linux/fs/gfs2/rgrp.c
Wei Yongjun 441362d06b GFS2: return error if malloc failed in gfs2_rs_alloc()
The error code in gfs2_rs_alloc() is set to ENOMEM when error
but never be used, instead, gfs2_rs_alloc() always return 0.
Fix to return 'error'.

Signed-off-by: Wei Yongjun <yongjun_wei@trendmicro.com.cn>
Signed-off-by: Steven Whitehouse <swhiteho@redhat.com>
2013-04-04 09:53:10 +01:00

2433 lines
63 KiB
C

/*
* Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved.
* Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
*
* This copyrighted material is made available to anyone wishing to use,
* modify, copy, or redistribute it subject to the terms and conditions
* of the GNU General Public License version 2.
*/
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/completion.h>
#include <linux/buffer_head.h>
#include <linux/fs.h>
#include <linux/gfs2_ondisk.h>
#include <linux/prefetch.h>
#include <linux/blkdev.h>
#include <linux/rbtree.h>
#include <linux/random.h>
#include "gfs2.h"
#include "incore.h"
#include "glock.h"
#include "glops.h"
#include "lops.h"
#include "meta_io.h"
#include "quota.h"
#include "rgrp.h"
#include "super.h"
#include "trans.h"
#include "util.h"
#include "log.h"
#include "inode.h"
#include "trace_gfs2.h"
#define BFITNOENT ((u32)~0)
#define NO_BLOCK ((u64)~0)
#if BITS_PER_LONG == 32
#define LBITMASK (0x55555555UL)
#define LBITSKIP55 (0x55555555UL)
#define LBITSKIP00 (0x00000000UL)
#else
#define LBITMASK (0x5555555555555555UL)
#define LBITSKIP55 (0x5555555555555555UL)
#define LBITSKIP00 (0x0000000000000000UL)
#endif
/*
* These routines are used by the resource group routines (rgrp.c)
* to keep track of block allocation. Each block is represented by two
* bits. So, each byte represents GFS2_NBBY (i.e. 4) blocks.
*
* 0 = Free
* 1 = Used (not metadata)
* 2 = Unlinked (still in use) inode
* 3 = Used (metadata)
*/
static const char valid_change[16] = {
/* current */
/* n */ 0, 1, 1, 1,
/* e */ 1, 0, 0, 0,
/* w */ 0, 0, 0, 1,
1, 0, 0, 0
};
static int gfs2_rbm_find(struct gfs2_rbm *rbm, u8 state, u32 minext,
const struct gfs2_inode *ip, bool nowrap);
/**
* gfs2_setbit - Set a bit in the bitmaps
* @rbm: The position of the bit to set
* @do_clone: Also set the clone bitmap, if it exists
* @new_state: the new state of the block
*
*/
static inline void gfs2_setbit(const struct gfs2_rbm *rbm, bool do_clone,
unsigned char new_state)
{
unsigned char *byte1, *byte2, *end, cur_state;
unsigned int buflen = rbm->bi->bi_len;
const unsigned int bit = (rbm->offset % GFS2_NBBY) * GFS2_BIT_SIZE;
byte1 = rbm->bi->bi_bh->b_data + rbm->bi->bi_offset + (rbm->offset / GFS2_NBBY);
end = rbm->bi->bi_bh->b_data + rbm->bi->bi_offset + buflen;
BUG_ON(byte1 >= end);
cur_state = (*byte1 >> bit) & GFS2_BIT_MASK;
if (unlikely(!valid_change[new_state * 4 + cur_state])) {
printk(KERN_WARNING "GFS2: buf_blk = 0x%x old_state=%d, "
"new_state=%d\n", rbm->offset, cur_state, new_state);
printk(KERN_WARNING "GFS2: rgrp=0x%llx bi_start=0x%x\n",
(unsigned long long)rbm->rgd->rd_addr,
rbm->bi->bi_start);
printk(KERN_WARNING "GFS2: bi_offset=0x%x bi_len=0x%x\n",
rbm->bi->bi_offset, rbm->bi->bi_len);
dump_stack();
gfs2_consist_rgrpd(rbm->rgd);
return;
}
*byte1 ^= (cur_state ^ new_state) << bit;
if (do_clone && rbm->bi->bi_clone) {
byte2 = rbm->bi->bi_clone + rbm->bi->bi_offset + (rbm->offset / GFS2_NBBY);
cur_state = (*byte2 >> bit) & GFS2_BIT_MASK;
*byte2 ^= (cur_state ^ new_state) << bit;
}
}
/**
* gfs2_testbit - test a bit in the bitmaps
* @rbm: The bit to test
*
* Returns: The two bit block state of the requested bit
*/
static inline u8 gfs2_testbit(const struct gfs2_rbm *rbm)
{
const u8 *buffer = rbm->bi->bi_bh->b_data + rbm->bi->bi_offset;
const u8 *byte;
unsigned int bit;
byte = buffer + (rbm->offset / GFS2_NBBY);
bit = (rbm->offset % GFS2_NBBY) * GFS2_BIT_SIZE;
return (*byte >> bit) & GFS2_BIT_MASK;
}
/**
* gfs2_bit_search
* @ptr: Pointer to bitmap data
* @mask: Mask to use (normally 0x55555.... but adjusted for search start)
* @state: The state we are searching for
*
* We xor the bitmap data with a patter which is the bitwise opposite
* of what we are looking for, this gives rise to a pattern of ones
* wherever there is a match. Since we have two bits per entry, we
* take this pattern, shift it down by one place and then and it with
* the original. All the even bit positions (0,2,4, etc) then represent
* successful matches, so we mask with 0x55555..... to remove the unwanted
* odd bit positions.
*
* This allows searching of a whole u64 at once (32 blocks) with a
* single test (on 64 bit arches).
*/
static inline u64 gfs2_bit_search(const __le64 *ptr, u64 mask, u8 state)
{
u64 tmp;
static const u64 search[] = {
[0] = 0xffffffffffffffffULL,
[1] = 0xaaaaaaaaaaaaaaaaULL,
[2] = 0x5555555555555555ULL,
[3] = 0x0000000000000000ULL,
};
tmp = le64_to_cpu(*ptr) ^ search[state];
tmp &= (tmp >> 1);
tmp &= mask;
return tmp;
}
/**
* rs_cmp - multi-block reservation range compare
* @blk: absolute file system block number of the new reservation
* @len: number of blocks in the new reservation
* @rs: existing reservation to compare against
*
* returns: 1 if the block range is beyond the reach of the reservation
* -1 if the block range is before the start of the reservation
* 0 if the block range overlaps with the reservation
*/
static inline int rs_cmp(u64 blk, u32 len, struct gfs2_blkreserv *rs)
{
u64 startblk = gfs2_rbm_to_block(&rs->rs_rbm);
if (blk >= startblk + rs->rs_free)
return 1;
if (blk + len - 1 < startblk)
return -1;
return 0;
}
/**
* gfs2_bitfit - Search an rgrp's bitmap buffer to find a bit-pair representing
* a block in a given allocation state.
* @buf: the buffer that holds the bitmaps
* @len: the length (in bytes) of the buffer
* @goal: start search at this block's bit-pair (within @buffer)
* @state: GFS2_BLKST_XXX the state of the block we're looking for.
*
* Scope of @goal and returned block number is only within this bitmap buffer,
* not entire rgrp or filesystem. @buffer will be offset from the actual
* beginning of a bitmap block buffer, skipping any header structures, but
* headers are always a multiple of 64 bits long so that the buffer is
* always aligned to a 64 bit boundary.
*
* The size of the buffer is in bytes, but is it assumed that it is
* always ok to read a complete multiple of 64 bits at the end
* of the block in case the end is no aligned to a natural boundary.
*
* Return: the block number (bitmap buffer scope) that was found
*/
static u32 gfs2_bitfit(const u8 *buf, const unsigned int len,
u32 goal, u8 state)
{
u32 spoint = (goal << 1) & ((8*sizeof(u64)) - 1);
const __le64 *ptr = ((__le64 *)buf) + (goal >> 5);
const __le64 *end = (__le64 *)(buf + ALIGN(len, sizeof(u64)));
u64 tmp;
u64 mask = 0x5555555555555555ULL;
u32 bit;
/* Mask off bits we don't care about at the start of the search */
mask <<= spoint;
tmp = gfs2_bit_search(ptr, mask, state);
ptr++;
while(tmp == 0 && ptr < end) {
tmp = gfs2_bit_search(ptr, 0x5555555555555555ULL, state);
ptr++;
}
/* Mask off any bits which are more than len bytes from the start */
if (ptr == end && (len & (sizeof(u64) - 1)))
tmp &= (((u64)~0) >> (64 - 8*(len & (sizeof(u64) - 1))));
/* Didn't find anything, so return */
if (tmp == 0)
return BFITNOENT;
ptr--;
bit = __ffs64(tmp);
bit /= 2; /* two bits per entry in the bitmap */
return (((const unsigned char *)ptr - buf) * GFS2_NBBY) + bit;
}
/**
* gfs2_rbm_from_block - Set the rbm based upon rgd and block number
* @rbm: The rbm with rgd already set correctly
* @block: The block number (filesystem relative)
*
* This sets the bi and offset members of an rbm based on a
* resource group and a filesystem relative block number. The
* resource group must be set in the rbm on entry, the bi and
* offset members will be set by this function.
*
* Returns: 0 on success, or an error code
*/
static int gfs2_rbm_from_block(struct gfs2_rbm *rbm, u64 block)
{
u64 rblock = block - rbm->rgd->rd_data0;
u32 x;
if (WARN_ON_ONCE(rblock > UINT_MAX))
return -EINVAL;
if (block >= rbm->rgd->rd_data0 + rbm->rgd->rd_data)
return -E2BIG;
rbm->bi = rbm->rgd->rd_bits;
rbm->offset = (u32)(rblock);
/* Check if the block is within the first block */
if (rbm->offset < (rbm->bi->bi_start + rbm->bi->bi_len) * GFS2_NBBY)
return 0;
/* Adjust for the size diff between gfs2_meta_header and gfs2_rgrp */
rbm->offset += (sizeof(struct gfs2_rgrp) -
sizeof(struct gfs2_meta_header)) * GFS2_NBBY;
x = rbm->offset / rbm->rgd->rd_sbd->sd_blocks_per_bitmap;
rbm->offset -= x * rbm->rgd->rd_sbd->sd_blocks_per_bitmap;
rbm->bi += x;
return 0;
}
/**
* gfs2_unaligned_extlen - Look for free blocks which are not byte aligned
* @rbm: Position to search (value/result)
* @n_unaligned: Number of unaligned blocks to check
* @len: Decremented for each block found (terminate on zero)
*
* Returns: true if a non-free block is encountered
*/
static bool gfs2_unaligned_extlen(struct gfs2_rbm *rbm, u32 n_unaligned, u32 *len)
{
u64 block;
u32 n;
u8 res;
for (n = 0; n < n_unaligned; n++) {
res = gfs2_testbit(rbm);
if (res != GFS2_BLKST_FREE)
return true;
(*len)--;
if (*len == 0)
return true;
block = gfs2_rbm_to_block(rbm);
if (gfs2_rbm_from_block(rbm, block + 1))
return true;
}
return false;
}
/**
* gfs2_free_extlen - Return extent length of free blocks
* @rbm: Starting position
* @len: Max length to check
*
* Starting at the block specified by the rbm, see how many free blocks
* there are, not reading more than len blocks ahead. This can be done
* using memchr_inv when the blocks are byte aligned, but has to be done
* on a block by block basis in case of unaligned blocks. Also this
* function can cope with bitmap boundaries (although it must stop on
* a resource group boundary)
*
* Returns: Number of free blocks in the extent
*/
static u32 gfs2_free_extlen(const struct gfs2_rbm *rrbm, u32 len)
{
struct gfs2_rbm rbm = *rrbm;
u32 n_unaligned = rbm.offset & 3;
u32 size = len;
u32 bytes;
u32 chunk_size;
u8 *ptr, *start, *end;
u64 block;
if (n_unaligned &&
gfs2_unaligned_extlen(&rbm, 4 - n_unaligned, &len))
goto out;
n_unaligned = len & 3;
/* Start is now byte aligned */
while (len > 3) {
start = rbm.bi->bi_bh->b_data;
if (rbm.bi->bi_clone)
start = rbm.bi->bi_clone;
end = start + rbm.bi->bi_bh->b_size;
start += rbm.bi->bi_offset;
BUG_ON(rbm.offset & 3);
start += (rbm.offset / GFS2_NBBY);
bytes = min_t(u32, len / GFS2_NBBY, (end - start));
ptr = memchr_inv(start, 0, bytes);
chunk_size = ((ptr == NULL) ? bytes : (ptr - start));
chunk_size *= GFS2_NBBY;
BUG_ON(len < chunk_size);
len -= chunk_size;
block = gfs2_rbm_to_block(&rbm);
if (gfs2_rbm_from_block(&rbm, block + chunk_size)) {
n_unaligned = 0;
break;
}
if (ptr) {
n_unaligned = 3;
break;
}
n_unaligned = len & 3;
}
/* Deal with any bits left over at the end */
if (n_unaligned)
gfs2_unaligned_extlen(&rbm, n_unaligned, &len);
out:
return size - len;
}
/**
* gfs2_bitcount - count the number of bits in a certain state
* @rgd: the resource group descriptor
* @buffer: the buffer that holds the bitmaps
* @buflen: the length (in bytes) of the buffer
* @state: the state of the block we're looking for
*
* Returns: The number of bits
*/
static u32 gfs2_bitcount(struct gfs2_rgrpd *rgd, const u8 *buffer,
unsigned int buflen, u8 state)
{
const u8 *byte = buffer;
const u8 *end = buffer + buflen;
const u8 state1 = state << 2;
const u8 state2 = state << 4;
const u8 state3 = state << 6;
u32 count = 0;
for (; byte < end; byte++) {
if (((*byte) & 0x03) == state)
count++;
if (((*byte) & 0x0C) == state1)
count++;
if (((*byte) & 0x30) == state2)
count++;
if (((*byte) & 0xC0) == state3)
count++;
}
return count;
}
/**
* gfs2_rgrp_verify - Verify that a resource group is consistent
* @rgd: the rgrp
*
*/
void gfs2_rgrp_verify(struct gfs2_rgrpd *rgd)
{
struct gfs2_sbd *sdp = rgd->rd_sbd;
struct gfs2_bitmap *bi = NULL;
u32 length = rgd->rd_length;
u32 count[4], tmp;
int buf, x;
memset(count, 0, 4 * sizeof(u32));
/* Count # blocks in each of 4 possible allocation states */
for (buf = 0; buf < length; buf++) {
bi = rgd->rd_bits + buf;
for (x = 0; x < 4; x++)
count[x] += gfs2_bitcount(rgd,
bi->bi_bh->b_data +
bi->bi_offset,
bi->bi_len, x);
}
if (count[0] != rgd->rd_free) {
if (gfs2_consist_rgrpd(rgd))
fs_err(sdp, "free data mismatch: %u != %u\n",
count[0], rgd->rd_free);
return;
}
tmp = rgd->rd_data - rgd->rd_free - rgd->rd_dinodes;
if (count[1] != tmp) {
if (gfs2_consist_rgrpd(rgd))
fs_err(sdp, "used data mismatch: %u != %u\n",
count[1], tmp);
return;
}
if (count[2] + count[3] != rgd->rd_dinodes) {
if (gfs2_consist_rgrpd(rgd))
fs_err(sdp, "used metadata mismatch: %u != %u\n",
count[2] + count[3], rgd->rd_dinodes);
return;
}
}
static inline int rgrp_contains_block(struct gfs2_rgrpd *rgd, u64 block)
{
u64 first = rgd->rd_data0;
u64 last = first + rgd->rd_data;
return first <= block && block < last;
}
/**
* gfs2_blk2rgrpd - Find resource group for a given data/meta block number
* @sdp: The GFS2 superblock
* @blk: The data block number
* @exact: True if this needs to be an exact match
*
* Returns: The resource group, or NULL if not found
*/
struct gfs2_rgrpd *gfs2_blk2rgrpd(struct gfs2_sbd *sdp, u64 blk, bool exact)
{
struct rb_node *n, *next;
struct gfs2_rgrpd *cur;
spin_lock(&sdp->sd_rindex_spin);
n = sdp->sd_rindex_tree.rb_node;
while (n) {
cur = rb_entry(n, struct gfs2_rgrpd, rd_node);
next = NULL;
if (blk < cur->rd_addr)
next = n->rb_left;
else if (blk >= cur->rd_data0 + cur->rd_data)
next = n->rb_right;
if (next == NULL) {
spin_unlock(&sdp->sd_rindex_spin);
if (exact) {
if (blk < cur->rd_addr)
return NULL;
if (blk >= cur->rd_data0 + cur->rd_data)
return NULL;
}
return cur;
}
n = next;
}
spin_unlock(&sdp->sd_rindex_spin);
return NULL;
}
/**
* gfs2_rgrpd_get_first - get the first Resource Group in the filesystem
* @sdp: The GFS2 superblock
*
* Returns: The first rgrp in the filesystem
*/
struct gfs2_rgrpd *gfs2_rgrpd_get_first(struct gfs2_sbd *sdp)
{
const struct rb_node *n;
struct gfs2_rgrpd *rgd;
spin_lock(&sdp->sd_rindex_spin);
n = rb_first(&sdp->sd_rindex_tree);
rgd = rb_entry(n, struct gfs2_rgrpd, rd_node);
spin_unlock(&sdp->sd_rindex_spin);
return rgd;
}
/**
* gfs2_rgrpd_get_next - get the next RG
* @rgd: the resource group descriptor
*
* Returns: The next rgrp
*/
struct gfs2_rgrpd *gfs2_rgrpd_get_next(struct gfs2_rgrpd *rgd)
{
struct gfs2_sbd *sdp = rgd->rd_sbd;
const struct rb_node *n;
spin_lock(&sdp->sd_rindex_spin);
n = rb_next(&rgd->rd_node);
if (n == NULL)
n = rb_first(&sdp->sd_rindex_tree);
if (unlikely(&rgd->rd_node == n)) {
spin_unlock(&sdp->sd_rindex_spin);
return NULL;
}
rgd = rb_entry(n, struct gfs2_rgrpd, rd_node);
spin_unlock(&sdp->sd_rindex_spin);
return rgd;
}
void gfs2_free_clones(struct gfs2_rgrpd *rgd)
{
int x;
for (x = 0; x < rgd->rd_length; x++) {
struct gfs2_bitmap *bi = rgd->rd_bits + x;
kfree(bi->bi_clone);
bi->bi_clone = NULL;
}
}
/**
* gfs2_rs_alloc - make sure we have a reservation assigned to the inode
* @ip: the inode for this reservation
*/
int gfs2_rs_alloc(struct gfs2_inode *ip)
{
int error = 0;
down_write(&ip->i_rw_mutex);
if (ip->i_res)
goto out;
ip->i_res = kmem_cache_zalloc(gfs2_rsrv_cachep, GFP_NOFS);
if (!ip->i_res) {
error = -ENOMEM;
goto out;
}
RB_CLEAR_NODE(&ip->i_res->rs_node);
out:
up_write(&ip->i_rw_mutex);
return error;
}
static void dump_rs(struct seq_file *seq, const struct gfs2_blkreserv *rs)
{
gfs2_print_dbg(seq, " B: n:%llu s:%llu b:%u f:%u\n",
(unsigned long long)rs->rs_inum,
(unsigned long long)gfs2_rbm_to_block(&rs->rs_rbm),
rs->rs_rbm.offset, rs->rs_free);
}
/**
* __rs_deltree - remove a multi-block reservation from the rgd tree
* @rs: The reservation to remove
*
*/
static void __rs_deltree(struct gfs2_inode *ip, struct gfs2_blkreserv *rs)
{
struct gfs2_rgrpd *rgd;
if (!gfs2_rs_active(rs))
return;
rgd = rs->rs_rbm.rgd;
trace_gfs2_rs(rs, TRACE_RS_TREEDEL);
rb_erase(&rs->rs_node, &rgd->rd_rstree);
RB_CLEAR_NODE(&rs->rs_node);
if (rs->rs_free) {
/* return reserved blocks to the rgrp and the ip */
BUG_ON(rs->rs_rbm.rgd->rd_reserved < rs->rs_free);
rs->rs_rbm.rgd->rd_reserved -= rs->rs_free;
rs->rs_free = 0;
clear_bit(GBF_FULL, &rs->rs_rbm.bi->bi_flags);
smp_mb__after_clear_bit();
}
}
/**
* gfs2_rs_deltree - remove a multi-block reservation from the rgd tree
* @rs: The reservation to remove
*
*/
void gfs2_rs_deltree(struct gfs2_inode *ip, struct gfs2_blkreserv *rs)
{
struct gfs2_rgrpd *rgd;
rgd = rs->rs_rbm.rgd;
if (rgd) {
spin_lock(&rgd->rd_rsspin);
__rs_deltree(ip, rs);
spin_unlock(&rgd->rd_rsspin);
}
}
/**
* gfs2_rs_delete - delete a multi-block reservation
* @ip: The inode for this reservation
*
*/
void gfs2_rs_delete(struct gfs2_inode *ip)
{
down_write(&ip->i_rw_mutex);
if (ip->i_res) {
gfs2_rs_deltree(ip, ip->i_res);
BUG_ON(ip->i_res->rs_free);
kmem_cache_free(gfs2_rsrv_cachep, ip->i_res);
ip->i_res = NULL;
}
up_write(&ip->i_rw_mutex);
}
/**
* return_all_reservations - return all reserved blocks back to the rgrp.
* @rgd: the rgrp that needs its space back
*
* We previously reserved a bunch of blocks for allocation. Now we need to
* give them back. This leave the reservation structures in tact, but removes
* all of their corresponding "no-fly zones".
*/
static void return_all_reservations(struct gfs2_rgrpd *rgd)
{
struct rb_node *n;
struct gfs2_blkreserv *rs;
spin_lock(&rgd->rd_rsspin);
while ((n = rb_first(&rgd->rd_rstree))) {
rs = rb_entry(n, struct gfs2_blkreserv, rs_node);
__rs_deltree(NULL, rs);
}
spin_unlock(&rgd->rd_rsspin);
}
void gfs2_clear_rgrpd(struct gfs2_sbd *sdp)
{
struct rb_node *n;
struct gfs2_rgrpd *rgd;
struct gfs2_glock *gl;
while ((n = rb_first(&sdp->sd_rindex_tree))) {
rgd = rb_entry(n, struct gfs2_rgrpd, rd_node);
gl = rgd->rd_gl;
rb_erase(n, &sdp->sd_rindex_tree);
if (gl) {
spin_lock(&gl->gl_spin);
gl->gl_object = NULL;
spin_unlock(&gl->gl_spin);
gfs2_glock_add_to_lru(gl);
gfs2_glock_put(gl);
}
gfs2_free_clones(rgd);
kfree(rgd->rd_bits);
return_all_reservations(rgd);
kmem_cache_free(gfs2_rgrpd_cachep, rgd);
}
}
static void gfs2_rindex_print(const struct gfs2_rgrpd *rgd)
{
printk(KERN_INFO " ri_addr = %llu\n", (unsigned long long)rgd->rd_addr);
printk(KERN_INFO " ri_length = %u\n", rgd->rd_length);
printk(KERN_INFO " ri_data0 = %llu\n", (unsigned long long)rgd->rd_data0);
printk(KERN_INFO " ri_data = %u\n", rgd->rd_data);
printk(KERN_INFO " ri_bitbytes = %u\n", rgd->rd_bitbytes);
}
/**
* gfs2_compute_bitstructs - Compute the bitmap sizes
* @rgd: The resource group descriptor
*
* Calculates bitmap descriptors, one for each block that contains bitmap data
*
* Returns: errno
*/
static int compute_bitstructs(struct gfs2_rgrpd *rgd)
{
struct gfs2_sbd *sdp = rgd->rd_sbd;
struct gfs2_bitmap *bi;
u32 length = rgd->rd_length; /* # blocks in hdr & bitmap */
u32 bytes_left, bytes;
int x;
if (!length)
return -EINVAL;
rgd->rd_bits = kcalloc(length, sizeof(struct gfs2_bitmap), GFP_NOFS);
if (!rgd->rd_bits)
return -ENOMEM;
bytes_left = rgd->rd_bitbytes;
for (x = 0; x < length; x++) {
bi = rgd->rd_bits + x;
bi->bi_flags = 0;
/* small rgrp; bitmap stored completely in header block */
if (length == 1) {
bytes = bytes_left;
bi->bi_offset = sizeof(struct gfs2_rgrp);
bi->bi_start = 0;
bi->bi_len = bytes;
/* header block */
} else if (x == 0) {
bytes = sdp->sd_sb.sb_bsize - sizeof(struct gfs2_rgrp);
bi->bi_offset = sizeof(struct gfs2_rgrp);
bi->bi_start = 0;
bi->bi_len = bytes;
/* last block */
} else if (x + 1 == length) {
bytes = bytes_left;
bi->bi_offset = sizeof(struct gfs2_meta_header);
bi->bi_start = rgd->rd_bitbytes - bytes_left;
bi->bi_len = bytes;
/* other blocks */
} else {
bytes = sdp->sd_sb.sb_bsize -
sizeof(struct gfs2_meta_header);
bi->bi_offset = sizeof(struct gfs2_meta_header);
bi->bi_start = rgd->rd_bitbytes - bytes_left;
bi->bi_len = bytes;
}
bytes_left -= bytes;
}
if (bytes_left) {
gfs2_consist_rgrpd(rgd);
return -EIO;
}
bi = rgd->rd_bits + (length - 1);
if ((bi->bi_start + bi->bi_len) * GFS2_NBBY != rgd->rd_data) {
if (gfs2_consist_rgrpd(rgd)) {
gfs2_rindex_print(rgd);
fs_err(sdp, "start=%u len=%u offset=%u\n",
bi->bi_start, bi->bi_len, bi->bi_offset);
}
return -EIO;
}
return 0;
}
/**
* gfs2_ri_total - Total up the file system space, according to the rindex.
* @sdp: the filesystem
*
*/
u64 gfs2_ri_total(struct gfs2_sbd *sdp)
{
u64 total_data = 0;
struct inode *inode = sdp->sd_rindex;
struct gfs2_inode *ip = GFS2_I(inode);
char buf[sizeof(struct gfs2_rindex)];
int error, rgrps;
for (rgrps = 0;; rgrps++) {
loff_t pos = rgrps * sizeof(struct gfs2_rindex);
if (pos + sizeof(struct gfs2_rindex) > i_size_read(inode))
break;
error = gfs2_internal_read(ip, buf, &pos,
sizeof(struct gfs2_rindex));
if (error != sizeof(struct gfs2_rindex))
break;
total_data += be32_to_cpu(((struct gfs2_rindex *)buf)->ri_data);
}
return total_data;
}
static int rgd_insert(struct gfs2_rgrpd *rgd)
{
struct gfs2_sbd *sdp = rgd->rd_sbd;
struct rb_node **newn = &sdp->sd_rindex_tree.rb_node, *parent = NULL;
/* Figure out where to put new node */
while (*newn) {
struct gfs2_rgrpd *cur = rb_entry(*newn, struct gfs2_rgrpd,
rd_node);
parent = *newn;
if (rgd->rd_addr < cur->rd_addr)
newn = &((*newn)->rb_left);
else if (rgd->rd_addr > cur->rd_addr)
newn = &((*newn)->rb_right);
else
return -EEXIST;
}
rb_link_node(&rgd->rd_node, parent, newn);
rb_insert_color(&rgd->rd_node, &sdp->sd_rindex_tree);
sdp->sd_rgrps++;
return 0;
}
/**
* read_rindex_entry - Pull in a new resource index entry from the disk
* @ip: Pointer to the rindex inode
*
* Returns: 0 on success, > 0 on EOF, error code otherwise
*/
static int read_rindex_entry(struct gfs2_inode *ip)
{
struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
loff_t pos = sdp->sd_rgrps * sizeof(struct gfs2_rindex);
struct gfs2_rindex buf;
int error;
struct gfs2_rgrpd *rgd;
if (pos >= i_size_read(&ip->i_inode))
return 1;
error = gfs2_internal_read(ip, (char *)&buf, &pos,
sizeof(struct gfs2_rindex));
if (error != sizeof(struct gfs2_rindex))
return (error == 0) ? 1 : error;
rgd = kmem_cache_zalloc(gfs2_rgrpd_cachep, GFP_NOFS);
error = -ENOMEM;
if (!rgd)
return error;
rgd->rd_sbd = sdp;
rgd->rd_addr = be64_to_cpu(buf.ri_addr);
rgd->rd_length = be32_to_cpu(buf.ri_length);
rgd->rd_data0 = be64_to_cpu(buf.ri_data0);
rgd->rd_data = be32_to_cpu(buf.ri_data);
rgd->rd_bitbytes = be32_to_cpu(buf.ri_bitbytes);
spin_lock_init(&rgd->rd_rsspin);
error = compute_bitstructs(rgd);
if (error)
goto fail;
error = gfs2_glock_get(sdp, rgd->rd_addr,
&gfs2_rgrp_glops, CREATE, &rgd->rd_gl);
if (error)
goto fail;
rgd->rd_gl->gl_object = rgd;
rgd->rd_rgl = (struct gfs2_rgrp_lvb *)rgd->rd_gl->gl_lksb.sb_lvbptr;
rgd->rd_flags &= ~GFS2_RDF_UPTODATE;
if (rgd->rd_data > sdp->sd_max_rg_data)
sdp->sd_max_rg_data = rgd->rd_data;
spin_lock(&sdp->sd_rindex_spin);
error = rgd_insert(rgd);
spin_unlock(&sdp->sd_rindex_spin);
if (!error)
return 0;
error = 0; /* someone else read in the rgrp; free it and ignore it */
gfs2_glock_put(rgd->rd_gl);
fail:
kfree(rgd->rd_bits);
kmem_cache_free(gfs2_rgrpd_cachep, rgd);
return error;
}
/**
* gfs2_ri_update - Pull in a new resource index from the disk
* @ip: pointer to the rindex inode
*
* Returns: 0 on successful update, error code otherwise
*/
static int gfs2_ri_update(struct gfs2_inode *ip)
{
struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
int error;
do {
error = read_rindex_entry(ip);
} while (error == 0);
if (error < 0)
return error;
sdp->sd_rindex_uptodate = 1;
return 0;
}
/**
* gfs2_rindex_update - Update the rindex if required
* @sdp: The GFS2 superblock
*
* We grab a lock on the rindex inode to make sure that it doesn't
* change whilst we are performing an operation. We keep this lock
* for quite long periods of time compared to other locks. This
* doesn't matter, since it is shared and it is very, very rarely
* accessed in the exclusive mode (i.e. only when expanding the filesystem).
*
* This makes sure that we're using the latest copy of the resource index
* special file, which might have been updated if someone expanded the
* filesystem (via gfs2_grow utility), which adds new resource groups.
*
* Returns: 0 on succeess, error code otherwise
*/
int gfs2_rindex_update(struct gfs2_sbd *sdp)
{
struct gfs2_inode *ip = GFS2_I(sdp->sd_rindex);
struct gfs2_glock *gl = ip->i_gl;
struct gfs2_holder ri_gh;
int error = 0;
int unlock_required = 0;
/* Read new copy from disk if we don't have the latest */
if (!sdp->sd_rindex_uptodate) {
if (!gfs2_glock_is_locked_by_me(gl)) {
error = gfs2_glock_nq_init(gl, LM_ST_SHARED, 0, &ri_gh);
if (error)
return error;
unlock_required = 1;
}
if (!sdp->sd_rindex_uptodate)
error = gfs2_ri_update(ip);
if (unlock_required)
gfs2_glock_dq_uninit(&ri_gh);
}
return error;
}
static void gfs2_rgrp_in(struct gfs2_rgrpd *rgd, const void *buf)
{
const struct gfs2_rgrp *str = buf;
u32 rg_flags;
rg_flags = be32_to_cpu(str->rg_flags);
rg_flags &= ~GFS2_RDF_MASK;
rgd->rd_flags &= GFS2_RDF_MASK;
rgd->rd_flags |= rg_flags;
rgd->rd_free = be32_to_cpu(str->rg_free);
rgd->rd_dinodes = be32_to_cpu(str->rg_dinodes);
rgd->rd_igeneration = be64_to_cpu(str->rg_igeneration);
}
static void gfs2_rgrp_out(struct gfs2_rgrpd *rgd, void *buf)
{
struct gfs2_rgrp *str = buf;
str->rg_flags = cpu_to_be32(rgd->rd_flags & ~GFS2_RDF_MASK);
str->rg_free = cpu_to_be32(rgd->rd_free);
str->rg_dinodes = cpu_to_be32(rgd->rd_dinodes);
str->__pad = cpu_to_be32(0);
str->rg_igeneration = cpu_to_be64(rgd->rd_igeneration);
memset(&str->rg_reserved, 0, sizeof(str->rg_reserved));
}
static int gfs2_rgrp_lvb_valid(struct gfs2_rgrpd *rgd)
{
struct gfs2_rgrp_lvb *rgl = rgd->rd_rgl;
struct gfs2_rgrp *str = (struct gfs2_rgrp *)rgd->rd_bits[0].bi_bh->b_data;
if (rgl->rl_flags != str->rg_flags || rgl->rl_free != str->rg_free ||
rgl->rl_dinodes != str->rg_dinodes ||
rgl->rl_igeneration != str->rg_igeneration)
return 0;
return 1;
}
static void gfs2_rgrp_ondisk2lvb(struct gfs2_rgrp_lvb *rgl, const void *buf)
{
const struct gfs2_rgrp *str = buf;
rgl->rl_magic = cpu_to_be32(GFS2_MAGIC);
rgl->rl_flags = str->rg_flags;
rgl->rl_free = str->rg_free;
rgl->rl_dinodes = str->rg_dinodes;
rgl->rl_igeneration = str->rg_igeneration;
rgl->__pad = 0UL;
}
static void update_rgrp_lvb_unlinked(struct gfs2_rgrpd *rgd, u32 change)
{
struct gfs2_rgrp_lvb *rgl = rgd->rd_rgl;
u32 unlinked = be32_to_cpu(rgl->rl_unlinked) + change;
rgl->rl_unlinked = cpu_to_be32(unlinked);
}
static u32 count_unlinked(struct gfs2_rgrpd *rgd)
{
struct gfs2_bitmap *bi;
const u32 length = rgd->rd_length;
const u8 *buffer = NULL;
u32 i, goal, count = 0;
for (i = 0, bi = rgd->rd_bits; i < length; i++, bi++) {
goal = 0;
buffer = bi->bi_bh->b_data + bi->bi_offset;
WARN_ON(!buffer_uptodate(bi->bi_bh));
while (goal < bi->bi_len * GFS2_NBBY) {
goal = gfs2_bitfit(buffer, bi->bi_len, goal,
GFS2_BLKST_UNLINKED);
if (goal == BFITNOENT)
break;
count++;
goal++;
}
}
return count;
}
/**
* gfs2_rgrp_bh_get - Read in a RG's header and bitmaps
* @rgd: the struct gfs2_rgrpd describing the RG to read in
*
* Read in all of a Resource Group's header and bitmap blocks.
* Caller must eventually call gfs2_rgrp_relse() to free the bitmaps.
*
* Returns: errno
*/
int gfs2_rgrp_bh_get(struct gfs2_rgrpd *rgd)
{
struct gfs2_sbd *sdp = rgd->rd_sbd;
struct gfs2_glock *gl = rgd->rd_gl;
unsigned int length = rgd->rd_length;
struct gfs2_bitmap *bi;
unsigned int x, y;
int error;
if (rgd->rd_bits[0].bi_bh != NULL)
return 0;
for (x = 0; x < length; x++) {
bi = rgd->rd_bits + x;
error = gfs2_meta_read(gl, rgd->rd_addr + x, 0, &bi->bi_bh);
if (error)
goto fail;
}
for (y = length; y--;) {
bi = rgd->rd_bits + y;
error = gfs2_meta_wait(sdp, bi->bi_bh);
if (error)
goto fail;
if (gfs2_metatype_check(sdp, bi->bi_bh, y ? GFS2_METATYPE_RB :
GFS2_METATYPE_RG)) {
error = -EIO;
goto fail;
}
}
if (!(rgd->rd_flags & GFS2_RDF_UPTODATE)) {
for (x = 0; x < length; x++)
clear_bit(GBF_FULL, &rgd->rd_bits[x].bi_flags);
gfs2_rgrp_in(rgd, (rgd->rd_bits[0].bi_bh)->b_data);
rgd->rd_flags |= (GFS2_RDF_UPTODATE | GFS2_RDF_CHECK);
rgd->rd_free_clone = rgd->rd_free;
}
if (be32_to_cpu(GFS2_MAGIC) != rgd->rd_rgl->rl_magic) {
rgd->rd_rgl->rl_unlinked = cpu_to_be32(count_unlinked(rgd));
gfs2_rgrp_ondisk2lvb(rgd->rd_rgl,
rgd->rd_bits[0].bi_bh->b_data);
}
else if (sdp->sd_args.ar_rgrplvb) {
if (!gfs2_rgrp_lvb_valid(rgd)){
gfs2_consist_rgrpd(rgd);
error = -EIO;
goto fail;
}
if (rgd->rd_rgl->rl_unlinked == 0)
rgd->rd_flags &= ~GFS2_RDF_CHECK;
}
return 0;
fail:
while (x--) {
bi = rgd->rd_bits + x;
brelse(bi->bi_bh);
bi->bi_bh = NULL;
gfs2_assert_warn(sdp, !bi->bi_clone);
}
return error;
}
int update_rgrp_lvb(struct gfs2_rgrpd *rgd)
{
u32 rl_flags;
if (rgd->rd_flags & GFS2_RDF_UPTODATE)
return 0;
if (be32_to_cpu(GFS2_MAGIC) != rgd->rd_rgl->rl_magic)
return gfs2_rgrp_bh_get(rgd);
rl_flags = be32_to_cpu(rgd->rd_rgl->rl_flags);
rl_flags &= ~GFS2_RDF_MASK;
rgd->rd_flags &= GFS2_RDF_MASK;
rgd->rd_flags |= (rl_flags | GFS2_RDF_UPTODATE | GFS2_RDF_CHECK);
if (rgd->rd_rgl->rl_unlinked == 0)
rgd->rd_flags &= ~GFS2_RDF_CHECK;
rgd->rd_free = be32_to_cpu(rgd->rd_rgl->rl_free);
rgd->rd_free_clone = rgd->rd_free;
rgd->rd_dinodes = be32_to_cpu(rgd->rd_rgl->rl_dinodes);
rgd->rd_igeneration = be64_to_cpu(rgd->rd_rgl->rl_igeneration);
return 0;
}
int gfs2_rgrp_go_lock(struct gfs2_holder *gh)
{
struct gfs2_rgrpd *rgd = gh->gh_gl->gl_object;
struct gfs2_sbd *sdp = rgd->rd_sbd;
if (gh->gh_flags & GL_SKIP && sdp->sd_args.ar_rgrplvb)
return 0;
return gfs2_rgrp_bh_get((struct gfs2_rgrpd *)gh->gh_gl->gl_object);
}
/**
* gfs2_rgrp_go_unlock - Release RG bitmaps read in with gfs2_rgrp_bh_get()
* @gh: The glock holder for the resource group
*
*/
void gfs2_rgrp_go_unlock(struct gfs2_holder *gh)
{
struct gfs2_rgrpd *rgd = gh->gh_gl->gl_object;
int x, length = rgd->rd_length;
for (x = 0; x < length; x++) {
struct gfs2_bitmap *bi = rgd->rd_bits + x;
if (bi->bi_bh) {
brelse(bi->bi_bh);
bi->bi_bh = NULL;
}
}
}
int gfs2_rgrp_send_discards(struct gfs2_sbd *sdp, u64 offset,
struct buffer_head *bh,
const struct gfs2_bitmap *bi, unsigned minlen, u64 *ptrimmed)
{
struct super_block *sb = sdp->sd_vfs;
struct block_device *bdev = sb->s_bdev;
const unsigned int sects_per_blk = sdp->sd_sb.sb_bsize /
bdev_logical_block_size(sb->s_bdev);
u64 blk;
sector_t start = 0;
sector_t nr_sects = 0;
int rv;
unsigned int x;
u32 trimmed = 0;
u8 diff;
for (x = 0; x < bi->bi_len; x++) {
const u8 *clone = bi->bi_clone ? bi->bi_clone : bi->bi_bh->b_data;
clone += bi->bi_offset;
clone += x;
if (bh) {
const u8 *orig = bh->b_data + bi->bi_offset + x;
diff = ~(*orig | (*orig >> 1)) & (*clone | (*clone >> 1));
} else {
diff = ~(*clone | (*clone >> 1));
}
diff &= 0x55;
if (diff == 0)
continue;
blk = offset + ((bi->bi_start + x) * GFS2_NBBY);
blk *= sects_per_blk; /* convert to sectors */
while(diff) {
if (diff & 1) {
if (nr_sects == 0)
goto start_new_extent;
if ((start + nr_sects) != blk) {
if (nr_sects >= minlen) {
rv = blkdev_issue_discard(bdev,
start, nr_sects,
GFP_NOFS, 0);
if (rv)
goto fail;
trimmed += nr_sects;
}
nr_sects = 0;
start_new_extent:
start = blk;
}
nr_sects += sects_per_blk;
}
diff >>= 2;
blk += sects_per_blk;
}
}
if (nr_sects >= minlen) {
rv = blkdev_issue_discard(bdev, start, nr_sects, GFP_NOFS, 0);
if (rv)
goto fail;
trimmed += nr_sects;
}
if (ptrimmed)
*ptrimmed = trimmed;
return 0;
fail:
if (sdp->sd_args.ar_discard)
fs_warn(sdp, "error %d on discard request, turning discards off for this filesystem", rv);
sdp->sd_args.ar_discard = 0;
return -EIO;
}
/**
* gfs2_fitrim - Generate discard requests for unused bits of the filesystem
* @filp: Any file on the filesystem
* @argp: Pointer to the arguments (also used to pass result)
*
* Returns: 0 on success, otherwise error code
*/
int gfs2_fitrim(struct file *filp, void __user *argp)
{
struct inode *inode = file_inode(filp);
struct gfs2_sbd *sdp = GFS2_SB(inode);
struct request_queue *q = bdev_get_queue(sdp->sd_vfs->s_bdev);
struct buffer_head *bh;
struct gfs2_rgrpd *rgd;
struct gfs2_rgrpd *rgd_end;
struct gfs2_holder gh;
struct fstrim_range r;
int ret = 0;
u64 amt;
u64 trimmed = 0;
u64 start, end, minlen;
unsigned int x;
unsigned bs_shift = sdp->sd_sb.sb_bsize_shift;
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
if (!blk_queue_discard(q))
return -EOPNOTSUPP;
if (copy_from_user(&r, argp, sizeof(r)))
return -EFAULT;
ret = gfs2_rindex_update(sdp);
if (ret)
return ret;
start = r.start >> bs_shift;
end = start + (r.len >> bs_shift);
minlen = max_t(u64, r.minlen,
q->limits.discard_granularity) >> bs_shift;
rgd = gfs2_blk2rgrpd(sdp, start, 0);
rgd_end = gfs2_blk2rgrpd(sdp, end - 1, 0);
if (end <= start ||
minlen > sdp->sd_max_rg_data ||
start > rgd_end->rd_data0 + rgd_end->rd_data)
return -EINVAL;
while (1) {
ret = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_EXCLUSIVE, 0, &gh);
if (ret)
goto out;
if (!(rgd->rd_flags & GFS2_RGF_TRIMMED)) {
/* Trim each bitmap in the rgrp */
for (x = 0; x < rgd->rd_length; x++) {
struct gfs2_bitmap *bi = rgd->rd_bits + x;
ret = gfs2_rgrp_send_discards(sdp,
rgd->rd_data0, NULL, bi, minlen,
&amt);
if (ret) {
gfs2_glock_dq_uninit(&gh);
goto out;
}
trimmed += amt;
}
/* Mark rgrp as having been trimmed */
ret = gfs2_trans_begin(sdp, RES_RG_HDR, 0);
if (ret == 0) {
bh = rgd->rd_bits[0].bi_bh;
rgd->rd_flags |= GFS2_RGF_TRIMMED;
gfs2_trans_add_meta(rgd->rd_gl, bh);
gfs2_rgrp_out(rgd, bh->b_data);
gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, bh->b_data);
gfs2_trans_end(sdp);
}
}
gfs2_glock_dq_uninit(&gh);
if (rgd == rgd_end)
break;
rgd = gfs2_rgrpd_get_next(rgd);
}
out:
r.len = trimmed << 9;
if (copy_to_user(argp, &r, sizeof(r)))
return -EFAULT;
return ret;
}
/**
* rs_insert - insert a new multi-block reservation into the rgrp's rb_tree
* @ip: the inode structure
*
*/
static void rs_insert(struct gfs2_inode *ip)
{
struct rb_node **newn, *parent = NULL;
int rc;
struct gfs2_blkreserv *rs = ip->i_res;
struct gfs2_rgrpd *rgd = rs->rs_rbm.rgd;
u64 fsblock = gfs2_rbm_to_block(&rs->rs_rbm);
BUG_ON(gfs2_rs_active(rs));
spin_lock(&rgd->rd_rsspin);
newn = &rgd->rd_rstree.rb_node;
while (*newn) {
struct gfs2_blkreserv *cur =
rb_entry(*newn, struct gfs2_blkreserv, rs_node);
parent = *newn;
rc = rs_cmp(fsblock, rs->rs_free, cur);
if (rc > 0)
newn = &((*newn)->rb_right);
else if (rc < 0)
newn = &((*newn)->rb_left);
else {
spin_unlock(&rgd->rd_rsspin);
WARN_ON(1);
return;
}
}
rb_link_node(&rs->rs_node, parent, newn);
rb_insert_color(&rs->rs_node, &rgd->rd_rstree);
/* Do our rgrp accounting for the reservation */
rgd->rd_reserved += rs->rs_free; /* blocks reserved */
spin_unlock(&rgd->rd_rsspin);
trace_gfs2_rs(rs, TRACE_RS_INSERT);
}
/**
* rg_mblk_search - find a group of multiple free blocks to form a reservation
* @rgd: the resource group descriptor
* @ip: pointer to the inode for which we're reserving blocks
* @requested: number of blocks required for this allocation
*
*/
static void rg_mblk_search(struct gfs2_rgrpd *rgd, struct gfs2_inode *ip,
unsigned requested)
{
struct gfs2_rbm rbm = { .rgd = rgd, };
u64 goal;
struct gfs2_blkreserv *rs = ip->i_res;
u32 extlen;
u32 free_blocks = rgd->rd_free_clone - rgd->rd_reserved;
int ret;
extlen = max_t(u32, atomic_read(&rs->rs_sizehint), requested);
extlen = clamp(extlen, RGRP_RSRV_MINBLKS, free_blocks);
if ((rgd->rd_free_clone < rgd->rd_reserved) || (free_blocks < extlen))
return;
/* Find bitmap block that contains bits for goal block */
if (rgrp_contains_block(rgd, ip->i_goal))
goal = ip->i_goal;
else
goal = rgd->rd_last_alloc + rgd->rd_data0;
if (WARN_ON(gfs2_rbm_from_block(&rbm, goal)))
return;
ret = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, extlen, ip, true);
if (ret == 0) {
rs->rs_rbm = rbm;
rs->rs_free = extlen;
rs->rs_inum = ip->i_no_addr;
rs_insert(ip);
} else {
if (goal == rgd->rd_last_alloc + rgd->rd_data0)
rgd->rd_last_alloc = 0;
}
}
/**
* gfs2_next_unreserved_block - Return next block that is not reserved
* @rgd: The resource group
* @block: The starting block
* @length: The required length
* @ip: Ignore any reservations for this inode
*
* If the block does not appear in any reservation, then return the
* block number unchanged. If it does appear in the reservation, then
* keep looking through the tree of reservations in order to find the
* first block number which is not reserved.
*/
static u64 gfs2_next_unreserved_block(struct gfs2_rgrpd *rgd, u64 block,
u32 length,
const struct gfs2_inode *ip)
{
struct gfs2_blkreserv *rs;
struct rb_node *n;
int rc;
spin_lock(&rgd->rd_rsspin);
n = rgd->rd_rstree.rb_node;
while (n) {
rs = rb_entry(n, struct gfs2_blkreserv, rs_node);
rc = rs_cmp(block, length, rs);
if (rc < 0)
n = n->rb_left;
else if (rc > 0)
n = n->rb_right;
else
break;
}
if (n) {
while ((rs_cmp(block, length, rs) == 0) && (ip->i_res != rs)) {
block = gfs2_rbm_to_block(&rs->rs_rbm) + rs->rs_free;
n = n->rb_right;
if (n == NULL)
break;
rs = rb_entry(n, struct gfs2_blkreserv, rs_node);
}
}
spin_unlock(&rgd->rd_rsspin);
return block;
}
/**
* gfs2_reservation_check_and_update - Check for reservations during block alloc
* @rbm: The current position in the resource group
* @ip: The inode for which we are searching for blocks
* @minext: The minimum extent length
*
* This checks the current position in the rgrp to see whether there is
* a reservation covering this block. If not then this function is a
* no-op. If there is, then the position is moved to the end of the
* contiguous reservation(s) so that we are pointing at the first
* non-reserved block.
*
* Returns: 0 if no reservation, 1 if @rbm has changed, otherwise an error
*/
static int gfs2_reservation_check_and_update(struct gfs2_rbm *rbm,
const struct gfs2_inode *ip,
u32 minext)
{
u64 block = gfs2_rbm_to_block(rbm);
u32 extlen = 1;
u64 nblock;
int ret;
/*
* If we have a minimum extent length, then skip over any extent
* which is less than the min extent length in size.
*/
if (minext) {
extlen = gfs2_free_extlen(rbm, minext);
nblock = block + extlen;
if (extlen < minext)
goto fail;
}
/*
* Check the extent which has been found against the reservations
* and skip if parts of it are already reserved
*/
nblock = gfs2_next_unreserved_block(rbm->rgd, block, extlen, ip);
if (nblock == block)
return 0;
fail:
ret = gfs2_rbm_from_block(rbm, nblock);
if (ret < 0)
return ret;
return 1;
}
/**
* gfs2_rbm_find - Look for blocks of a particular state
* @rbm: Value/result starting position and final position
* @state: The state which we want to find
* @minext: The requested extent length (0 for a single block)
* @ip: If set, check for reservations
* @nowrap: Stop looking at the end of the rgrp, rather than wrapping
* around until we've reached the starting point.
*
* Side effects:
* - If looking for free blocks, we set GBF_FULL on each bitmap which
* has no free blocks in it.
*
* Returns: 0 on success, -ENOSPC if there is no block of the requested state
*/
static int gfs2_rbm_find(struct gfs2_rbm *rbm, u8 state, u32 minext,
const struct gfs2_inode *ip, bool nowrap)
{
struct buffer_head *bh;
struct gfs2_bitmap *initial_bi;
u32 initial_offset;
u32 offset;
u8 *buffer;
int index;
int n = 0;
int iters = rbm->rgd->rd_length;
int ret;
/* If we are not starting at the beginning of a bitmap, then we
* need to add one to the bitmap count to ensure that we search
* the starting bitmap twice.
*/
if (rbm->offset != 0)
iters++;
while(1) {
if (test_bit(GBF_FULL, &rbm->bi->bi_flags) &&
(state == GFS2_BLKST_FREE))
goto next_bitmap;
bh = rbm->bi->bi_bh;
buffer = bh->b_data + rbm->bi->bi_offset;
WARN_ON(!buffer_uptodate(bh));
if (state != GFS2_BLKST_UNLINKED && rbm->bi->bi_clone)
buffer = rbm->bi->bi_clone + rbm->bi->bi_offset;
initial_offset = rbm->offset;
offset = gfs2_bitfit(buffer, rbm->bi->bi_len, rbm->offset, state);
if (offset == BFITNOENT)
goto bitmap_full;
rbm->offset = offset;
if (ip == NULL)
return 0;
initial_bi = rbm->bi;
ret = gfs2_reservation_check_and_update(rbm, ip, minext);
if (ret == 0)
return 0;
if (ret > 0) {
n += (rbm->bi - initial_bi);
goto next_iter;
}
if (ret == -E2BIG) {
index = 0;
rbm->offset = 0;
n += (rbm->bi - initial_bi);
goto res_covered_end_of_rgrp;
}
return ret;
bitmap_full: /* Mark bitmap as full and fall through */
if ((state == GFS2_BLKST_FREE) && initial_offset == 0)
set_bit(GBF_FULL, &rbm->bi->bi_flags);
next_bitmap: /* Find next bitmap in the rgrp */
rbm->offset = 0;
index = rbm->bi - rbm->rgd->rd_bits;
index++;
if (index == rbm->rgd->rd_length)
index = 0;
res_covered_end_of_rgrp:
rbm->bi = &rbm->rgd->rd_bits[index];
if ((index == 0) && nowrap)
break;
n++;
next_iter:
if (n >= iters)
break;
}
return -ENOSPC;
}
/**
* try_rgrp_unlink - Look for any unlinked, allocated, but unused inodes
* @rgd: The rgrp
* @last_unlinked: block address of the last dinode we unlinked
* @skip: block address we should explicitly not unlink
*
* Returns: 0 if no error
* The inode, if one has been found, in inode.
*/
static void try_rgrp_unlink(struct gfs2_rgrpd *rgd, u64 *last_unlinked, u64 skip)
{
u64 block;
struct gfs2_sbd *sdp = rgd->rd_sbd;
struct gfs2_glock *gl;
struct gfs2_inode *ip;
int error;
int found = 0;
struct gfs2_rbm rbm = { .rgd = rgd, .bi = rgd->rd_bits, .offset = 0 };
while (1) {
down_write(&sdp->sd_log_flush_lock);
error = gfs2_rbm_find(&rbm, GFS2_BLKST_UNLINKED, 0, NULL, true);
up_write(&sdp->sd_log_flush_lock);
if (error == -ENOSPC)
break;
if (WARN_ON_ONCE(error))
break;
block = gfs2_rbm_to_block(&rbm);
if (gfs2_rbm_from_block(&rbm, block + 1))
break;
if (*last_unlinked != NO_BLOCK && block <= *last_unlinked)
continue;
if (block == skip)
continue;
*last_unlinked = block;
error = gfs2_glock_get(sdp, block, &gfs2_inode_glops, CREATE, &gl);
if (error)
continue;
/* If the inode is already in cache, we can ignore it here
* because the existing inode disposal code will deal with
* it when all refs have gone away. Accessing gl_object like
* this is not safe in general. Here it is ok because we do
* not dereference the pointer, and we only need an approx
* answer to whether it is NULL or not.
*/
ip = gl->gl_object;
if (ip || queue_work(gfs2_delete_workqueue, &gl->gl_delete) == 0)
gfs2_glock_put(gl);
else
found++;
/* Limit reclaim to sensible number of tasks */
if (found > NR_CPUS)
return;
}
rgd->rd_flags &= ~GFS2_RDF_CHECK;
return;
}
/**
* gfs2_rgrp_congested - Use stats to figure out whether an rgrp is congested
* @rgd: The rgrp in question
* @loops: An indication of how picky we can be (0=very, 1=less so)
*
* This function uses the recently added glock statistics in order to
* figure out whether a parciular resource group is suffering from
* contention from multiple nodes. This is done purely on the basis
* of timings, since this is the only data we have to work with and
* our aim here is to reject a resource group which is highly contended
* but (very important) not to do this too often in order to ensure that
* we do not land up introducing fragmentation by changing resource
* groups when not actually required.
*
* The calculation is fairly simple, we want to know whether the SRTTB
* (i.e. smoothed round trip time for blocking operations) to acquire
* the lock for this rgrp's glock is significantly greater than the
* time taken for resource groups on average. We introduce a margin in
* the form of the variable @var which is computed as the sum of the two
* respective variences, and multiplied by a factor depending on @loops
* and whether we have a lot of data to base the decision on. This is
* then tested against the square difference of the means in order to
* decide whether the result is statistically significant or not.
*
* Returns: A boolean verdict on the congestion status
*/
static bool gfs2_rgrp_congested(const struct gfs2_rgrpd *rgd, int loops)
{
const struct gfs2_glock *gl = rgd->rd_gl;
const struct gfs2_sbd *sdp = gl->gl_sbd;
struct gfs2_lkstats *st;
s64 r_dcount, l_dcount;
s64 r_srttb, l_srttb;
s64 srttb_diff;
s64 sqr_diff;
s64 var;
preempt_disable();
st = &this_cpu_ptr(sdp->sd_lkstats)->lkstats[LM_TYPE_RGRP];
r_srttb = st->stats[GFS2_LKS_SRTTB];
r_dcount = st->stats[GFS2_LKS_DCOUNT];
var = st->stats[GFS2_LKS_SRTTVARB] +
gl->gl_stats.stats[GFS2_LKS_SRTTVARB];
preempt_enable();
l_srttb = gl->gl_stats.stats[GFS2_LKS_SRTTB];
l_dcount = gl->gl_stats.stats[GFS2_LKS_DCOUNT];
if ((l_dcount < 1) || (r_dcount < 1) || (r_srttb == 0))
return false;
srttb_diff = r_srttb - l_srttb;
sqr_diff = srttb_diff * srttb_diff;
var *= 2;
if (l_dcount < 8 || r_dcount < 8)
var *= 2;
if (loops == 1)
var *= 2;
return ((srttb_diff < 0) && (sqr_diff > var));
}
/**
* gfs2_rgrp_used_recently
* @rs: The block reservation with the rgrp to test
* @msecs: The time limit in milliseconds
*
* Returns: True if the rgrp glock has been used within the time limit
*/
static bool gfs2_rgrp_used_recently(const struct gfs2_blkreserv *rs,
u64 msecs)
{
u64 tdiff;
tdiff = ktime_to_ns(ktime_sub(ktime_get_real(),
rs->rs_rbm.rgd->rd_gl->gl_dstamp));
return tdiff > (msecs * 1000 * 1000);
}
static u32 gfs2_orlov_skip(const struct gfs2_inode *ip)
{
const struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
u32 skip;
get_random_bytes(&skip, sizeof(skip));
return skip % sdp->sd_rgrps;
}
static bool gfs2_select_rgrp(struct gfs2_rgrpd **pos, const struct gfs2_rgrpd *begin)
{
struct gfs2_rgrpd *rgd = *pos;
struct gfs2_sbd *sdp = rgd->rd_sbd;
rgd = gfs2_rgrpd_get_next(rgd);
if (rgd == NULL)
rgd = gfs2_rgrpd_get_first(sdp);
*pos = rgd;
if (rgd != begin) /* If we didn't wrap */
return true;
return false;
}
/**
* gfs2_inplace_reserve - Reserve space in the filesystem
* @ip: the inode to reserve space for
* @requested: the number of blocks to be reserved
*
* Returns: errno
*/
int gfs2_inplace_reserve(struct gfs2_inode *ip, u32 requested, u32 aflags)
{
struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
struct gfs2_rgrpd *begin = NULL;
struct gfs2_blkreserv *rs = ip->i_res;
int error = 0, rg_locked, flags = 0;
u64 last_unlinked = NO_BLOCK;
int loops = 0;
u32 skip = 0;
if (sdp->sd_args.ar_rgrplvb)
flags |= GL_SKIP;
if (gfs2_assert_warn(sdp, requested))
return -EINVAL;
if (gfs2_rs_active(rs)) {
begin = rs->rs_rbm.rgd;
flags = 0; /* Yoda: Do or do not. There is no try */
} else if (ip->i_rgd && rgrp_contains_block(ip->i_rgd, ip->i_goal)) {
rs->rs_rbm.rgd = begin = ip->i_rgd;
} else {
rs->rs_rbm.rgd = begin = gfs2_blk2rgrpd(sdp, ip->i_goal, 1);
}
if (S_ISDIR(ip->i_inode.i_mode) && (aflags & GFS2_AF_ORLOV))
skip = gfs2_orlov_skip(ip);
if (rs->rs_rbm.rgd == NULL)
return -EBADSLT;
while (loops < 3) {
rg_locked = 1;
if (!gfs2_glock_is_locked_by_me(rs->rs_rbm.rgd->rd_gl)) {
rg_locked = 0;
if (skip && skip--)
goto next_rgrp;
if (!gfs2_rs_active(rs) && (loops < 2) &&
gfs2_rgrp_used_recently(rs, 1000) &&
gfs2_rgrp_congested(rs->rs_rbm.rgd, loops))
goto next_rgrp;
error = gfs2_glock_nq_init(rs->rs_rbm.rgd->rd_gl,
LM_ST_EXCLUSIVE, flags,
&rs->rs_rgd_gh);
if (unlikely(error))
return error;
if (!gfs2_rs_active(rs) && (loops < 2) &&
gfs2_rgrp_congested(rs->rs_rbm.rgd, loops))
goto skip_rgrp;
if (sdp->sd_args.ar_rgrplvb) {
error = update_rgrp_lvb(rs->rs_rbm.rgd);
if (unlikely(error)) {
gfs2_glock_dq_uninit(&rs->rs_rgd_gh);
return error;
}
}
}
/* Skip unuseable resource groups */
if (rs->rs_rbm.rgd->rd_flags & (GFS2_RGF_NOALLOC | GFS2_RDF_ERROR))
goto skip_rgrp;
if (sdp->sd_args.ar_rgrplvb)
gfs2_rgrp_bh_get(rs->rs_rbm.rgd);
/* Get a reservation if we don't already have one */
if (!gfs2_rs_active(rs))
rg_mblk_search(rs->rs_rbm.rgd, ip, requested);
/* Skip rgrps when we can't get a reservation on first pass */
if (!gfs2_rs_active(rs) && (loops < 1))
goto check_rgrp;
/* If rgrp has enough free space, use it */
if (rs->rs_rbm.rgd->rd_free_clone >= requested) {
ip->i_rgd = rs->rs_rbm.rgd;
return 0;
}
/* Drop reservation, if we couldn't use reserved rgrp */
if (gfs2_rs_active(rs))
gfs2_rs_deltree(ip, rs);
check_rgrp:
/* Check for unlinked inodes which can be reclaimed */
if (rs->rs_rbm.rgd->rd_flags & GFS2_RDF_CHECK)
try_rgrp_unlink(rs->rs_rbm.rgd, &last_unlinked,
ip->i_no_addr);
skip_rgrp:
/* Unlock rgrp if required */
if (!rg_locked)
gfs2_glock_dq_uninit(&rs->rs_rgd_gh);
next_rgrp:
/* Find the next rgrp, and continue looking */
if (gfs2_select_rgrp(&rs->rs_rbm.rgd, begin))
continue;
if (skip)
continue;
/* If we've scanned all the rgrps, but found no free blocks
* then this checks for some less likely conditions before
* trying again.
*/
loops++;
/* Check that fs hasn't grown if writing to rindex */
if (ip == GFS2_I(sdp->sd_rindex) && !sdp->sd_rindex_uptodate) {
error = gfs2_ri_update(ip);
if (error)
return error;
}
/* Flushing the log may release space */
if (loops == 2)
gfs2_log_flush(sdp, NULL);
}
return -ENOSPC;
}
/**
* gfs2_inplace_release - release an inplace reservation
* @ip: the inode the reservation was taken out on
*
* Release a reservation made by gfs2_inplace_reserve().
*/
void gfs2_inplace_release(struct gfs2_inode *ip)
{
struct gfs2_blkreserv *rs = ip->i_res;
if (rs->rs_rgd_gh.gh_gl)
gfs2_glock_dq_uninit(&rs->rs_rgd_gh);
}
/**
* gfs2_get_block_type - Check a block in a RG is of given type
* @rgd: the resource group holding the block
* @block: the block number
*
* Returns: The block type (GFS2_BLKST_*)
*/
static unsigned char gfs2_get_block_type(struct gfs2_rgrpd *rgd, u64 block)
{
struct gfs2_rbm rbm = { .rgd = rgd, };
int ret;
ret = gfs2_rbm_from_block(&rbm, block);
WARN_ON_ONCE(ret != 0);
return gfs2_testbit(&rbm);
}
/**
* gfs2_alloc_extent - allocate an extent from a given bitmap
* @rbm: the resource group information
* @dinode: TRUE if the first block we allocate is for a dinode
* @n: The extent length (value/result)
*
* Add the bitmap buffer to the transaction.
* Set the found bits to @new_state to change block's allocation state.
*/
static void gfs2_alloc_extent(const struct gfs2_rbm *rbm, bool dinode,
unsigned int *n)
{
struct gfs2_rbm pos = { .rgd = rbm->rgd, };
const unsigned int elen = *n;
u64 block;
int ret;
*n = 1;
block = gfs2_rbm_to_block(rbm);
gfs2_trans_add_meta(rbm->rgd->rd_gl, rbm->bi->bi_bh);
gfs2_setbit(rbm, true, dinode ? GFS2_BLKST_DINODE : GFS2_BLKST_USED);
block++;
while (*n < elen) {
ret = gfs2_rbm_from_block(&pos, block);
if (ret || gfs2_testbit(&pos) != GFS2_BLKST_FREE)
break;
gfs2_trans_add_meta(pos.rgd->rd_gl, pos.bi->bi_bh);
gfs2_setbit(&pos, true, GFS2_BLKST_USED);
(*n)++;
block++;
}
}
/**
* rgblk_free - Change alloc state of given block(s)
* @sdp: the filesystem
* @bstart: the start of a run of blocks to free
* @blen: the length of the block run (all must lie within ONE RG!)
* @new_state: GFS2_BLKST_XXX the after-allocation block state
*
* Returns: Resource group containing the block(s)
*/
static struct gfs2_rgrpd *rgblk_free(struct gfs2_sbd *sdp, u64 bstart,
u32 blen, unsigned char new_state)
{
struct gfs2_rbm rbm;
rbm.rgd = gfs2_blk2rgrpd(sdp, bstart, 1);
if (!rbm.rgd) {
if (gfs2_consist(sdp))
fs_err(sdp, "block = %llu\n", (unsigned long long)bstart);
return NULL;
}
while (blen--) {
gfs2_rbm_from_block(&rbm, bstart);
bstart++;
if (!rbm.bi->bi_clone) {
rbm.bi->bi_clone = kmalloc(rbm.bi->bi_bh->b_size,
GFP_NOFS | __GFP_NOFAIL);
memcpy(rbm.bi->bi_clone + rbm.bi->bi_offset,
rbm.bi->bi_bh->b_data + rbm.bi->bi_offset,
rbm.bi->bi_len);
}
gfs2_trans_add_meta(rbm.rgd->rd_gl, rbm.bi->bi_bh);
gfs2_setbit(&rbm, false, new_state);
}
return rbm.rgd;
}
/**
* gfs2_rgrp_dump - print out an rgrp
* @seq: The iterator
* @gl: The glock in question
*
*/
int gfs2_rgrp_dump(struct seq_file *seq, const struct gfs2_glock *gl)
{
struct gfs2_rgrpd *rgd = gl->gl_object;
struct gfs2_blkreserv *trs;
const struct rb_node *n;
if (rgd == NULL)
return 0;
gfs2_print_dbg(seq, " R: n:%llu f:%02x b:%u/%u i:%u r:%u\n",
(unsigned long long)rgd->rd_addr, rgd->rd_flags,
rgd->rd_free, rgd->rd_free_clone, rgd->rd_dinodes,
rgd->rd_reserved);
spin_lock(&rgd->rd_rsspin);
for (n = rb_first(&rgd->rd_rstree); n; n = rb_next(&trs->rs_node)) {
trs = rb_entry(n, struct gfs2_blkreserv, rs_node);
dump_rs(seq, trs);
}
spin_unlock(&rgd->rd_rsspin);
return 0;
}
static void gfs2_rgrp_error(struct gfs2_rgrpd *rgd)
{
struct gfs2_sbd *sdp = rgd->rd_sbd;
fs_warn(sdp, "rgrp %llu has an error, marking it readonly until umount\n",
(unsigned long long)rgd->rd_addr);
fs_warn(sdp, "umount on all nodes and run fsck.gfs2 to fix the error\n");
gfs2_rgrp_dump(NULL, rgd->rd_gl);
rgd->rd_flags |= GFS2_RDF_ERROR;
}
/**
* gfs2_adjust_reservation - Adjust (or remove) a reservation after allocation
* @ip: The inode we have just allocated blocks for
* @rbm: The start of the allocated blocks
* @len: The extent length
*
* Adjusts a reservation after an allocation has taken place. If the
* reservation does not match the allocation, or if it is now empty
* then it is removed.
*/
static void gfs2_adjust_reservation(struct gfs2_inode *ip,
const struct gfs2_rbm *rbm, unsigned len)
{
struct gfs2_blkreserv *rs = ip->i_res;
struct gfs2_rgrpd *rgd = rbm->rgd;
unsigned rlen;
u64 block;
int ret;
spin_lock(&rgd->rd_rsspin);
if (gfs2_rs_active(rs)) {
if (gfs2_rbm_eq(&rs->rs_rbm, rbm)) {
block = gfs2_rbm_to_block(rbm);
ret = gfs2_rbm_from_block(&rs->rs_rbm, block + len);
rlen = min(rs->rs_free, len);
rs->rs_free -= rlen;
rgd->rd_reserved -= rlen;
trace_gfs2_rs(rs, TRACE_RS_CLAIM);
if (rs->rs_free && !ret)
goto out;
}
__rs_deltree(ip, rs);
}
out:
spin_unlock(&rgd->rd_rsspin);
}
/**
* gfs2_alloc_blocks - Allocate one or more blocks of data and/or a dinode
* @ip: the inode to allocate the block for
* @bn: Used to return the starting block number
* @nblocks: requested number of blocks/extent length (value/result)
* @dinode: 1 if we're allocating a dinode block, else 0
* @generation: the generation number of the inode
*
* Returns: 0 or error
*/
int gfs2_alloc_blocks(struct gfs2_inode *ip, u64 *bn, unsigned int *nblocks,
bool dinode, u64 *generation)
{
struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
struct buffer_head *dibh;
struct gfs2_rbm rbm = { .rgd = ip->i_rgd, };
unsigned int ndata;
u64 goal;
u64 block; /* block, within the file system scope */
int error;
if (gfs2_rs_active(ip->i_res))
goal = gfs2_rbm_to_block(&ip->i_res->rs_rbm);
else if (!dinode && rgrp_contains_block(rbm.rgd, ip->i_goal))
goal = ip->i_goal;
else
goal = rbm.rgd->rd_last_alloc + rbm.rgd->rd_data0;
gfs2_rbm_from_block(&rbm, goal);
error = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, 0, ip, false);
if (error == -ENOSPC) {
gfs2_rbm_from_block(&rbm, goal);
error = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, 0, NULL, false);
}
/* Since all blocks are reserved in advance, this shouldn't happen */
if (error) {
fs_warn(sdp, "inum=%llu error=%d, nblocks=%u, full=%d\n",
(unsigned long long)ip->i_no_addr, error, *nblocks,
test_bit(GBF_FULL, &rbm.rgd->rd_bits->bi_flags));
goto rgrp_error;
}
gfs2_alloc_extent(&rbm, dinode, nblocks);
block = gfs2_rbm_to_block(&rbm);
rbm.rgd->rd_last_alloc = block - rbm.rgd->rd_data0;
if (gfs2_rs_active(ip->i_res))
gfs2_adjust_reservation(ip, &rbm, *nblocks);
ndata = *nblocks;
if (dinode)
ndata--;
if (!dinode) {
ip->i_goal = block + ndata - 1;
error = gfs2_meta_inode_buffer(ip, &dibh);
if (error == 0) {
struct gfs2_dinode *di =
(struct gfs2_dinode *)dibh->b_data;
gfs2_trans_add_meta(ip->i_gl, dibh);
di->di_goal_meta = di->di_goal_data =
cpu_to_be64(ip->i_goal);
brelse(dibh);
}
}
if (rbm.rgd->rd_free < *nblocks) {
printk(KERN_WARNING "nblocks=%u\n", *nblocks);
goto rgrp_error;
}
rbm.rgd->rd_free -= *nblocks;
if (dinode) {
rbm.rgd->rd_dinodes++;
*generation = rbm.rgd->rd_igeneration++;
if (*generation == 0)
*generation = rbm.rgd->rd_igeneration++;
}
gfs2_trans_add_meta(rbm.rgd->rd_gl, rbm.rgd->rd_bits[0].bi_bh);
gfs2_rgrp_out(rbm.rgd, rbm.rgd->rd_bits[0].bi_bh->b_data);
gfs2_rgrp_ondisk2lvb(rbm.rgd->rd_rgl, rbm.rgd->rd_bits[0].bi_bh->b_data);
gfs2_statfs_change(sdp, 0, -(s64)*nblocks, dinode ? 1 : 0);
if (dinode)
gfs2_trans_add_unrevoke(sdp, block, 1);
/*
* This needs reviewing to see why we cannot do the quota change
* at this point in the dinode case.
*/
if (ndata)
gfs2_quota_change(ip, ndata, ip->i_inode.i_uid,
ip->i_inode.i_gid);
rbm.rgd->rd_free_clone -= *nblocks;
trace_gfs2_block_alloc(ip, rbm.rgd, block, *nblocks,
dinode ? GFS2_BLKST_DINODE : GFS2_BLKST_USED);
*bn = block;
return 0;
rgrp_error:
gfs2_rgrp_error(rbm.rgd);
return -EIO;
}
/**
* __gfs2_free_blocks - free a contiguous run of block(s)
* @ip: the inode these blocks are being freed from
* @bstart: first block of a run of contiguous blocks
* @blen: the length of the block run
* @meta: 1 if the blocks represent metadata
*
*/
void __gfs2_free_blocks(struct gfs2_inode *ip, u64 bstart, u32 blen, int meta)
{
struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
struct gfs2_rgrpd *rgd;
rgd = rgblk_free(sdp, bstart, blen, GFS2_BLKST_FREE);
if (!rgd)
return;
trace_gfs2_block_alloc(ip, rgd, bstart, blen, GFS2_BLKST_FREE);
rgd->rd_free += blen;
rgd->rd_flags &= ~GFS2_RGF_TRIMMED;
gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh);
gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, rgd->rd_bits[0].bi_bh->b_data);
/* Directories keep their data in the metadata address space */
if (meta || ip->i_depth)
gfs2_meta_wipe(ip, bstart, blen);
}
/**
* gfs2_free_meta - free a contiguous run of data block(s)
* @ip: the inode these blocks are being freed from
* @bstart: first block of a run of contiguous blocks
* @blen: the length of the block run
*
*/
void gfs2_free_meta(struct gfs2_inode *ip, u64 bstart, u32 blen)
{
struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
__gfs2_free_blocks(ip, bstart, blen, 1);
gfs2_statfs_change(sdp, 0, +blen, 0);
gfs2_quota_change(ip, -(s64)blen, ip->i_inode.i_uid, ip->i_inode.i_gid);
}
void gfs2_unlink_di(struct inode *inode)
{
struct gfs2_inode *ip = GFS2_I(inode);
struct gfs2_sbd *sdp = GFS2_SB(inode);
struct gfs2_rgrpd *rgd;
u64 blkno = ip->i_no_addr;
rgd = rgblk_free(sdp, blkno, 1, GFS2_BLKST_UNLINKED);
if (!rgd)
return;
trace_gfs2_block_alloc(ip, rgd, blkno, 1, GFS2_BLKST_UNLINKED);
gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh);
gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, rgd->rd_bits[0].bi_bh->b_data);
update_rgrp_lvb_unlinked(rgd, 1);
}
static void gfs2_free_uninit_di(struct gfs2_rgrpd *rgd, u64 blkno)
{
struct gfs2_sbd *sdp = rgd->rd_sbd;
struct gfs2_rgrpd *tmp_rgd;
tmp_rgd = rgblk_free(sdp, blkno, 1, GFS2_BLKST_FREE);
if (!tmp_rgd)
return;
gfs2_assert_withdraw(sdp, rgd == tmp_rgd);
if (!rgd->rd_dinodes)
gfs2_consist_rgrpd(rgd);
rgd->rd_dinodes--;
rgd->rd_free++;
gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh);
gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, rgd->rd_bits[0].bi_bh->b_data);
update_rgrp_lvb_unlinked(rgd, -1);
gfs2_statfs_change(sdp, 0, +1, -1);
}
void gfs2_free_di(struct gfs2_rgrpd *rgd, struct gfs2_inode *ip)
{
gfs2_free_uninit_di(rgd, ip->i_no_addr);
trace_gfs2_block_alloc(ip, rgd, ip->i_no_addr, 1, GFS2_BLKST_FREE);
gfs2_quota_change(ip, -1, ip->i_inode.i_uid, ip->i_inode.i_gid);
gfs2_meta_wipe(ip, ip->i_no_addr, 1);
}
/**
* gfs2_check_blk_type - Check the type of a block
* @sdp: The superblock
* @no_addr: The block number to check
* @type: The block type we are looking for
*
* Returns: 0 if the block type matches the expected type
* -ESTALE if it doesn't match
* or -ve errno if something went wrong while checking
*/
int gfs2_check_blk_type(struct gfs2_sbd *sdp, u64 no_addr, unsigned int type)
{
struct gfs2_rgrpd *rgd;
struct gfs2_holder rgd_gh;
int error = -EINVAL;
rgd = gfs2_blk2rgrpd(sdp, no_addr, 1);
if (!rgd)
goto fail;
error = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_SHARED, 0, &rgd_gh);
if (error)
goto fail;
if (gfs2_get_block_type(rgd, no_addr) != type)
error = -ESTALE;
gfs2_glock_dq_uninit(&rgd_gh);
fail:
return error;
}
/**
* gfs2_rlist_add - add a RG to a list of RGs
* @ip: the inode
* @rlist: the list of resource groups
* @block: the block
*
* Figure out what RG a block belongs to and add that RG to the list
*
* FIXME: Don't use NOFAIL
*
*/
void gfs2_rlist_add(struct gfs2_inode *ip, struct gfs2_rgrp_list *rlist,
u64 block)
{
struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
struct gfs2_rgrpd *rgd;
struct gfs2_rgrpd **tmp;
unsigned int new_space;
unsigned int x;
if (gfs2_assert_warn(sdp, !rlist->rl_ghs))
return;
if (ip->i_rgd && rgrp_contains_block(ip->i_rgd, block))
rgd = ip->i_rgd;
else
rgd = gfs2_blk2rgrpd(sdp, block, 1);
if (!rgd) {
fs_err(sdp, "rlist_add: no rgrp for block %llu\n", (unsigned long long)block);
return;
}
ip->i_rgd = rgd;
for (x = 0; x < rlist->rl_rgrps; x++)
if (rlist->rl_rgd[x] == rgd)
return;
if (rlist->rl_rgrps == rlist->rl_space) {
new_space = rlist->rl_space + 10;
tmp = kcalloc(new_space, sizeof(struct gfs2_rgrpd *),
GFP_NOFS | __GFP_NOFAIL);
if (rlist->rl_rgd) {
memcpy(tmp, rlist->rl_rgd,
rlist->rl_space * sizeof(struct gfs2_rgrpd *));
kfree(rlist->rl_rgd);
}
rlist->rl_space = new_space;
rlist->rl_rgd = tmp;
}
rlist->rl_rgd[rlist->rl_rgrps++] = rgd;
}
/**
* gfs2_rlist_alloc - all RGs have been added to the rlist, now allocate
* and initialize an array of glock holders for them
* @rlist: the list of resource groups
* @state: the lock state to acquire the RG lock in
*
* FIXME: Don't use NOFAIL
*
*/
void gfs2_rlist_alloc(struct gfs2_rgrp_list *rlist, unsigned int state)
{
unsigned int x;
rlist->rl_ghs = kcalloc(rlist->rl_rgrps, sizeof(struct gfs2_holder),
GFP_NOFS | __GFP_NOFAIL);
for (x = 0; x < rlist->rl_rgrps; x++)
gfs2_holder_init(rlist->rl_rgd[x]->rd_gl,
state, 0,
&rlist->rl_ghs[x]);
}
/**
* gfs2_rlist_free - free a resource group list
* @list: the list of resource groups
*
*/
void gfs2_rlist_free(struct gfs2_rgrp_list *rlist)
{
unsigned int x;
kfree(rlist->rl_rgd);
if (rlist->rl_ghs) {
for (x = 0; x < rlist->rl_rgrps; x++)
gfs2_holder_uninit(&rlist->rl_ghs[x]);
kfree(rlist->rl_ghs);
rlist->rl_ghs = NULL;
}
}