2809606768
A review of the code showed, that this function which is exposed within the whole kernel should do a parameter check for the amount of bytes requested. If this requested bytes is too high an unsigned int overflow could happen causing this function to try to memcpy a really big memory chunk. This is not a security issue as there are only two invocations of this function from arch/s390/include/asm/archrandom.h and both are not exposed to userland. Reported-by: Sven Schnelle <svens@linux.ibm.com> Signed-off-by: Harald Freudenberger <freude@linux.ibm.com> Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
236 lines
7.8 KiB
C
236 lines
7.8 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* s390 arch random implementation.
|
|
*
|
|
* Copyright IBM Corp. 2017, 2020
|
|
* Author(s): Harald Freudenberger
|
|
*
|
|
* The s390_arch_random_generate() function may be called from random.c
|
|
* in interrupt context. So this implementation does the best to be very
|
|
* fast. There is a buffer of random data which is asynchronously checked
|
|
* and filled by a workqueue thread.
|
|
* If there are enough bytes in the buffer the s390_arch_random_generate()
|
|
* just delivers these bytes. Otherwise false is returned until the
|
|
* worker thread refills the buffer.
|
|
* The worker fills the rng buffer by pulling fresh entropy from the
|
|
* high quality (but slow) true hardware random generator. This entropy
|
|
* is then spread over the buffer with an pseudo random generator PRNG.
|
|
* As the arch_get_random_seed_long() fetches 8 bytes and the calling
|
|
* function add_interrupt_randomness() counts this as 1 bit entropy the
|
|
* distribution needs to make sure there is in fact 1 bit entropy contained
|
|
* in 8 bytes of the buffer. The current values pull 32 byte entropy
|
|
* and scatter this into a 2048 byte buffer. So 8 byte in the buffer
|
|
* will contain 1 bit of entropy.
|
|
* The worker thread is rescheduled based on the charge level of the
|
|
* buffer but at least with 500 ms delay to avoid too much CPU consumption.
|
|
* So the max. amount of rng data delivered via arch_get_random_seed is
|
|
* limited to 4k bytes per second.
|
|
*/
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/atomic.h>
|
|
#include <linux/random.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/static_key.h>
|
|
#include <linux/workqueue.h>
|
|
#include <linux/moduleparam.h>
|
|
#include <asm/cpacf.h>
|
|
|
|
DEFINE_STATIC_KEY_FALSE(s390_arch_random_available);
|
|
|
|
atomic64_t s390_arch_random_counter = ATOMIC64_INIT(0);
|
|
EXPORT_SYMBOL(s390_arch_random_counter);
|
|
|
|
#define ARCH_REFILL_TICKS (HZ/2)
|
|
#define ARCH_PRNG_SEED_SIZE 32
|
|
#define ARCH_RNG_BUF_SIZE 2048
|
|
|
|
static DEFINE_SPINLOCK(arch_rng_lock);
|
|
static u8 *arch_rng_buf;
|
|
static unsigned int arch_rng_buf_idx;
|
|
|
|
static void arch_rng_refill_buffer(struct work_struct *);
|
|
static DECLARE_DELAYED_WORK(arch_rng_work, arch_rng_refill_buffer);
|
|
|
|
bool s390_arch_random_generate(u8 *buf, unsigned int nbytes)
|
|
{
|
|
/* max hunk is ARCH_RNG_BUF_SIZE */
|
|
if (nbytes > ARCH_RNG_BUF_SIZE)
|
|
return false;
|
|
|
|
/* lock rng buffer */
|
|
if (!spin_trylock(&arch_rng_lock))
|
|
return false;
|
|
|
|
/* try to resolve the requested amount of bytes from the buffer */
|
|
arch_rng_buf_idx -= nbytes;
|
|
if (arch_rng_buf_idx < ARCH_RNG_BUF_SIZE) {
|
|
memcpy(buf, arch_rng_buf + arch_rng_buf_idx, nbytes);
|
|
atomic64_add(nbytes, &s390_arch_random_counter);
|
|
spin_unlock(&arch_rng_lock);
|
|
return true;
|
|
}
|
|
|
|
/* not enough bytes in rng buffer, refill is done asynchronously */
|
|
spin_unlock(&arch_rng_lock);
|
|
|
|
return false;
|
|
}
|
|
EXPORT_SYMBOL(s390_arch_random_generate);
|
|
|
|
static void arch_rng_refill_buffer(struct work_struct *unused)
|
|
{
|
|
unsigned int delay = ARCH_REFILL_TICKS;
|
|
|
|
spin_lock(&arch_rng_lock);
|
|
if (arch_rng_buf_idx > ARCH_RNG_BUF_SIZE) {
|
|
/* buffer is exhausted and needs refill */
|
|
u8 seed[ARCH_PRNG_SEED_SIZE];
|
|
u8 prng_wa[240];
|
|
/* fetch ARCH_PRNG_SEED_SIZE bytes of entropy */
|
|
cpacf_trng(NULL, 0, seed, sizeof(seed));
|
|
/* blow this entropy up to ARCH_RNG_BUF_SIZE with PRNG */
|
|
memset(prng_wa, 0, sizeof(prng_wa));
|
|
cpacf_prno(CPACF_PRNO_SHA512_DRNG_SEED,
|
|
&prng_wa, NULL, 0, seed, sizeof(seed));
|
|
cpacf_prno(CPACF_PRNO_SHA512_DRNG_GEN,
|
|
&prng_wa, arch_rng_buf, ARCH_RNG_BUF_SIZE, NULL, 0);
|
|
arch_rng_buf_idx = ARCH_RNG_BUF_SIZE;
|
|
}
|
|
delay += (ARCH_REFILL_TICKS * arch_rng_buf_idx) / ARCH_RNG_BUF_SIZE;
|
|
spin_unlock(&arch_rng_lock);
|
|
|
|
/* kick next check */
|
|
queue_delayed_work(system_long_wq, &arch_rng_work, delay);
|
|
}
|
|
|
|
/*
|
|
* Here follows the implementation of s390_arch_get_random_long().
|
|
*
|
|
* The random longs to be pulled by arch_get_random_long() are
|
|
* prepared in an 4K buffer which is filled from the NIST 800-90
|
|
* compliant s390 drbg. By default the random long buffer is refilled
|
|
* 256 times before the drbg itself needs a reseed. The reseed of the
|
|
* drbg is done with 32 bytes fetched from the high quality (but slow)
|
|
* trng which is assumed to deliver 100% entropy. So the 32 * 8 = 256
|
|
* bits of entropy are spread over 256 * 4KB = 1MB serving 131072
|
|
* arch_get_random_long() invocations before reseeded.
|
|
*
|
|
* How often the 4K random long buffer is refilled with the drbg
|
|
* before the drbg is reseeded can be adjusted. There is a module
|
|
* parameter 's390_arch_rnd_long_drbg_reseed' accessible via
|
|
* /sys/module/arch_random/parameters/rndlong_drbg_reseed
|
|
* or as kernel command line parameter
|
|
* arch_random.rndlong_drbg_reseed=<value>
|
|
* This parameter tells how often the drbg fills the 4K buffer before
|
|
* it is re-seeded by fresh entropy from the trng.
|
|
* A value of 16 results in reseeding the drbg at every 16 * 4 KB = 64
|
|
* KB with 32 bytes of fresh entropy pulled from the trng. So a value
|
|
* of 16 would result in 256 bits entropy per 64 KB.
|
|
* A value of 256 results in 1MB of drbg output before a reseed of the
|
|
* drbg is done. So this would spread the 256 bits of entropy among 1MB.
|
|
* Setting this parameter to 0 forces the reseed to take place every
|
|
* time the 4K buffer is depleted, so the entropy rises to 256 bits
|
|
* entropy per 4K or 0.5 bit entropy per arch_get_random_long(). With
|
|
* setting this parameter to negative values all this effort is
|
|
* disabled, arch_get_random long() returns false and thus indicating
|
|
* that the arch_get_random_long() feature is disabled at all.
|
|
*/
|
|
|
|
static unsigned long rndlong_buf[512];
|
|
static DEFINE_SPINLOCK(rndlong_lock);
|
|
static int rndlong_buf_index;
|
|
|
|
static int rndlong_drbg_reseed = 256;
|
|
module_param_named(rndlong_drbg_reseed, rndlong_drbg_reseed, int, 0600);
|
|
MODULE_PARM_DESC(rndlong_drbg_reseed, "s390 arch_get_random_long() drbg reseed");
|
|
|
|
static inline void refill_rndlong_buf(void)
|
|
{
|
|
static u8 prng_ws[240];
|
|
static int drbg_counter;
|
|
|
|
if (--drbg_counter < 0) {
|
|
/* need to re-seed the drbg */
|
|
u8 seed[32];
|
|
|
|
/* fetch seed from trng */
|
|
cpacf_trng(NULL, 0, seed, sizeof(seed));
|
|
/* seed drbg */
|
|
memset(prng_ws, 0, sizeof(prng_ws));
|
|
cpacf_prno(CPACF_PRNO_SHA512_DRNG_SEED,
|
|
&prng_ws, NULL, 0, seed, sizeof(seed));
|
|
/* re-init counter for drbg */
|
|
drbg_counter = rndlong_drbg_reseed;
|
|
}
|
|
|
|
/* fill the arch_get_random_long buffer from drbg */
|
|
cpacf_prno(CPACF_PRNO_SHA512_DRNG_GEN, &prng_ws,
|
|
(u8 *) rndlong_buf, sizeof(rndlong_buf),
|
|
NULL, 0);
|
|
}
|
|
|
|
bool s390_arch_get_random_long(unsigned long *v)
|
|
{
|
|
bool rc = false;
|
|
unsigned long flags;
|
|
|
|
/* arch_get_random_long() disabled ? */
|
|
if (rndlong_drbg_reseed < 0)
|
|
return false;
|
|
|
|
/* try to lock the random long lock */
|
|
if (!spin_trylock_irqsave(&rndlong_lock, flags))
|
|
return false;
|
|
|
|
if (--rndlong_buf_index >= 0) {
|
|
/* deliver next long value from the buffer */
|
|
*v = rndlong_buf[rndlong_buf_index];
|
|
rc = true;
|
|
goto out;
|
|
}
|
|
|
|
/* buffer is depleted and needs refill */
|
|
if (in_interrupt()) {
|
|
/* delay refill in interrupt context to next caller */
|
|
rndlong_buf_index = 0;
|
|
goto out;
|
|
}
|
|
|
|
/* refill random long buffer */
|
|
refill_rndlong_buf();
|
|
rndlong_buf_index = ARRAY_SIZE(rndlong_buf);
|
|
|
|
/* and provide one random long */
|
|
*v = rndlong_buf[--rndlong_buf_index];
|
|
rc = true;
|
|
|
|
out:
|
|
spin_unlock_irqrestore(&rndlong_lock, flags);
|
|
return rc;
|
|
}
|
|
EXPORT_SYMBOL(s390_arch_get_random_long);
|
|
|
|
static int __init s390_arch_random_init(void)
|
|
{
|
|
/* all the needed PRNO subfunctions available ? */
|
|
if (cpacf_query_func(CPACF_PRNO, CPACF_PRNO_TRNG) &&
|
|
cpacf_query_func(CPACF_PRNO, CPACF_PRNO_SHA512_DRNG_GEN)) {
|
|
|
|
/* alloc arch random working buffer */
|
|
arch_rng_buf = kmalloc(ARCH_RNG_BUF_SIZE, GFP_KERNEL);
|
|
if (!arch_rng_buf)
|
|
return -ENOMEM;
|
|
|
|
/* kick worker queue job to fill the random buffer */
|
|
queue_delayed_work(system_long_wq,
|
|
&arch_rng_work, ARCH_REFILL_TICKS);
|
|
|
|
/* enable arch random to the outside world */
|
|
static_branch_enable(&s390_arch_random_available);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
arch_initcall(s390_arch_random_init);
|