pending_operations *npo)
{
struct xenvif *vif = netdev_priv(skb->dev);
int nr_frags = skb_shinfo(skb)->nr_frags;
int i;
struct xen_netif_rx_request *req;
struct netbk_rx_meta *meta;
unsigned char *data;
int head = 1;
int old_meta_prod;
old_meta_prod = npo->meta_prod;
/* Set up a GSO prefix descriptor, if necessary */
if (skb_shinfo(skb)->gso_size && vif->gso_prefix) {
req = RING_GET_REQUEST(&vif->rx, vif->rx.req_cons++);
meta = npo->meta + npo->meta_prod++;
meta->gso_size = skb_shinfo(skb)->gso_size;
meta->size = 0;
meta->id = req->id;
}
req = RING_GET_REQUEST(&vif->rx, vif->rx.req_cons++);
meta = npo->meta + npo->meta_prod++;
if (!vif->gso_prefix)
meta->gso_size = skb_shinfo(skb)->gso_size;
else
meta->gso_size = 0;
meta->size = 0;
meta->id = req->id;
npo->copy_off = 0;
npo->copy_gref = req->gref;
data = skb->data;
while (data < skb_tail_pointer(skb)) {
unsigned int offset = offset_in_page(data);
unsigned int len = PAGE_SIZE - offset;
if (data + len > skb_tail_pointer(skb))
len = skb_tail_pointer(skb) - data;
netbk_gop_frag_copy(vif, skb, npo,
virt_to_page(data), len, offset, &head);
data += len;
}
for (i = 0; i < nr_frags; i++) {
netbk_gop_frag_copy(vif, skb, npo,
skb_frag_page(&skb_shinfo(skb)->frags[i]),
skb_frag_size(&skb_shinfo(skb)->frags[i]),
skb_shinfo(skb)->frags[i].page_offset,
&head);
}
return npo->meta_prod - old_meta_prod;
}
/*
* This is a twin to netbk_gop_skb. Assume that netbk_gop_skb was
* used to set up the operations on the top of
* netrx_pending_operations, which have since been done. Check that
* they didn't give any errors and advance over them.
*/
static int netbk_check_gop(struct xenvif *vif, int nr_meta_slots,
struct netrx_pending_operations *npo)
{
struct gnttab_copy *copy_op;
int status = XEN_NETIF_RSP_OKAY;
int i;
for (i = 0; i < nr_meta_slots; i++) {
copy_op = npo->copy + npo->copy_cons++;
if (copy_op->status != GNTST_okay) {
netdev_dbg(vif->dev,
"Bad status %d from copy to DOM%d.\n",
copy_op->status, vif->domid);
status = XEN_NETIF_RSP_ERROR;
}
}
return status;
}
static void netbk_add_frag_responses(struct xenvif *vif, int status,
struct netbk_rx_meta *meta,
int nr_meta_slots)
{
int i;
unsigned long offset;
/* No fragments used */
if (nr_meta_slots <= 1)
return;
nr_meta_slots--;
for (i = 0; i < nr_meta_slots; i++) {
int flags;
if (i == nr_meta_slots - 1)
flags = 0;
else
flags = XEN_NETRXF_more_data;
offset = 0;
make_rx_response(vif, meta[i].id, status, offset,
meta[i].size, flags);
}
}
struct skb_cb_overlay {
int meta_slots_used;
};
static void xen_netbk_rx_action(struct xen_netbk *netbk)
{
struct xenvif *vif = NULL, *tmp;
s8 status;
u16 irq, flags;
struct xen_netif_rx_response *resp;
struct sk_buff_head rxq;
struct sk_buff *skb;
LIST_HEAD(notify);
int ret;
int nr_frags;
int count;
unsigned long offset;
struct skb_cb_overlay *sco;
struct netrx_pending_operations npo = {
.copy = netbk->grant_copy_op,
.meta = netbk->meta,
};
skb_queue_head_init(&rxq);
count = 0;
while ((skb = skb_dequeue(&netbk->rx_queue)) != NULL) {
vif = netdev_priv(skb->dev);
nr_frags = skb_shinfo(skb)->nr_frags;
sco = (struct skb_cb_overlay *)skb->cb;
sco->meta_slots_used = netbk_gop_skb(skb, &npo);
count += nr_frags + 1;
__skb_queue_tail(&rxq, skb);
/* Filled the batch queue? */
if (count + MAX_SKB_FRAGS >= XEN_NETIF_RX_RING_SIZE)
break;
}
BUG_ON(npo.meta_prod > ARRAY_SIZE(netbk->meta));
if (!npo.copy_prod)
return;
BUG_ON(npo.copy_prod > ARRAY_SIZE(netbk->grant_copy_op));
gnttab_batch_copy(netbk->grant_copy_op, npo.copy_prod);
while ((skb = __skb_dequeue(&rxq)) != NULL) {
sco = (struct skb_cb_overlay *)skb->cb;
vif = netdev_priv(skb->dev);
if (netbk->meta[npo.meta_cons].gso_size && vif->gso_prefix) {
resp = RING_GET_RESPONSE(&vif->rx,
vif->rx.rsp_prod_pvt++);
resp->flags = XEN_NETRXF_gso_prefix | XEN_NETRXF_more_data;
resp->offset = netbk->meta[npo.meta_cons].gso_size;
resp->id = netbk->meta[npo.meta_cons].id;
resp->status = sco->meta_slots_used;
npo.meta_cons++;
sco->meta_slots_used--;
}
vif->dev->stats.tx_bytes += skb->len;
vif->dev->stats.tx_packets++;
status = netbk_check_gop(vif, sco->meta_slots_used, &npo);
if (sco->meta_slots_used == 1)
flags = 0;
else
flags = XEN_NETRXF_more_data;
if (skb->ip_summed == CHECKSUM_PARTIAL) /* local packet? */
flags |= XEN_NETRXF_csum_blank | XEN_NETRXF_data_validated;
else if (skb->ip_summed == CHECKSUM_UNNECESSARY)
/* remote but checksummed. */
flags |= XEN_NETRXF_data_validated;
offset = 0;
resp = make_rx_response(vif, netbk->meta[npo.meta_cons].id,
status, offset,
netbk->meta[npo.meta_cons].size,
flags);
if (netbk->meta[npo.meta_cons].gso_size && !vif->gso_prefix) {
struct xen_netif_extra_info *gso =
(struct xen_netif_extra_info *)
RING_GET_RESPONSE(&vif->rx,
vif->rx.rsp_prod_pvt++);
resp->flags |= XEN_NETRXF_extra_info;
gso->u.gso.size = netbk->meta[npo.meta_cons].gso_size;
gso->u.gso.type = XEN_NETIF_GSO_TYPE_TCPV4;
gso->u.gso.pad = 0;
gso->u.gso.features = 0;
gso->type = XEN_NETIF_EXTRA_TYPE_GSO;
gso->flags = 0;
}
netbk_add_frag_responses(vif, status,
netbk->meta + npo.meta_cons + 1,
sco->meta_slots_used);
RING_PUSH_RESPONSES_AND_CHECK_NOTIFY(&vif->rx, ret);
irq = vif->irq;
if (ret && list_empty(&vif->notify_list))
list_add_tail(&vif->notify_list, &notify);
xenvif_notify_tx_completion(vif);
xenvif_put(vif);
npo.meta_cons += sco->meta_slots_used;
dev_kfree_skb(skb);
}
list_for_each_entry_safe(vif, tmp, &notify, notify_list) {
notify_remote_via_irq(vif->irq);
list_del_init(&vif->notify_list);
}
/* More work to do? */
if (!skb_queue_empty(&netbk->rx_queue) &&
!timer_pending(&netbk->net_timer))
xen_netbk_kick_thread(netbk);
}
void xen_netbk_queue_tx_skb(struct xenvif *vif, struct sk_buff *skb)
{
struct xen_netbk *netbk = vif->netbk;
skb_queue_tail(&netbk->rx_queue, skb);
xen_netbk_kick_thread(netbk);
}
static void xen_netbk_alarm(unsigned long data)
{
struct xen_netbk *netbk = (struct xen_netbk *)data;
xen_netbk_kick_thread(netbk);
}
static int __on_net_schedule_list(struct xenvif *vif)
{
return !list_empty(&vif->schedule_list);
}
/* Must be called with net_schedule_list_lock held */
static void remove_from_net_schedule_list(struct xenvif *vif)
{
if (likely(__on_net_schedule_list(vif))) {
list_del_init(&vif->schedule_list);
xenvif_put(vif);
}
}
static struct xenvif *poll_net_schedule_list(struct xen_netbk *netbk)
{
struct xenvif *vif = NULL;
spin_lock_irq(&netbk->net_schedule_list_lock);
if (list_empty(&netbk->net_schedule_list))
goto out;
vif = list_first_entry(&netbk->net_schedule_list,
struct xenvif, schedule_list);
if (!vif)
goto out;
xenvif_get(vif);
remove_from_net_schedule_list(vif);
out:
spin_unlock_irq(&netbk->net_schedule_list_lock);
return vif;
}
void xen_netbk_schedule_xenvif(struct xenvif *vif)
{
unsigned long flags;
struct xen_netbk *netbk = vif->netbk;
if (__on_net_schedule_list(vif))
goto kick;
spin_lock_irqsave(&netbk->net_schedule_list_lock, flags);
if (!__on_net_schedule_list(vif) &&
likely(xenvif_schedulable(vif))) {
list_add_tail(&vif->schedule_list, &netbk->net_schedule_list);
xenvif_get(vif);
}
spin_unlock_irqrestore(&netbk->net_schedule_list_lock, flags);
kick:
smp_mb();
if ((nr_pending_reqs(netbk) < (MAX_PENDING_REQS/2)) &&
!list_empty(&netbk->net_schedule_list))
xen_netbk_kick_thread(netbk);
}
void xen_netbk_deschedule_xenvif(struct xenvif *vif)
{
struct xen_netbk *netbk = vif->netbk;
spin_lock_irq(&netbk->net_schedule_list_lock);
remove_from_net_schedule_list(vif);
spin_unlock_irq(&netbk->net_schedule_list_lock);
}
void xen_netbk_check_rx_xenvif(struct xenvif *vif)
{
int more_to_do;
RING_FINAL_CHECK_FOR_REQUESTS(&vif->tx, more_to_do);
if (more_to_do)
xen_netbk_schedule_xenvif(vif);
}
static void tx_add_credit(struct xenvif *vif)
{
unsigned long max_burst, max_credit;
/*
* Allow a burst big enough to transmit a jumbo packet of up to 128kB.
* Otherwise the interface can seize up due to insufficient credit.
*/
max_burst = RING_GET_REQUEST(&vif->tx, vif->tx.req_cons)->size;
max_burst = min(max_burst, 131072UL);
max_burst = max(max_burst, vif->credit_bytes);
/* Take care that adding a new chunk of credit doesn't wrap to zero. */
max_credit = vif->remaining_credit + vif->credit_bytes;
if (max_credit < vif->remaining_credit)
max_credit = ULONG_MAX; /* wrapped: clamp to ULONG_MAX */
vif->remaining_credit = min(max_credit, max_burst);
}
static void tx_credit_callback(unsigned long data)
{
struct xenvif *vif = (struct xenvif *)data;
tx_add_credit(vif);
xen_netbk_check_rx_xenvif(vif);
}
static void netbk_tx_err(struct xenvif *vif,
struct xen_netif_tx_request *txp, RING_IDX end)
{
RING_IDX cons = vif->tx.req_cons;
do {
make_tx_response(vif, txp, XEN_NETIF_RSP_ERROR);
if (cons == end)
break;
txp = RING_GET_REQUEST(&vif->tx, cons++);
} while (1);
vif->tx.req_cons = cons;
xen_netbk_check_rx_xenvif(vif);
xenvif_put(vif);
}
static void netbk_fatal_tx_err(struct xenvif *vif)
{
netdev_err(vif->dev, "fatal error; disabling device\n");
xenvif_carrier_off(vif);
xenvif_put(vif);
}
static int netbk_count_requests(struct xenvif *vif,
struct xen_netif_tx_request *first,
struct xen_netif_tx_request *txp,
int work_to_do)
{
RING_IDX cons = vif->tx.req_cons;
int frags = 0;
if (!(first->flags & XEN_NETTXF_more_data))
return 0;
do {
if (frags >= work_to_do) {
netdev_err(vif->dev, "Need more frags\n");
netbk_fatal_tx_err(vif);
return -ENODATA;
}
if (unlikely(frags >= MAX_SKB_FRAGS)) {
netdev_err(vif->dev, "Too many frags\n");
netbk_fatal_tx_err(vif);
return -E2BIG;
}
memcpy(txp, RING_GET_REQUEST(&vif->tx, cons + frags),
sizeof(*txp));
if (txp->size > first->size) {
netdev_err(vif->dev, "Frag is bigger than frame.\n");
netbk_fatal_tx_err(vif);
return -EIO;
}
first->size -= txp->size;
frags++;
if (unlikely((txp->offset + txp->size) > PAGE_SIZE)) {
netdev_err(vif->dev, "txp->offset: %x, size: %u\n",
txp->offset, txp->size);
netbk_fatal_tx_err(vif);
return -EINVAL;
}
} while ((txp++)->flags & XEN_NETTXF_more_data);
return frags;
}
static struct page *xen_netbk_alloc_page(struct xen_netbk *netbk,
struct sk_buff *skb,
u16 pending_idx)
{
struct page *page;
page = alloc_page(GFP_KERNEL|__GFP_COLD);
if (!page)
return NULL;
set_page_ext(page, netbk, pending_idx);
netbk->mmap_pages[pending_idx] = page;
return page;
}
static struct gnttab_copy *xen_netbk_get_requests(struct xen_netbk *netbk,
struct xenvif *vif,
struct sk_buff *skb,
struct xen_netif_tx_request *txp,
struct gnttab_copy *gop)
{
struct skb_shared_info *shinfo = skb_shinfo(skb);
skb_frag_t *frags = shinfo->frags;
u16 pending_idx = *((u16 *)skb->data);
int i, start;
/* Skip first skb fragment if it is on same page as header fragment. */
start = (frag_get_pending_idx(&shinfo->frags[0]) == pending_idx);
for (i = start; i < shinfo->nr_frags; i++, txp++) {
struct page *page;
pending_ring_idx_t index;
struct pending_tx_info *pending_tx_info =
netbk->pending_tx_info;
index = pending_index(netbk->pending_cons++);
pending_idx = netbk->pending_ring[index];
page = xen_netbk_alloc_page(netbk, skb, pending_idx);
if (!page)
goto err;
gop->source.u.ref = txp->gref;
gop->source.domid = vif->domid;
gop->source.offset = txp->offset;
gop->dest.u.gmfn = virt_to_mfn(page_address(page));
gop->dest.domid = DOMID_SELF;
gop->dest.offset = txp->offset;
gop->len = txp->size;
gop->flags = GNTCOPY_source_gref;
gop++;
memcpy(&pending_tx_info[pending_idx].req, txp, sizeof(*txp));
xenvif_get(vif);
pending_tx_info[pending_idx].vif = vif;
frag_set_pending_idx(&frags[i], pending_idx);
}
return gop;
err:
/* Unwind, freeing all pages and sending error responses. */
while (i-- > start) {
xen_netbk_idx_release(netbk, frag_get_pending_idx(&frags[i]),
XEN_NETIF_RSP_ERROR);
}
/* The head too, if necessary. */
if (start)
xen_netbk_idx_release(netbk, pending_idx, XEN_NETIF_RSP_ERROR);
return NULL;
}
static int xen_netbk_tx_check_gop(struct xen_netbk *netbk,
struct sk_buff *skb,
struct gnttab_copy **gopp)
{
struct gnttab_copy *gop = *gopp;
u16 pending_idx = *((u16 *)skb->data);
struct skb_shared_info *shinfo = skb_shinfo(skb);
int nr_frags = shinfo->nr_frags;
int i, err, start;
/* Check status of header. */
err = gop->status;
if (unlikely(err))
xen_netbk_idx_release(netbk, pending_idx, XEN_NETIF_RSP_ERROR);
/* Skip first skb fragment if it is on same page as header fragment. */
start = (frag_get_pending_idx(&shinfo->frags[0]) == pending_idx);
for (i = start; i < nr_frags; i++) {
int j, newerr;
pending_idx = frag_get_pending_idx(&shinfo->frags[i]);
/* Check error status: if okay then remember grant handle. */
newerr = (++gop)->status;
if (likely(!newerr)) {
/* Had a previous error? Invalidate this fragment. */
if (unlikely(err))
xen_netbk_idx_release(netbk, pending_idx, XEN_NETIF_RSP_OKAY);
continue;
}
/* Error on this fragment: respond to client with an error. */
xen_netbk_idx_release(netbk, pending_idx, XEN_NETIF_RSP_ERROR);
/* Not the first error? Preceding frags already invalidated. */
if (err)
continue;
/* First error: invalidate header and preceding fragments. */
pending_idx = *((u16 *)skb->data);
xen_netbk_idx_release(netbk, pending_idx, XEN_NETIF_RSP_OKAY);
for (j = start; j < i; j++) {
pending_idx = frag_get_pending_idx(&shinfo->frags[j]);
xen_netbk_idx_release(netbk, pending_idx, XEN_NETIF_RSP_OKAY);
}
/* Remember the error: invalidate all subsequent fragments. */
err = newerr;
}
*gopp = gop + 1;
return err;
}
static void xen_netbk_fill_frags(struct xen_netbk *netbk, struct sk_buff *skb)
{
struct skb_shared_info *shinfo = skb_shinfo(skb);
int nr_frags = shinfo->nr_frags;
int i;
for (i = 0; i < nr_frags; i++) {
skb_frag_t *frag = shinfo->frags + i;
struct xen_netif_tx_request *txp;
struct page *page;
u16 pending_idx;
pending_idx = frag_get_pending_idx(frag);
txp = &netbk->pending_tx_info[pending_idx].req;
page = virt_to_page(idx_to_kaddr(netbk, pending_idx));
__skb_fill_page_desc(skb, i, page, txp->offset, txp->size);
skb->len += txp->size;
skb->data_len += txp->size;
skb->truesize += txp->size;
/* Take an extra reference to offset xen_netbk_idx_release */
get_page(netbk->mmap_pages[pending_idx]);
xen_netbk_idx_release(netbk, pending_idx, XEN_NETIF_RSP_OKAY);
}
}
static int xen_netbk_get_extras(struct xenvif *vif,
struct xen_netif_extra_info *extras,
int work_to_do)
{
struct xen_netif_extra_info extra;
RING_IDX cons = vif->tx.req_cons;
do {
if (unlikely(work_to_do-- <= 0)) {
netdev_err(vif->dev, "Missing extra info\n");
netbk_fatal_tx_err(vif);
return -EBADR;
}
memcpy(&extra, RING_GET_REQUEST(&vif->tx, cons),
sizeof(extra));
if (unlikely(!extra.type ||
extra.type >= XEN_NETIF_EXTRA_TYPE_MAX)) {
vif->tx.req_cons = ++cons;
netdev_err(vif->dev,
"Invalid extra type: %d\n", extra.type);
netbk_fatal_tx_err(vif);
return -EINVAL;
}
memcpy(&extras[extra.type - 1], &extra, sizeof(extra));
vif->tx.req_cons = ++cons;
} while (extra.flags & XEN_NETIF_EXTRA_FLAG_MORE);
return work_to_do;
}
static int netbk_set_skb_gso(struct xenvif *vif,
struct sk_buff *skb,
struct xen_netif_extra_info *gso)
{
if (!gso->u.gso.size) {
netdev_err(vif->dev, "GSO size must not be zero.\n");
netbk_fatal_tx_err(vif);
return -EINVAL;
}
/* Currently only TCPv4 S.O. is supported. */
if (gso->u.gso.type != XEN_NETIF_GSO_TYPE_TCPV4) {
netdev_err(vif->dev, "Bad GSO type %d.\n", gso->u.gso.type);
netbk_fatal_tx_err(vif);
return -EINVAL;
}
skb_shinfo(skb)->gso_size = gso->u.gso.size;
skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4;
/* Header must be checked, and gso_segs computed. */
skb_shinfo(skb)->gso_type |= SKB_GSO_DODGY;
skb_shinfo(skb)->gso_segs = 0;
return 0;
}
static int checksum_setup(struct xenvif *vif, struct sk_buff *skb)
{
struct iphdr *iph;
unsigned char *th;
int err = -EPROTO;
int recalculate_partial_csum = 0;
/*
* A GSO SKB must be CHECKSUM_PARTIAL. However some buggy
* peers can fail to set NETRXF_csum_blank when sending a GSO
* frame. In this case force the SKB to CHECKSUM_PARTIAL and
* recalculate the partial checksum.
*/
if (skb->ip_summed != CHECKSUM_PARTIAL && skb_is_gso(skb)) {
vif->rx_gso_checksum_fixup++;
skb->ip_summed = CHECKSUM_PARTIAL;
recalculate_partial_csum = 1;
}
/* A non-CHECKSUM_PARTIAL SKB does not require setup. */
if (skb->ip_summed != CHECKSUM_PARTIAL)
return 0;
if (skb->protocol != htons(ETH_P_IP))
goto out;
iph = (void *)skb->data;
th = skb->data + 4 * iph->ihl;
if (th >= skb_tail_pointer(skb))
goto out;
skb->csum_start = th - skb->head;
switch (iph->protocol) {
case IPPROTO_TCP:
skb->csum_offset = offsetof(struct tcphdr, check);
if (recalculate_partial_csum) {
struct tcphdr *tcph = (struct tcphdr *)th;
tcph->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
skb->len - iph->ihl*4,
IPPROTO_TCP, 0);
}
break;
case IPPROTO_UDP:
skb->csum_offset = offsetof(struct udphdr, check);
if (recalculate_partial_csum) {
struct udphdr *udph = (struct udphdr *)th;
udph->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
skb->len - iph->ihl*4,
IPPROTO_UDP, 0);
}
break;
default:
if (net_ratelimit())
netdev_err(vif->dev,
"Attempting to checksum a non-TCP/UDP packet, dropping a protocol %d packet\n",
iph->protocol);
goto out;
}
if ((th + skb->csum_offset + 2) > skb_tail_pointer(skb))
goto out;
err = 0;
out:
return err;
}
static bool tx_credit_exceeded(struct xenvif *vif, unsigned size)
{
unsigned long now = jiffies;
unsigned long next_credit =
vif->credit_timeout.expires +
msecs_to_jiffies(vif->credit_usec / 1000);
/* Timer could already be pending in rare cases. */
if (timer_pending(&vif->credit_timeout))
return true;
/* Passed the point where we can replenish credit? */
if (time_after_eq(now, next_credit)) {
vif->credit_timeout.expires = now;
tx_add_credit(vif);
}
/* Still too big to send right now? Set a callback. */
if (size > vif->remaining_credit) {
vif->credit_timeout.data =
(unsigned long)vif;
vif->credit_timeout.function =
tx_credit_callback;
mod_timer(&vif->credit_timeout,
next_credit);
return true;
}
return false;
}
static unsigned xen_netbk_tx_build_gops(struct xen_netbk *netbk)
{
struct gnttab_copy *gop = netbk->tx_copy_ops, *request_gop;
struct sk_buff *skb;
int ret;
while (((nr_pending_reqs(netbk) + MAX_SKB_FRAGS) < MAX_PENDING_REQS) &&
!list_empty(&netbk->net_schedule_list)) {
struct xenvif *vif;
struct xen_netif_tx_request txreq;
struct xen_netif_tx_request txfrags[MAX_SKB_FRAGS];
struct page *page;
struct xen_netif_extra_info extras[XEN_NETIF_EXTRA_TYPE_MAX-1];
u16 pending_idx;
RING_IDX idx;
int work_to_do;
unsigned int data_len;
pending_ring_idx_t index;
/* Get a netif from the list with work to do. */
vif = poll_net_schedule_list(netbk);
/* This can sometimes happen because the test of
* list_empty(net_schedule_list) at the top of the
* loop is unlocked. Just go back and have another
* look.
*/
if (!vif)
continue;
if (vif->tx.sring->req_prod - vif->tx.req_cons >
XEN_NETIF_TX_RING_SIZE) {
netdev_err(vif->dev,
"Impossible number of requests. "
"req_prod %d, req_cons %d, size %ld\n",
vif->tx.sring->req_prod, vif->tx.req_cons,
XEN_NETIF_TX_RING_SIZE);
netbk_fatal_tx_err(vif);
continue;
}
RING_FINAL_CHECK_FOR_REQUESTS(&vif->tx, work_to_do);
if (!work_to_do) {
xenvif_put(vif);
continue;
}
idx = vif->tx.req_cons;
rmb(); /* Ensure that we see the request before we copy it. */
memcpy(&txreq, RING_GET_REQUEST(&vif->tx, idx), sizeof(txreq));
/* Credit-based scheduling. */
if (txreq.size > vif->remaining_credit &&
tx_credit_exceeded(vif, txreq.size)) {
xenvif_put(vif);
continue;
}
vif->remaining_credit -= txreq.size;
work_to_do--;
vif->tx.req_cons = ++idx;
memset(extras, 0, sizeof(extras));
if (txreq.flags & XEN_NETTXF_extra_info) {
work_to_do = xen_netbk_get_extras(vif, extras,
work_to_do);
idx = vif->tx.req_cons;
if (unlikely(work_to_do < 0))
continue;
}
ret = netbk_count_requests(vif, &txreq, txfrags, work_to_do);
if (unlikely(ret < 0))
continue;
idx += ret;
if (unlikely(txreq.size < ETH_HLEN)) {
netdev_dbg(vif->dev,
"Bad packet size: %d\n", txreq.size);
netbk_tx_err(vif, &txreq, idx);
continue;
}
/* No crossing a page as the payload mustn't fragment. */
if (unlikely((txreq.offset + txreq.size) > PAGE_SIZE)) {
netdev_err(vif->dev,
"txreq.offset: %x, size: %u, end: %lu\n",
txreq.offset, txreq.size,
(txreq.offset&~PAGE_MASK) + txreq.size);
netbk_fatal_tx_err(vif);
continue;
}
index = pending_index(netbk->pending_cons);
pending_idx = netbk->pending_ring[index];
data_len = (txreq.size > PKT_PROT_LEN &&
ret < MAX_SKB_FRAGS) ?
PKT_PROT_LEN : txreq.size;
skb = alloc_skb(data_len + NET_SKB_PAD + NET_IP_ALIGN,
GFP_ATOMIC | __GFP_NOWARN);
if (unlikely(skb == NULL)) {
netdev_dbg(vif->dev,
"Can't allocate a skb in start_xmit.\n");
netbk_tx_err(vif, &txreq, idx);
break;
}
/* Packets passed to netif_rx() must have some headroom. */
skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);
if (extras[XEN_NETIF_EXTRA_TYPE_GSO - 1].type) {
struct xen_netif_extra_info *gso;
gso = &extras[XEN_NETIF_EXTRA_TYPE_GSO - 1];
if (netbk_set_skb_gso(vif, skb, gso)) {
/* Failure in netbk_set_skb_gso is fatal. */
kfree_skb(skb);
continue;
}
}
/* XXX could copy straight to head */
page = xen_netbk_alloc_page(netbk, skb, pending_idx);
if (!page) {
kfree_skb(skb);
netbk_tx_err(vif, &txreq, idx);
continue;
}
gop->source.u.ref = txreq.gref;
gop->source.domid = vif->domid;
gop->source.offset = txreq.offset;
gop->dest.u.gmfn = virt_to_mfn(page_address(page));
gop->dest.domid = DOMID_SELF;
gop->dest.offset = txreq.offset;
gop->len = txreq.size;
gop->flags = GNTCOPY_source_gref;
gop++;
memcpy(&netbk->pending_tx_info[pending_idx].req,
&txreq, sizeof(txreq));
netbk->pending_tx_info[pending_idx].vif = vif;
*((u16 *)skb->data) = pending_idx;
__skb_put(skb, data_len);
skb_shinfo(skb)->nr_frags = ret;
if (data_len < txreq.size) {
skb_shinfo(skb)->nr_frags++;
frag_set_pending_idx(&skb_shinfo(skb)->frags[0],
pending_idx);
} else {
frag_set_pending_idx(&skb_shinfo(skb)->frags[0],
INVALID_PENDING_IDX);
}
netbk->pending_cons++;
request_gop = xen_netbk_get_requests(netbk, vif,
skb, txfrags, gop);
if (request_gop == NULL) {
kfree_skb(skb);
netbk_tx_err(vif, &txreq, idx);
continue;
}
gop = request_gop;
__skb_queue_tail(&netbk->tx_queue, skb);
vif->tx.req_cons = idx;
xen_netbk_check_rx_xenvif(vif);
if ((gop-netbk->tx_copy_ops) >= ARRAY_SIZE(netbk->tx_copy_ops))
break;
}
return gop - netbk->tx_copy_ops;
}
static void xen_netbk_tx_submit(struct xen_netbk *netbk)
{
struct gnttab_copy *gop = netbk->tx_copy_ops;
struct sk_buff *skb;
while ((skb = __skb_dequeue(&netbk->tx_queue)) != NULL) {
struct xen_netif_tx_request *txp;
struct xenvif *vif;
u16 pending_idx;
unsigned data_len;
pending_idx = *((u16 *)skb->data);
vif = netbk->pending_tx_info[pending_idx].vif;
txp = &netbk->pending_tx_info[pending_idx].req;
/* Check the remap error code. */
if (unlikely(xen_netbk_tx_check_gop(netbk, skb, &gop))) {
netdev_dbg(vif->dev, "netback grant failed.\n");
skb_shinfo(skb)->nr_frags = 0;
kfree_skb(skb);
continue;
}
data_len = skb->len;
memcpy(skb->data,
(void *)(idx_to_kaddr(netbk, pending_idx)|txp->offset),
data_len);
if (data_len < txp->size) {
/* Append the packet payload as a fragment. */
txp->offset += data_len;
txp->size -= data_len;
} else {
/* Schedule a response immediately. */
xen_netbk_idx_release(netbk, pending_idx, XEN_NETIF_RSP_OKAY);
}
if (txp->flags & XEN_NETTXF_csum_blank)
skb->ip_summed = CHECKSUM_PARTIAL;
else if (txp->flags & XEN_NETTXF_data_validated)
skb->ip_summed = CHECKSUM_UNNECESSARY;
xen_netbk_fill_frags(netbk, skb);
/*
* If the initial fragment was < PKT_PROT_LEN then
* pull through some bytes from the other fragments to
* increase the linear region to PKT_PROT_LEN bytes.
*/
if (skb_headlen(skb) < PKT_PROT_LEN && skb_is_nonlinear(skb)) {
int target = min_t(int, skb->len, PKT_PROT_LEN);
__pskb_pull_tail(skb, target - skb_headlen(skb));
}
skb->dev = vif->dev;
skb->protocol = eth_type_trans(skb, skb->dev);
if (checksum_setup(vif, skb)) {
netdev_dbg(vif->dev,
"Can't setup checksum in net_tx_action\n");
kfree_skb(skb);
continue;
}
vif->dev->stats.rx_bytes += skb->len;
vif->dev->stats.rx_packets++;
xenvif_receive_skb(vif, skb);
}
}
/* Called after netfront has transmitted */
static void xen_netbk_tx_action(struct xen_netbk *netbk)
{
unsigned nr_gops;
nr_gops = xen_netbk_tx_build_gops(netbk);
if (nr_gops == 0)
return;
gnttab_batch_copy(netbk->tx_copy_ops, nr_gops);
xen_netbk_tx_submit(netbk);
}
static void xen_netbk_idx_release(struct xen_netbk *netbk, u16 pending_idx,
u8 status)
{
struct xenvif *vif;
struct pending_tx_info *pending_tx_info;
pending_ring_idx_t index;
/* Already complete? */
if (netbk->mmap_pages[pending_idx] == NULL)
return;
pending_tx_info = &netbk->pending_tx_info[pending_idx];
vif = pending_tx_info->vif;
make_tx_response(vif, &pending_tx_info->req, status);
index = pending_index(netbk->pending_prod++);
netbk->pending_ring[index] = pending_idx;
xenvif_put(vif);
netbk->mmap_pages[pending_idx]->mapping = 0;
put_page(netbk->mmap_pages[pending_idx]);
netbk->mmap_pages[pending_idx] = NULL;
}
static void make_tx_response(struct xenvif *vif,
struct xen_netif_tx_request *txp,
s8 st)
{
RING_IDX i = vif->tx.rsp_prod_pvt;
struct xen_netif_tx_response *resp;
int notify;
resp = RING_GET_RESPONSE(&vif->tx, i);
resp->id = txp->id;
resp->status = st;
if (txp->flags & XEN_NETTXF_extra_info)
RING_GET_RESPONSE(&vif->tx, ++i)->status = XEN_NETIF_RSP_NULL;
vif->tx.rsp_prod_pvt = ++i;
RING_PUSH_RESPONSES_AND_CHECK_NOTIFY(&vif->tx, notify);
if (notify)
notify_remote_via_irq(vif->irq);
}
static struct xen_netif_rx_response *make_rx_response(struct xenvif *vif,
u16 id,
s8 st,
u16 offset,
u16 size,
u16 flags)
{
RING_IDX i = vif->rx.rsp_prod_pvt;
struct xen_netif_rx_response *resp;
resp = RING_GET_RESPONSE(&vif->rx, i);
resp->offset = offset;
resp->flags = flags;
resp->id = id;
resp->status = (s16)size;
if (st < 0)
resp->status = (s16)st;
vif->rx.rsp_prod_pvt = ++i;
return resp;
}
static inline int rx_work_todo(struct xen_netbk *netbk)
{
return !skb_queue_empty(&netbk->rx_queue);
}
static inline int tx_work_todo(struct xen_netbk *netbk)
{
if (((nr_pending_reqs(netbk) + MAX_SKB_FRAGS) < MAX_PENDING_REQS) &&
!list_empty(&netbk->net_schedule_list))
return 1;
return 0;
}
static int xen_netbk_kthread(void *data)
{
struct xen_netbk *netbk = data;
while (!kthread_should_stop()) {
wait_event_interruptible(netbk->wq,
rx_work_todo(netbk) ||
tx_work_todo(netbk) ||
kthread_should_stop());
cond_resched();
if (kthread_should_stop())
break;
if (rx_work_todo(netbk))
xen_netbk_rx_action(netbk);
if (tx_work_todo(netbk))
xen_netbk_tx_action(netbk);
}
return 0;
}
void xen_netbk_unmap_frontend_rings(struct xenvif *vif)
{
if (vif->tx.sring)
xenbus_unmap_ring_vfree(xenvif_to_xenbus_device(vif),
vif->tx.sring);
if (vif->rx.sring)
xenbus_unmap_ring_vfree(xenvif_to_xenbus_device(vif),
vif->rx.sring);
}
int xen_netbk_map_frontend_rings(struct xenvif *vif,
grant_ref_t tx_ring_ref,
grant_ref_t rx_ring_ref)
{
void *addr;
struct xen_netif_tx_sring *txs;
struct xen_netif_rx_sring *rxs;
int err = -ENOMEM;
err = xenbus_map_ring_valloc(xenvif_to_xenbus_device(vif),
tx_ring_ref, &addr);
if (err)
goto err;
txs = (struct xen_netif_tx_sring *)addr;
BACK_RING_INIT(&vif->tx, txs, PAGE_SIZE);
err = xenbus_map_ring_valloc(xenvif_to_xenbus_device(vif),
rx_ring_ref, &addr);
if (err)
goto err;
rxs = (struct xen_netif_rx_sring *)addr;
BACK_RING_INIT(&vif->rx, rxs, PAGE_SIZE);
vif->rx_req_cons_peek = 0;
return 0;
err:
xen_netbk_unmap_frontend_rings(vif);
return err;
}
static int __init netback_init(void)
{
int i;
int rc = 0;
int group;
if (!xen_domain())
return -ENODEV;
xen_netbk_group_nr = num_online_cpus();
xen_netbk = vzalloc(sizeof(struct xen_netbk) * xen_netbk_group_nr);
if (!xen_netbk)
return -ENOMEM;
for (group = 0; group < xen_netbk_group_nr; group++) {
struct xen_netbk *netbk = &xen_netbk[group];
skb_queue_head_init(&netbk->rx_queue);
skb_queue_head_init(&netbk->tx_queue);
init_timer(&netbk->net_timer);
netbk->net_timer.data = (unsigned long)netbk;
netbk->net_timer.function = xen_netbk_alarm;
netbk->pending_cons = 0;
netbk->pending_prod = MAX_PENDING_REQS;
for (i = 0; i < MAX_PENDING_REQS; i++)
netbk->pending_ring[i] = i;
init_waitqueue_head(&netbk->wq);
netbk->task = kthread_create(xen_netbk_kthread,
(void *)netbk,
"netback/%u", group);
if (IS_ERR(netbk->task)) {
printk(KERN_ALERT "kthread_create() fails at netback\n");
del_timer(&netbk->net_timer);
rc = PTR_ERR(netbk->task);
goto failed_init;
}
kthread_bind(netbk->task, group);
INIT_LIST_HEAD(&netbk->net_schedule_list);
spin_lock_init(&netbk->net_schedule_list_lock);
atomic_set(&netbk->netfront_count, 0);
wake_up_process(netbk->task);
}
rc = xenvif_xenbus_init();
if (rc)
goto failed_init;
return 0;
failed_init:
while (--group >= 0) {
struct xen_netbk *netbk = &xen_netbk[group];
for (i = 0; i < MAX_PENDING_REQS; i++) {
if (netbk->mmap_pages[i])
__free_page(netbk->mmap_pages[i]);
}
del_timer(&netbk->net_timer);
kthread_stop(netbk->task);
}
vfree(xen_netbk);
return rc;
}
module_init(netback_init);
MODULE_LICENSE("Dual BSD/GPL");
MODULE_ALIAS("xen-backend:vif");