linux/drivers/media/platform/coda/coda-common.c
Philipp Zabel 2c756c72c4 media: coda: set colorimetry on coded queue
Do not set context colorimetry on the raw (OUTPUT) queue for encoders.
Always set colorimetry on the coded queue (CAPTURE for encoders, OUTPUT
for decoders).
This also skips propagation of capture queue format and selection
rectangle on S_FMT(OUTPUT) to the CAPTURE queue for encoders.

Signed-off-by: Philipp Zabel <p.zabel@pengutronix.de>
Signed-off-by: Hans Verkuil <hans.verkuil@cisco.com>
Signed-off-by: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
2018-05-09 16:23:33 -04:00

2745 lines
72 KiB
C

/*
* Coda multi-standard codec IP
*
* Copyright (C) 2012 Vista Silicon S.L.
* Javier Martin, <javier.martin@vista-silicon.com>
* Xavier Duret
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*/
#include <linux/clk.h>
#include <linux/debugfs.h>
#include <linux/delay.h>
#include <linux/firmware.h>
#include <linux/gcd.h>
#include <linux/genalloc.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/irq.h>
#include <linux/kfifo.h>
#include <linux/module.h>
#include <linux/of_device.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <linux/slab.h>
#include <linux/videodev2.h>
#include <linux/of.h>
#include <linux/platform_data/media/coda.h>
#include <linux/reset.h>
#include <media/v4l2-ctrls.h>
#include <media/v4l2-device.h>
#include <media/v4l2-event.h>
#include <media/v4l2-ioctl.h>
#include <media/v4l2-mem2mem.h>
#include <media/videobuf2-v4l2.h>
#include <media/videobuf2-dma-contig.h>
#include <media/videobuf2-vmalloc.h>
#include "coda.h"
#include "imx-vdoa.h"
#define CODA_NAME "coda"
#define CODADX6_MAX_INSTANCES 4
#define CODA_MAX_FORMATS 4
#define CODA_ISRAM_SIZE (2048 * 2)
#define MIN_W 176
#define MIN_H 144
#define S_ALIGN 1 /* multiple of 2 */
#define W_ALIGN 1 /* multiple of 2 */
#define H_ALIGN 1 /* multiple of 2 */
#define fh_to_ctx(__fh) container_of(__fh, struct coda_ctx, fh)
int coda_debug;
module_param(coda_debug, int, 0644);
MODULE_PARM_DESC(coda_debug, "Debug level (0-2)");
static int disable_tiling;
module_param(disable_tiling, int, 0644);
MODULE_PARM_DESC(disable_tiling, "Disable tiled frame buffers");
static int disable_vdoa;
module_param(disable_vdoa, int, 0644);
MODULE_PARM_DESC(disable_vdoa, "Disable Video Data Order Adapter tiled to raster-scan conversion");
static int enable_bwb = 0;
module_param(enable_bwb, int, 0644);
MODULE_PARM_DESC(enable_bwb, "Enable BWB unit for decoding, may crash on certain streams");
void coda_write(struct coda_dev *dev, u32 data, u32 reg)
{
v4l2_dbg(2, coda_debug, &dev->v4l2_dev,
"%s: data=0x%x, reg=0x%x\n", __func__, data, reg);
writel(data, dev->regs_base + reg);
}
unsigned int coda_read(struct coda_dev *dev, u32 reg)
{
u32 data;
data = readl(dev->regs_base + reg);
v4l2_dbg(2, coda_debug, &dev->v4l2_dev,
"%s: data=0x%x, reg=0x%x\n", __func__, data, reg);
return data;
}
void coda_write_base(struct coda_ctx *ctx, struct coda_q_data *q_data,
struct vb2_v4l2_buffer *buf, unsigned int reg_y)
{
u32 base_y = vb2_dma_contig_plane_dma_addr(&buf->vb2_buf, 0);
u32 base_cb, base_cr;
switch (q_data->fourcc) {
case V4L2_PIX_FMT_YUYV:
/* Fallthrough: IN -H264-> CODA -NV12 MB-> VDOA -YUYV-> OUT */
case V4L2_PIX_FMT_NV12:
case V4L2_PIX_FMT_YUV420:
default:
base_cb = base_y + q_data->bytesperline * q_data->height;
base_cr = base_cb + q_data->bytesperline * q_data->height / 4;
break;
case V4L2_PIX_FMT_YVU420:
/* Switch Cb and Cr for YVU420 format */
base_cr = base_y + q_data->bytesperline * q_data->height;
base_cb = base_cr + q_data->bytesperline * q_data->height / 4;
break;
case V4L2_PIX_FMT_YUV422P:
base_cb = base_y + q_data->bytesperline * q_data->height;
base_cr = base_cb + q_data->bytesperline * q_data->height / 2;
}
coda_write(ctx->dev, base_y, reg_y);
coda_write(ctx->dev, base_cb, reg_y + 4);
coda_write(ctx->dev, base_cr, reg_y + 8);
}
#define CODA_CODEC(mode, src_fourcc, dst_fourcc, max_w, max_h) \
{ mode, src_fourcc, dst_fourcc, max_w, max_h }
/*
* Arrays of codecs supported by each given version of Coda:
* i.MX27 -> codadx6
* i.MX51 -> codahx4
* i.MX53 -> coda7
* i.MX6 -> coda960
* Use V4L2_PIX_FMT_YUV420 as placeholder for all supported YUV 4:2:0 variants
*/
static const struct coda_codec codadx6_codecs[] = {
CODA_CODEC(CODADX6_MODE_ENCODE_H264, V4L2_PIX_FMT_YUV420, V4L2_PIX_FMT_H264, 720, 576),
CODA_CODEC(CODADX6_MODE_ENCODE_MP4, V4L2_PIX_FMT_YUV420, V4L2_PIX_FMT_MPEG4, 720, 576),
};
static const struct coda_codec codahx4_codecs[] = {
CODA_CODEC(CODA7_MODE_ENCODE_H264, V4L2_PIX_FMT_YUV420, V4L2_PIX_FMT_H264, 720, 576),
CODA_CODEC(CODA7_MODE_DECODE_H264, V4L2_PIX_FMT_H264, V4L2_PIX_FMT_YUV420, 1920, 1088),
CODA_CODEC(CODA7_MODE_DECODE_MP2, V4L2_PIX_FMT_MPEG2, V4L2_PIX_FMT_YUV420, 1920, 1088),
CODA_CODEC(CODA7_MODE_DECODE_MP4, V4L2_PIX_FMT_MPEG4, V4L2_PIX_FMT_YUV420, 1280, 720),
};
static const struct coda_codec coda7_codecs[] = {
CODA_CODEC(CODA7_MODE_ENCODE_H264, V4L2_PIX_FMT_YUV420, V4L2_PIX_FMT_H264, 1280, 720),
CODA_CODEC(CODA7_MODE_ENCODE_MP4, V4L2_PIX_FMT_YUV420, V4L2_PIX_FMT_MPEG4, 1280, 720),
CODA_CODEC(CODA7_MODE_ENCODE_MJPG, V4L2_PIX_FMT_YUV420, V4L2_PIX_FMT_JPEG, 8192, 8192),
CODA_CODEC(CODA7_MODE_DECODE_H264, V4L2_PIX_FMT_H264, V4L2_PIX_FMT_YUV420, 1920, 1088),
CODA_CODEC(CODA7_MODE_DECODE_MP2, V4L2_PIX_FMT_MPEG2, V4L2_PIX_FMT_YUV420, 1920, 1088),
CODA_CODEC(CODA7_MODE_DECODE_MP4, V4L2_PIX_FMT_MPEG4, V4L2_PIX_FMT_YUV420, 1920, 1088),
CODA_CODEC(CODA7_MODE_DECODE_MJPG, V4L2_PIX_FMT_JPEG, V4L2_PIX_FMT_YUV420, 8192, 8192),
};
static const struct coda_codec coda9_codecs[] = {
CODA_CODEC(CODA9_MODE_ENCODE_H264, V4L2_PIX_FMT_YUV420, V4L2_PIX_FMT_H264, 1920, 1088),
CODA_CODEC(CODA9_MODE_ENCODE_MP4, V4L2_PIX_FMT_YUV420, V4L2_PIX_FMT_MPEG4, 1920, 1088),
CODA_CODEC(CODA9_MODE_DECODE_H264, V4L2_PIX_FMT_H264, V4L2_PIX_FMT_YUV420, 1920, 1088),
CODA_CODEC(CODA9_MODE_DECODE_MP2, V4L2_PIX_FMT_MPEG2, V4L2_PIX_FMT_YUV420, 1920, 1088),
CODA_CODEC(CODA9_MODE_DECODE_MP4, V4L2_PIX_FMT_MPEG4, V4L2_PIX_FMT_YUV420, 1920, 1088),
};
struct coda_video_device {
const char *name;
enum coda_inst_type type;
const struct coda_context_ops *ops;
bool direct;
u32 src_formats[CODA_MAX_FORMATS];
u32 dst_formats[CODA_MAX_FORMATS];
};
static const struct coda_video_device coda_bit_encoder = {
.name = "coda-encoder",
.type = CODA_INST_ENCODER,
.ops = &coda_bit_encode_ops,
.src_formats = {
V4L2_PIX_FMT_NV12,
V4L2_PIX_FMT_YUV420,
V4L2_PIX_FMT_YVU420,
},
.dst_formats = {
V4L2_PIX_FMT_H264,
V4L2_PIX_FMT_MPEG4,
},
};
static const struct coda_video_device coda_bit_jpeg_encoder = {
.name = "coda-jpeg-encoder",
.type = CODA_INST_ENCODER,
.ops = &coda_bit_encode_ops,
.src_formats = {
V4L2_PIX_FMT_NV12,
V4L2_PIX_FMT_YUV420,
V4L2_PIX_FMT_YVU420,
V4L2_PIX_FMT_YUV422P,
},
.dst_formats = {
V4L2_PIX_FMT_JPEG,
},
};
static const struct coda_video_device coda_bit_decoder = {
.name = "coda-decoder",
.type = CODA_INST_DECODER,
.ops = &coda_bit_decode_ops,
.src_formats = {
V4L2_PIX_FMT_H264,
V4L2_PIX_FMT_MPEG2,
V4L2_PIX_FMT_MPEG4,
},
.dst_formats = {
V4L2_PIX_FMT_NV12,
V4L2_PIX_FMT_YUV420,
V4L2_PIX_FMT_YVU420,
/*
* If V4L2_PIX_FMT_YUYV should be default,
* set_default_params() must be adjusted.
*/
V4L2_PIX_FMT_YUYV,
},
};
static const struct coda_video_device coda_bit_jpeg_decoder = {
.name = "coda-jpeg-decoder",
.type = CODA_INST_DECODER,
.ops = &coda_bit_decode_ops,
.src_formats = {
V4L2_PIX_FMT_JPEG,
},
.dst_formats = {
V4L2_PIX_FMT_NV12,
V4L2_PIX_FMT_YUV420,
V4L2_PIX_FMT_YVU420,
V4L2_PIX_FMT_YUV422P,
},
};
static const struct coda_video_device *codadx6_video_devices[] = {
&coda_bit_encoder,
};
static const struct coda_video_device *codahx4_video_devices[] = {
&coda_bit_encoder,
&coda_bit_decoder,
};
static const struct coda_video_device *coda7_video_devices[] = {
&coda_bit_jpeg_encoder,
&coda_bit_jpeg_decoder,
&coda_bit_encoder,
&coda_bit_decoder,
};
static const struct coda_video_device *coda9_video_devices[] = {
&coda_bit_encoder,
&coda_bit_decoder,
};
/*
* Normalize all supported YUV 4:2:0 formats to the value used in the codec
* tables.
*/
static u32 coda_format_normalize_yuv(u32 fourcc)
{
switch (fourcc) {
case V4L2_PIX_FMT_NV12:
case V4L2_PIX_FMT_YUV420:
case V4L2_PIX_FMT_YVU420:
case V4L2_PIX_FMT_YUV422P:
case V4L2_PIX_FMT_YUYV:
return V4L2_PIX_FMT_YUV420;
default:
return fourcc;
}
}
static const struct coda_codec *coda_find_codec(struct coda_dev *dev,
int src_fourcc, int dst_fourcc)
{
const struct coda_codec *codecs = dev->devtype->codecs;
int num_codecs = dev->devtype->num_codecs;
int k;
src_fourcc = coda_format_normalize_yuv(src_fourcc);
dst_fourcc = coda_format_normalize_yuv(dst_fourcc);
if (src_fourcc == dst_fourcc)
return NULL;
for (k = 0; k < num_codecs; k++) {
if (codecs[k].src_fourcc == src_fourcc &&
codecs[k].dst_fourcc == dst_fourcc)
break;
}
if (k == num_codecs)
return NULL;
return &codecs[k];
}
static void coda_get_max_dimensions(struct coda_dev *dev,
const struct coda_codec *codec,
int *max_w, int *max_h)
{
const struct coda_codec *codecs = dev->devtype->codecs;
int num_codecs = dev->devtype->num_codecs;
unsigned int w, h;
int k;
if (codec) {
w = codec->max_w;
h = codec->max_h;
} else {
for (k = 0, w = 0, h = 0; k < num_codecs; k++) {
w = max(w, codecs[k].max_w);
h = max(h, codecs[k].max_h);
}
}
if (max_w)
*max_w = w;
if (max_h)
*max_h = h;
}
static const struct coda_video_device *to_coda_video_device(struct video_device
*vdev)
{
struct coda_dev *dev = video_get_drvdata(vdev);
unsigned int i = vdev - dev->vfd;
if (i >= dev->devtype->num_vdevs)
return NULL;
return dev->devtype->vdevs[i];
}
const char *coda_product_name(int product)
{
static char buf[9];
switch (product) {
case CODA_DX6:
return "CodaDx6";
case CODA_HX4:
return "CodaHx4";
case CODA_7541:
return "CODA7541";
case CODA_960:
return "CODA960";
default:
snprintf(buf, sizeof(buf), "(0x%04x)", product);
return buf;
}
}
static struct vdoa_data *coda_get_vdoa_data(void)
{
struct device_node *vdoa_node;
struct platform_device *vdoa_pdev;
struct vdoa_data *vdoa_data = NULL;
vdoa_node = of_find_compatible_node(NULL, NULL, "fsl,imx6q-vdoa");
if (!vdoa_node)
return NULL;
vdoa_pdev = of_find_device_by_node(vdoa_node);
if (!vdoa_pdev)
goto out;
vdoa_data = platform_get_drvdata(vdoa_pdev);
if (!vdoa_data)
vdoa_data = ERR_PTR(-EPROBE_DEFER);
out:
if (vdoa_node)
of_node_put(vdoa_node);
return vdoa_data;
}
/*
* V4L2 ioctl() operations.
*/
static int coda_querycap(struct file *file, void *priv,
struct v4l2_capability *cap)
{
struct coda_ctx *ctx = fh_to_ctx(priv);
strlcpy(cap->driver, CODA_NAME, sizeof(cap->driver));
strlcpy(cap->card, coda_product_name(ctx->dev->devtype->product),
sizeof(cap->card));
strlcpy(cap->bus_info, "platform:" CODA_NAME, sizeof(cap->bus_info));
cap->device_caps = V4L2_CAP_VIDEO_M2M | V4L2_CAP_STREAMING;
cap->capabilities = cap->device_caps | V4L2_CAP_DEVICE_CAPS;
return 0;
}
static int coda_enum_fmt(struct file *file, void *priv,
struct v4l2_fmtdesc *f)
{
struct video_device *vdev = video_devdata(file);
const struct coda_video_device *cvd = to_coda_video_device(vdev);
struct coda_ctx *ctx = fh_to_ctx(priv);
const u32 *formats;
if (f->type == V4L2_BUF_TYPE_VIDEO_OUTPUT)
formats = cvd->src_formats;
else if (f->type == V4L2_BUF_TYPE_VIDEO_CAPTURE)
formats = cvd->dst_formats;
else
return -EINVAL;
if (f->index >= CODA_MAX_FORMATS || formats[f->index] == 0)
return -EINVAL;
/* Skip YUYV if the vdoa is not available */
if (!ctx->vdoa && f->type == V4L2_BUF_TYPE_VIDEO_CAPTURE &&
formats[f->index] == V4L2_PIX_FMT_YUYV)
return -EINVAL;
f->pixelformat = formats[f->index];
return 0;
}
static int coda_g_fmt(struct file *file, void *priv,
struct v4l2_format *f)
{
struct coda_q_data *q_data;
struct coda_ctx *ctx = fh_to_ctx(priv);
q_data = get_q_data(ctx, f->type);
if (!q_data)
return -EINVAL;
f->fmt.pix.field = V4L2_FIELD_NONE;
f->fmt.pix.pixelformat = q_data->fourcc;
f->fmt.pix.width = q_data->width;
f->fmt.pix.height = q_data->height;
f->fmt.pix.bytesperline = q_data->bytesperline;
f->fmt.pix.sizeimage = q_data->sizeimage;
f->fmt.pix.colorspace = ctx->colorspace;
f->fmt.pix.xfer_func = ctx->xfer_func;
f->fmt.pix.ycbcr_enc = ctx->ycbcr_enc;
f->fmt.pix.quantization = ctx->quantization;
return 0;
}
static int coda_try_pixelformat(struct coda_ctx *ctx, struct v4l2_format *f)
{
struct coda_q_data *q_data;
const u32 *formats;
int i;
if (f->type == V4L2_BUF_TYPE_VIDEO_OUTPUT)
formats = ctx->cvd->src_formats;
else if (f->type == V4L2_BUF_TYPE_VIDEO_CAPTURE)
formats = ctx->cvd->dst_formats;
else
return -EINVAL;
for (i = 0; i < CODA_MAX_FORMATS; i++) {
/* Skip YUYV if the vdoa is not available */
if (!ctx->vdoa && f->type == V4L2_BUF_TYPE_VIDEO_CAPTURE &&
formats[i] == V4L2_PIX_FMT_YUYV)
continue;
if (formats[i] == f->fmt.pix.pixelformat) {
f->fmt.pix.pixelformat = formats[i];
return 0;
}
}
/* Fall back to currently set pixelformat */
q_data = get_q_data(ctx, f->type);
f->fmt.pix.pixelformat = q_data->fourcc;
return 0;
}
static int coda_try_fmt_vdoa(struct coda_ctx *ctx, struct v4l2_format *f,
bool *use_vdoa)
{
int err;
if (f->type != V4L2_BUF_TYPE_VIDEO_CAPTURE)
return -EINVAL;
if (!use_vdoa)
return -EINVAL;
if (!ctx->vdoa) {
*use_vdoa = false;
return 0;
}
err = vdoa_context_configure(NULL, round_up(f->fmt.pix.width, 16),
f->fmt.pix.height, f->fmt.pix.pixelformat);
if (err) {
*use_vdoa = false;
return 0;
}
*use_vdoa = true;
return 0;
}
static unsigned int coda_estimate_sizeimage(struct coda_ctx *ctx, u32 sizeimage,
u32 width, u32 height)
{
/*
* This is a rough estimate for sensible compressed buffer
* sizes (between 1 and 16 bits per pixel). This could be
* improved by better format specific worst case estimates.
*/
return round_up(clamp(sizeimage, width * height / 8,
width * height * 2), PAGE_SIZE);
}
static int coda_try_fmt(struct coda_ctx *ctx, const struct coda_codec *codec,
struct v4l2_format *f)
{
struct coda_dev *dev = ctx->dev;
unsigned int max_w, max_h;
enum v4l2_field field;
field = f->fmt.pix.field;
if (field == V4L2_FIELD_ANY)
field = V4L2_FIELD_NONE;
else if (V4L2_FIELD_NONE != field)
return -EINVAL;
/* V4L2 specification suggests the driver corrects the format struct
* if any of the dimensions is unsupported */
f->fmt.pix.field = field;
coda_get_max_dimensions(dev, codec, &max_w, &max_h);
v4l_bound_align_image(&f->fmt.pix.width, MIN_W, max_w, W_ALIGN,
&f->fmt.pix.height, MIN_H, max_h, H_ALIGN,
S_ALIGN);
switch (f->fmt.pix.pixelformat) {
case V4L2_PIX_FMT_NV12:
case V4L2_PIX_FMT_YUV420:
case V4L2_PIX_FMT_YVU420:
/*
* Frame stride must be at least multiple of 8,
* but multiple of 16 for h.264 or JPEG 4:2:x
*/
f->fmt.pix.bytesperline = round_up(f->fmt.pix.width, 16);
f->fmt.pix.sizeimage = f->fmt.pix.bytesperline *
f->fmt.pix.height * 3 / 2;
break;
case V4L2_PIX_FMT_YUYV:
f->fmt.pix.bytesperline = round_up(f->fmt.pix.width, 16) * 2;
f->fmt.pix.sizeimage = f->fmt.pix.bytesperline *
f->fmt.pix.height;
break;
case V4L2_PIX_FMT_YUV422P:
f->fmt.pix.bytesperline = round_up(f->fmt.pix.width, 16);
f->fmt.pix.sizeimage = f->fmt.pix.bytesperline *
f->fmt.pix.height * 2;
break;
case V4L2_PIX_FMT_JPEG:
f->fmt.pix.colorspace = V4L2_COLORSPACE_JPEG;
/* fallthrough */
case V4L2_PIX_FMT_H264:
case V4L2_PIX_FMT_MPEG4:
case V4L2_PIX_FMT_MPEG2:
f->fmt.pix.bytesperline = 0;
f->fmt.pix.sizeimage = coda_estimate_sizeimage(ctx,
f->fmt.pix.sizeimage,
f->fmt.pix.width,
f->fmt.pix.height);
break;
default:
BUG();
}
return 0;
}
static int coda_try_fmt_vid_cap(struct file *file, void *priv,
struct v4l2_format *f)
{
struct coda_ctx *ctx = fh_to_ctx(priv);
const struct coda_q_data *q_data_src;
const struct coda_codec *codec;
struct vb2_queue *src_vq;
int ret;
bool use_vdoa;
ret = coda_try_pixelformat(ctx, f);
if (ret < 0)
return ret;
q_data_src = get_q_data(ctx, V4L2_BUF_TYPE_VIDEO_OUTPUT);
/*
* If the source format is already fixed, only allow the same output
* resolution
*/
src_vq = v4l2_m2m_get_vq(ctx->fh.m2m_ctx, V4L2_BUF_TYPE_VIDEO_OUTPUT);
if (vb2_is_streaming(src_vq)) {
f->fmt.pix.width = q_data_src->width;
f->fmt.pix.height = q_data_src->height;
}
f->fmt.pix.colorspace = ctx->colorspace;
f->fmt.pix.xfer_func = ctx->xfer_func;
f->fmt.pix.ycbcr_enc = ctx->ycbcr_enc;
f->fmt.pix.quantization = ctx->quantization;
q_data_src = get_q_data(ctx, V4L2_BUF_TYPE_VIDEO_OUTPUT);
codec = coda_find_codec(ctx->dev, q_data_src->fourcc,
f->fmt.pix.pixelformat);
if (!codec)
return -EINVAL;
ret = coda_try_fmt(ctx, codec, f);
if (ret < 0)
return ret;
/* The h.264 decoder only returns complete 16x16 macroblocks */
if (codec && codec->src_fourcc == V4L2_PIX_FMT_H264) {
f->fmt.pix.height = round_up(f->fmt.pix.height, 16);
f->fmt.pix.bytesperline = round_up(f->fmt.pix.width, 16);
f->fmt.pix.sizeimage = f->fmt.pix.bytesperline *
f->fmt.pix.height * 3 / 2;
ret = coda_try_fmt_vdoa(ctx, f, &use_vdoa);
if (ret < 0)
return ret;
if (f->fmt.pix.pixelformat == V4L2_PIX_FMT_YUYV) {
if (!use_vdoa)
return -EINVAL;
f->fmt.pix.bytesperline = round_up(f->fmt.pix.width, 16) * 2;
f->fmt.pix.sizeimage = f->fmt.pix.bytesperline *
f->fmt.pix.height;
}
}
return 0;
}
static void coda_set_default_colorspace(struct v4l2_pix_format *fmt)
{
enum v4l2_colorspace colorspace;
if (fmt->pixelformat == V4L2_PIX_FMT_JPEG)
colorspace = V4L2_COLORSPACE_JPEG;
else if (fmt->width <= 720 && fmt->height <= 576)
colorspace = V4L2_COLORSPACE_SMPTE170M;
else
colorspace = V4L2_COLORSPACE_REC709;
fmt->colorspace = colorspace;
fmt->xfer_func = V4L2_XFER_FUNC_DEFAULT;
fmt->ycbcr_enc = V4L2_YCBCR_ENC_DEFAULT;
fmt->quantization = V4L2_QUANTIZATION_DEFAULT;
}
static int coda_try_fmt_vid_out(struct file *file, void *priv,
struct v4l2_format *f)
{
struct coda_ctx *ctx = fh_to_ctx(priv);
struct coda_dev *dev = ctx->dev;
const struct coda_q_data *q_data_dst;
const struct coda_codec *codec;
int ret;
ret = coda_try_pixelformat(ctx, f);
if (ret < 0)
return ret;
if (f->fmt.pix.colorspace == V4L2_COLORSPACE_DEFAULT)
coda_set_default_colorspace(&f->fmt.pix);
q_data_dst = get_q_data(ctx, V4L2_BUF_TYPE_VIDEO_CAPTURE);
codec = coda_find_codec(dev, f->fmt.pix.pixelformat, q_data_dst->fourcc);
return coda_try_fmt(ctx, codec, f);
}
static int coda_s_fmt(struct coda_ctx *ctx, struct v4l2_format *f,
struct v4l2_rect *r)
{
struct coda_q_data *q_data;
struct vb2_queue *vq;
vq = v4l2_m2m_get_vq(ctx->fh.m2m_ctx, f->type);
if (!vq)
return -EINVAL;
q_data = get_q_data(ctx, f->type);
if (!q_data)
return -EINVAL;
if (vb2_is_busy(vq)) {
v4l2_err(&ctx->dev->v4l2_dev, "%s queue busy\n", __func__);
return -EBUSY;
}
q_data->fourcc = f->fmt.pix.pixelformat;
q_data->width = f->fmt.pix.width;
q_data->height = f->fmt.pix.height;
q_data->bytesperline = f->fmt.pix.bytesperline;
q_data->sizeimage = f->fmt.pix.sizeimage;
if (r) {
q_data->rect = *r;
} else {
q_data->rect.left = 0;
q_data->rect.top = 0;
q_data->rect.width = f->fmt.pix.width;
q_data->rect.height = f->fmt.pix.height;
}
switch (f->fmt.pix.pixelformat) {
case V4L2_PIX_FMT_YUYV:
ctx->tiled_map_type = GDI_TILED_FRAME_MB_RASTER_MAP;
break;
case V4L2_PIX_FMT_NV12:
if (!disable_tiling) {
ctx->tiled_map_type = GDI_TILED_FRAME_MB_RASTER_MAP;
break;
}
/* else fall through */
case V4L2_PIX_FMT_YUV420:
case V4L2_PIX_FMT_YVU420:
ctx->tiled_map_type = GDI_LINEAR_FRAME_MAP;
break;
default:
break;
}
if (ctx->tiled_map_type == GDI_TILED_FRAME_MB_RASTER_MAP &&
!coda_try_fmt_vdoa(ctx, f, &ctx->use_vdoa) &&
ctx->use_vdoa)
vdoa_context_configure(ctx->vdoa,
round_up(f->fmt.pix.width, 16),
f->fmt.pix.height,
f->fmt.pix.pixelformat);
else
ctx->use_vdoa = false;
v4l2_dbg(1, coda_debug, &ctx->dev->v4l2_dev,
"Setting format for type %d, wxh: %dx%d, fmt: %4.4s %c\n",
f->type, q_data->width, q_data->height,
(char *)&q_data->fourcc,
(ctx->tiled_map_type == GDI_LINEAR_FRAME_MAP) ? 'L' : 'T');
return 0;
}
static int coda_s_fmt_vid_cap(struct file *file, void *priv,
struct v4l2_format *f)
{
struct coda_ctx *ctx = fh_to_ctx(priv);
struct coda_q_data *q_data_src;
struct v4l2_rect r;
int ret;
ret = coda_try_fmt_vid_cap(file, priv, f);
if (ret)
return ret;
q_data_src = get_q_data(ctx, V4L2_BUF_TYPE_VIDEO_OUTPUT);
r.left = 0;
r.top = 0;
r.width = q_data_src->width;
r.height = q_data_src->height;
ret = coda_s_fmt(ctx, f, &r);
if (ret)
return ret;
if (ctx->inst_type != CODA_INST_ENCODER)
return 0;
ctx->colorspace = f->fmt.pix.colorspace;
ctx->xfer_func = f->fmt.pix.xfer_func;
ctx->ycbcr_enc = f->fmt.pix.ycbcr_enc;
ctx->quantization = f->fmt.pix.quantization;
return 0;
}
static int coda_s_fmt_vid_out(struct file *file, void *priv,
struct v4l2_format *f)
{
struct coda_ctx *ctx = fh_to_ctx(priv);
struct v4l2_format f_cap;
struct vb2_queue *dst_vq;
int ret;
ret = coda_try_fmt_vid_out(file, priv, f);
if (ret)
return ret;
ret = coda_s_fmt(ctx, f, NULL);
if (ret)
return ret;
if (ctx->inst_type != CODA_INST_DECODER)
return 0;
ctx->colorspace = f->fmt.pix.colorspace;
ctx->xfer_func = f->fmt.pix.xfer_func;
ctx->ycbcr_enc = f->fmt.pix.ycbcr_enc;
ctx->quantization = f->fmt.pix.quantization;
dst_vq = v4l2_m2m_get_vq(ctx->fh.m2m_ctx, V4L2_BUF_TYPE_VIDEO_CAPTURE);
if (!dst_vq)
return -EINVAL;
/*
* Setting the capture queue format is not possible while the capture
* queue is still busy. This is not an error, but the user will have to
* make sure themselves that the capture format is set correctly before
* starting the output queue again.
*/
if (vb2_is_busy(dst_vq))
return 0;
memset(&f_cap, 0, sizeof(f_cap));
f_cap.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
coda_g_fmt(file, priv, &f_cap);
f_cap.fmt.pix.width = f->fmt.pix.width;
f_cap.fmt.pix.height = f->fmt.pix.height;
return coda_s_fmt_vid_cap(file, priv, &f_cap);
}
static int coda_reqbufs(struct file *file, void *priv,
struct v4l2_requestbuffers *rb)
{
struct coda_ctx *ctx = fh_to_ctx(priv);
int ret;
ret = v4l2_m2m_reqbufs(file, ctx->fh.m2m_ctx, rb);
if (ret)
return ret;
/*
* Allow to allocate instance specific per-context buffers, such as
* bitstream ringbuffer, slice buffer, work buffer, etc. if needed.
*/
if (rb->type == V4L2_BUF_TYPE_VIDEO_OUTPUT && ctx->ops->reqbufs)
return ctx->ops->reqbufs(ctx, rb);
return 0;
}
static int coda_qbuf(struct file *file, void *priv,
struct v4l2_buffer *buf)
{
struct coda_ctx *ctx = fh_to_ctx(priv);
return v4l2_m2m_qbuf(file, ctx->fh.m2m_ctx, buf);
}
static bool coda_buf_is_end_of_stream(struct coda_ctx *ctx,
struct vb2_v4l2_buffer *buf)
{
return ((ctx->bit_stream_param & CODA_BIT_STREAM_END_FLAG) &&
(buf->sequence == (ctx->qsequence - 1)));
}
void coda_m2m_buf_done(struct coda_ctx *ctx, struct vb2_v4l2_buffer *buf,
enum vb2_buffer_state state)
{
const struct v4l2_event eos_event = {
.type = V4L2_EVENT_EOS
};
if (coda_buf_is_end_of_stream(ctx, buf)) {
buf->flags |= V4L2_BUF_FLAG_LAST;
v4l2_event_queue_fh(&ctx->fh, &eos_event);
}
v4l2_m2m_buf_done(buf, state);
}
static int coda_g_selection(struct file *file, void *fh,
struct v4l2_selection *s)
{
struct coda_ctx *ctx = fh_to_ctx(fh);
struct coda_q_data *q_data;
struct v4l2_rect r, *rsel;
q_data = get_q_data(ctx, s->type);
if (!q_data)
return -EINVAL;
r.left = 0;
r.top = 0;
r.width = q_data->width;
r.height = q_data->height;
rsel = &q_data->rect;
switch (s->target) {
case V4L2_SEL_TGT_CROP_DEFAULT:
case V4L2_SEL_TGT_CROP_BOUNDS:
rsel = &r;
/* fallthrough */
case V4L2_SEL_TGT_CROP:
if (s->type != V4L2_BUF_TYPE_VIDEO_OUTPUT)
return -EINVAL;
break;
case V4L2_SEL_TGT_COMPOSE_BOUNDS:
case V4L2_SEL_TGT_COMPOSE_PADDED:
rsel = &r;
/* fallthrough */
case V4L2_SEL_TGT_COMPOSE:
case V4L2_SEL_TGT_COMPOSE_DEFAULT:
if (s->type != V4L2_BUF_TYPE_VIDEO_CAPTURE)
return -EINVAL;
break;
default:
return -EINVAL;
}
s->r = *rsel;
return 0;
}
static int coda_try_encoder_cmd(struct file *file, void *fh,
struct v4l2_encoder_cmd *ec)
{
if (ec->cmd != V4L2_ENC_CMD_STOP)
return -EINVAL;
if (ec->flags & V4L2_ENC_CMD_STOP_AT_GOP_END)
return -EINVAL;
return 0;
}
static int coda_encoder_cmd(struct file *file, void *fh,
struct v4l2_encoder_cmd *ec)
{
struct coda_ctx *ctx = fh_to_ctx(fh);
struct vb2_queue *dst_vq;
int ret;
ret = coda_try_encoder_cmd(file, fh, ec);
if (ret < 0)
return ret;
/* Ignore encoder stop command silently in decoder context */
if (ctx->inst_type != CODA_INST_ENCODER)
return 0;
/* Set the stream-end flag on this context */
ctx->bit_stream_param |= CODA_BIT_STREAM_END_FLAG;
/* If there is no buffer in flight, wake up */
if (!ctx->streamon_out || ctx->qsequence == ctx->osequence) {
dst_vq = v4l2_m2m_get_vq(ctx->fh.m2m_ctx,
V4L2_BUF_TYPE_VIDEO_CAPTURE);
dst_vq->last_buffer_dequeued = true;
wake_up(&dst_vq->done_wq);
}
return 0;
}
static int coda_try_decoder_cmd(struct file *file, void *fh,
struct v4l2_decoder_cmd *dc)
{
if (dc->cmd != V4L2_DEC_CMD_STOP)
return -EINVAL;
if (dc->flags & V4L2_DEC_CMD_STOP_TO_BLACK)
return -EINVAL;
if (!(dc->flags & V4L2_DEC_CMD_STOP_IMMEDIATELY) && (dc->stop.pts != 0))
return -EINVAL;
return 0;
}
static int coda_decoder_cmd(struct file *file, void *fh,
struct v4l2_decoder_cmd *dc)
{
struct coda_ctx *ctx = fh_to_ctx(fh);
int ret;
ret = coda_try_decoder_cmd(file, fh, dc);
if (ret < 0)
return ret;
/* Ignore decoder stop command silently in encoder context */
if (ctx->inst_type != CODA_INST_DECODER)
return 0;
/* Set the stream-end flag on this context */
coda_bit_stream_end_flag(ctx);
ctx->hold = false;
v4l2_m2m_try_schedule(ctx->fh.m2m_ctx);
return 0;
}
static int coda_g_parm(struct file *file, void *fh, struct v4l2_streamparm *a)
{
struct coda_ctx *ctx = fh_to_ctx(fh);
struct v4l2_fract *tpf;
if (a->type != V4L2_BUF_TYPE_VIDEO_OUTPUT)
return -EINVAL;
a->parm.output.capability = V4L2_CAP_TIMEPERFRAME;
tpf = &a->parm.output.timeperframe;
tpf->denominator = ctx->params.framerate & CODA_FRATE_RES_MASK;
tpf->numerator = 1 + (ctx->params.framerate >>
CODA_FRATE_DIV_OFFSET);
return 0;
}
/*
* Approximate timeperframe v4l2_fract with values that can be written
* into the 16-bit CODA_FRATE_DIV and CODA_FRATE_RES fields.
*/
static void coda_approximate_timeperframe(struct v4l2_fract *timeperframe)
{
struct v4l2_fract s = *timeperframe;
struct v4l2_fract f0;
struct v4l2_fract f1 = { 1, 0 };
struct v4l2_fract f2 = { 0, 1 };
unsigned int i, div, s_denominator;
/* Lower bound is 1/65535 */
if (s.numerator == 0 || s.denominator / s.numerator > 65535) {
timeperframe->numerator = 1;
timeperframe->denominator = 65535;
return;
}
/* Upper bound is 65536/1, map everything above to infinity */
if (s.denominator == 0 || s.numerator / s.denominator > 65536) {
timeperframe->numerator = 1;
timeperframe->denominator = 0;
return;
}
/* Reduce fraction to lowest terms */
div = gcd(s.numerator, s.denominator);
if (div > 1) {
s.numerator /= div;
s.denominator /= div;
}
if (s.numerator <= 65536 && s.denominator < 65536) {
*timeperframe = s;
return;
}
/* Find successive convergents from continued fraction expansion */
while (f2.numerator <= 65536 && f2.denominator < 65536) {
f0 = f1;
f1 = f2;
/* Stop when f2 exactly equals timeperframe */
if (s.numerator == 0)
break;
i = s.denominator / s.numerator;
f2.numerator = f0.numerator + i * f1.numerator;
f2.denominator = f0.denominator + i * f2.denominator;
s_denominator = s.numerator;
s.numerator = s.denominator % s.numerator;
s.denominator = s_denominator;
}
*timeperframe = f1;
}
static uint32_t coda_timeperframe_to_frate(struct v4l2_fract *timeperframe)
{
return ((timeperframe->numerator - 1) << CODA_FRATE_DIV_OFFSET) |
timeperframe->denominator;
}
static int coda_s_parm(struct file *file, void *fh, struct v4l2_streamparm *a)
{
struct coda_ctx *ctx = fh_to_ctx(fh);
struct v4l2_fract *tpf;
if (a->type != V4L2_BUF_TYPE_VIDEO_OUTPUT)
return -EINVAL;
tpf = &a->parm.output.timeperframe;
coda_approximate_timeperframe(tpf);
ctx->params.framerate = coda_timeperframe_to_frate(tpf);
return 0;
}
static int coda_subscribe_event(struct v4l2_fh *fh,
const struct v4l2_event_subscription *sub)
{
switch (sub->type) {
case V4L2_EVENT_EOS:
return v4l2_event_subscribe(fh, sub, 0, NULL);
default:
return v4l2_ctrl_subscribe_event(fh, sub);
}
}
static const struct v4l2_ioctl_ops coda_ioctl_ops = {
.vidioc_querycap = coda_querycap,
.vidioc_enum_fmt_vid_cap = coda_enum_fmt,
.vidioc_g_fmt_vid_cap = coda_g_fmt,
.vidioc_try_fmt_vid_cap = coda_try_fmt_vid_cap,
.vidioc_s_fmt_vid_cap = coda_s_fmt_vid_cap,
.vidioc_enum_fmt_vid_out = coda_enum_fmt,
.vidioc_g_fmt_vid_out = coda_g_fmt,
.vidioc_try_fmt_vid_out = coda_try_fmt_vid_out,
.vidioc_s_fmt_vid_out = coda_s_fmt_vid_out,
.vidioc_reqbufs = coda_reqbufs,
.vidioc_querybuf = v4l2_m2m_ioctl_querybuf,
.vidioc_qbuf = coda_qbuf,
.vidioc_expbuf = v4l2_m2m_ioctl_expbuf,
.vidioc_dqbuf = v4l2_m2m_ioctl_dqbuf,
.vidioc_create_bufs = v4l2_m2m_ioctl_create_bufs,
.vidioc_prepare_buf = v4l2_m2m_ioctl_prepare_buf,
.vidioc_streamon = v4l2_m2m_ioctl_streamon,
.vidioc_streamoff = v4l2_m2m_ioctl_streamoff,
.vidioc_g_selection = coda_g_selection,
.vidioc_try_encoder_cmd = coda_try_encoder_cmd,
.vidioc_encoder_cmd = coda_encoder_cmd,
.vidioc_try_decoder_cmd = coda_try_decoder_cmd,
.vidioc_decoder_cmd = coda_decoder_cmd,
.vidioc_g_parm = coda_g_parm,
.vidioc_s_parm = coda_s_parm,
.vidioc_subscribe_event = coda_subscribe_event,
.vidioc_unsubscribe_event = v4l2_event_unsubscribe,
};
/*
* Mem-to-mem operations.
*/
static void coda_device_run(void *m2m_priv)
{
struct coda_ctx *ctx = m2m_priv;
struct coda_dev *dev = ctx->dev;
queue_work(dev->workqueue, &ctx->pic_run_work);
}
static void coda_pic_run_work(struct work_struct *work)
{
struct coda_ctx *ctx = container_of(work, struct coda_ctx, pic_run_work);
struct coda_dev *dev = ctx->dev;
int ret;
mutex_lock(&ctx->buffer_mutex);
mutex_lock(&dev->coda_mutex);
ret = ctx->ops->prepare_run(ctx);
if (ret < 0 && ctx->inst_type == CODA_INST_DECODER) {
mutex_unlock(&dev->coda_mutex);
mutex_unlock(&ctx->buffer_mutex);
/* job_finish scheduled by prepare_decode */
return;
}
if (!wait_for_completion_timeout(&ctx->completion,
msecs_to_jiffies(1000))) {
dev_err(&dev->plat_dev->dev, "CODA PIC_RUN timeout\n");
ctx->hold = true;
coda_hw_reset(ctx);
if (ctx->ops->run_timeout)
ctx->ops->run_timeout(ctx);
} else if (!ctx->aborting) {
ctx->ops->finish_run(ctx);
}
if ((ctx->aborting || (!ctx->streamon_cap && !ctx->streamon_out)) &&
ctx->ops->seq_end_work)
queue_work(dev->workqueue, &ctx->seq_end_work);
mutex_unlock(&dev->coda_mutex);
mutex_unlock(&ctx->buffer_mutex);
v4l2_m2m_job_finish(ctx->dev->m2m_dev, ctx->fh.m2m_ctx);
}
static int coda_job_ready(void *m2m_priv)
{
struct coda_ctx *ctx = m2m_priv;
int src_bufs = v4l2_m2m_num_src_bufs_ready(ctx->fh.m2m_ctx);
/*
* For both 'P' and 'key' frame cases 1 picture
* and 1 frame are needed. In the decoder case,
* the compressed frame can be in the bitstream.
*/
if (!src_bufs && ctx->inst_type != CODA_INST_DECODER) {
v4l2_dbg(1, coda_debug, &ctx->dev->v4l2_dev,
"not ready: not enough video buffers.\n");
return 0;
}
if (!v4l2_m2m_num_dst_bufs_ready(ctx->fh.m2m_ctx)) {
v4l2_dbg(1, coda_debug, &ctx->dev->v4l2_dev,
"not ready: not enough video capture buffers.\n");
return 0;
}
if (ctx->inst_type == CODA_INST_DECODER && ctx->use_bit) {
bool stream_end = ctx->bit_stream_param &
CODA_BIT_STREAM_END_FLAG;
int num_metas = ctx->num_metas;
unsigned int count;
count = hweight32(ctx->frm_dis_flg);
if (ctx->use_vdoa && count >= (ctx->num_internal_frames - 1)) {
v4l2_dbg(1, coda_debug, &ctx->dev->v4l2_dev,
"%d: not ready: all internal buffers in use: %d/%d (0x%x)",
ctx->idx, count, ctx->num_internal_frames,
ctx->frm_dis_flg);
return 0;
}
if (ctx->hold && !src_bufs) {
v4l2_dbg(1, coda_debug, &ctx->dev->v4l2_dev,
"%d: not ready: on hold for more buffers.\n",
ctx->idx);
return 0;
}
if (!stream_end && (num_metas + src_bufs) < 2) {
v4l2_dbg(1, coda_debug, &ctx->dev->v4l2_dev,
"%d: not ready: need 2 buffers available (%d, %d)\n",
ctx->idx, num_metas, src_bufs);
return 0;
}
if (!src_bufs && !stream_end &&
(coda_get_bitstream_payload(ctx) < 512)) {
v4l2_dbg(1, coda_debug, &ctx->dev->v4l2_dev,
"%d: not ready: not enough bitstream data (%d).\n",
ctx->idx, coda_get_bitstream_payload(ctx));
return 0;
}
}
if (ctx->aborting) {
v4l2_dbg(1, coda_debug, &ctx->dev->v4l2_dev,
"not ready: aborting\n");
return 0;
}
v4l2_dbg(1, coda_debug, &ctx->dev->v4l2_dev,
"job ready\n");
return 1;
}
static void coda_job_abort(void *priv)
{
struct coda_ctx *ctx = priv;
ctx->aborting = 1;
v4l2_dbg(1, coda_debug, &ctx->dev->v4l2_dev,
"Aborting task\n");
}
static void coda_lock(void *m2m_priv)
{
struct coda_ctx *ctx = m2m_priv;
struct coda_dev *pcdev = ctx->dev;
mutex_lock(&pcdev->dev_mutex);
}
static void coda_unlock(void *m2m_priv)
{
struct coda_ctx *ctx = m2m_priv;
struct coda_dev *pcdev = ctx->dev;
mutex_unlock(&pcdev->dev_mutex);
}
static const struct v4l2_m2m_ops coda_m2m_ops = {
.device_run = coda_device_run,
.job_ready = coda_job_ready,
.job_abort = coda_job_abort,
.lock = coda_lock,
.unlock = coda_unlock,
};
static void set_default_params(struct coda_ctx *ctx)
{
unsigned int max_w, max_h, usize, csize;
ctx->codec = coda_find_codec(ctx->dev, ctx->cvd->src_formats[0],
ctx->cvd->dst_formats[0]);
max_w = min(ctx->codec->max_w, 1920U);
max_h = min(ctx->codec->max_h, 1088U);
usize = max_w * max_h * 3 / 2;
csize = coda_estimate_sizeimage(ctx, usize, max_w, max_h);
ctx->params.codec_mode = ctx->codec->mode;
if (ctx->cvd->src_formats[0] == V4L2_PIX_FMT_JPEG)
ctx->colorspace = V4L2_COLORSPACE_JPEG;
else
ctx->colorspace = V4L2_COLORSPACE_REC709;
ctx->xfer_func = V4L2_XFER_FUNC_DEFAULT;
ctx->ycbcr_enc = V4L2_YCBCR_ENC_DEFAULT;
ctx->quantization = V4L2_QUANTIZATION_DEFAULT;
ctx->params.framerate = 30;
/* Default formats for output and input queues */
ctx->q_data[V4L2_M2M_SRC].fourcc = ctx->cvd->src_formats[0];
ctx->q_data[V4L2_M2M_DST].fourcc = ctx->cvd->dst_formats[0];
ctx->q_data[V4L2_M2M_SRC].width = max_w;
ctx->q_data[V4L2_M2M_SRC].height = max_h;
ctx->q_data[V4L2_M2M_DST].width = max_w;
ctx->q_data[V4L2_M2M_DST].height = max_h;
if (ctx->codec->src_fourcc == V4L2_PIX_FMT_YUV420) {
ctx->q_data[V4L2_M2M_SRC].bytesperline = max_w;
ctx->q_data[V4L2_M2M_SRC].sizeimage = usize;
ctx->q_data[V4L2_M2M_DST].bytesperline = 0;
ctx->q_data[V4L2_M2M_DST].sizeimage = csize;
} else {
ctx->q_data[V4L2_M2M_SRC].bytesperline = 0;
ctx->q_data[V4L2_M2M_SRC].sizeimage = csize;
ctx->q_data[V4L2_M2M_DST].bytesperline = max_w;
ctx->q_data[V4L2_M2M_DST].sizeimage = usize;
}
ctx->q_data[V4L2_M2M_SRC].rect.width = max_w;
ctx->q_data[V4L2_M2M_SRC].rect.height = max_h;
ctx->q_data[V4L2_M2M_DST].rect.width = max_w;
ctx->q_data[V4L2_M2M_DST].rect.height = max_h;
/*
* Since the RBC2AXI logic only supports a single chroma plane,
* macroblock tiling only works for to NV12 pixel format.
*/
ctx->tiled_map_type = GDI_LINEAR_FRAME_MAP;
}
/*
* Queue operations
*/
static int coda_queue_setup(struct vb2_queue *vq,
unsigned int *nbuffers, unsigned int *nplanes,
unsigned int sizes[], struct device *alloc_devs[])
{
struct coda_ctx *ctx = vb2_get_drv_priv(vq);
struct coda_q_data *q_data;
unsigned int size;
q_data = get_q_data(ctx, vq->type);
size = q_data->sizeimage;
*nplanes = 1;
sizes[0] = size;
v4l2_dbg(1, coda_debug, &ctx->dev->v4l2_dev,
"get %d buffer(s) of size %d each.\n", *nbuffers, size);
return 0;
}
static int coda_buf_prepare(struct vb2_buffer *vb)
{
struct coda_ctx *ctx = vb2_get_drv_priv(vb->vb2_queue);
struct coda_q_data *q_data;
q_data = get_q_data(ctx, vb->vb2_queue->type);
if (vb2_plane_size(vb, 0) < q_data->sizeimage) {
v4l2_warn(&ctx->dev->v4l2_dev,
"%s data will not fit into plane (%lu < %lu)\n",
__func__, vb2_plane_size(vb, 0),
(long)q_data->sizeimage);
return -EINVAL;
}
return 0;
}
static void coda_buf_queue(struct vb2_buffer *vb)
{
struct vb2_v4l2_buffer *vbuf = to_vb2_v4l2_buffer(vb);
struct coda_ctx *ctx = vb2_get_drv_priv(vb->vb2_queue);
struct vb2_queue *vq = vb->vb2_queue;
struct coda_q_data *q_data;
q_data = get_q_data(ctx, vb->vb2_queue->type);
/*
* In the decoder case, immediately try to copy the buffer into the
* bitstream ringbuffer and mark it as ready to be dequeued.
*/
if (ctx->bitstream.size && vq->type == V4L2_BUF_TYPE_VIDEO_OUTPUT) {
/*
* For backwards compatibility, queuing an empty buffer marks
* the stream end
*/
if (vb2_get_plane_payload(vb, 0) == 0)
coda_bit_stream_end_flag(ctx);
if (q_data->fourcc == V4L2_PIX_FMT_H264) {
/*
* Unless already done, try to obtain profile_idc and
* level_idc from the SPS header. This allows to decide
* whether to enable reordering during sequence
* initialization.
*/
if (!ctx->params.h264_profile_idc)
coda_sps_parse_profile(ctx, vb);
}
mutex_lock(&ctx->bitstream_mutex);
v4l2_m2m_buf_queue(ctx->fh.m2m_ctx, vbuf);
if (vb2_is_streaming(vb->vb2_queue))
/* This set buf->sequence = ctx->qsequence++ */
coda_fill_bitstream(ctx, NULL);
mutex_unlock(&ctx->bitstream_mutex);
} else {
if (ctx->inst_type == CODA_INST_ENCODER &&
vq->type == V4L2_BUF_TYPE_VIDEO_OUTPUT)
vbuf->sequence = ctx->qsequence++;
v4l2_m2m_buf_queue(ctx->fh.m2m_ctx, vbuf);
}
}
int coda_alloc_aux_buf(struct coda_dev *dev, struct coda_aux_buf *buf,
size_t size, const char *name, struct dentry *parent)
{
buf->vaddr = dma_alloc_coherent(&dev->plat_dev->dev, size, &buf->paddr,
GFP_KERNEL);
if (!buf->vaddr) {
v4l2_err(&dev->v4l2_dev,
"Failed to allocate %s buffer of size %zu\n",
name, size);
return -ENOMEM;
}
buf->size = size;
if (name && parent) {
buf->blob.data = buf->vaddr;
buf->blob.size = size;
buf->dentry = debugfs_create_blob(name, 0644, parent,
&buf->blob);
if (!buf->dentry)
dev_warn(&dev->plat_dev->dev,
"failed to create debugfs entry %s\n", name);
}
return 0;
}
void coda_free_aux_buf(struct coda_dev *dev,
struct coda_aux_buf *buf)
{
if (buf->vaddr) {
dma_free_coherent(&dev->plat_dev->dev, buf->size,
buf->vaddr, buf->paddr);
buf->vaddr = NULL;
buf->size = 0;
debugfs_remove(buf->dentry);
buf->dentry = NULL;
}
}
static int coda_start_streaming(struct vb2_queue *q, unsigned int count)
{
struct coda_ctx *ctx = vb2_get_drv_priv(q);
struct v4l2_device *v4l2_dev = &ctx->dev->v4l2_dev;
struct coda_q_data *q_data_src, *q_data_dst;
struct v4l2_m2m_buffer *m2m_buf, *tmp;
struct vb2_v4l2_buffer *buf;
struct list_head list;
int ret = 0;
if (count < 1)
return -EINVAL;
INIT_LIST_HEAD(&list);
q_data_src = get_q_data(ctx, V4L2_BUF_TYPE_VIDEO_OUTPUT);
if (q->type == V4L2_BUF_TYPE_VIDEO_OUTPUT) {
if (ctx->inst_type == CODA_INST_DECODER && ctx->use_bit) {
/* copy the buffers that were queued before streamon */
mutex_lock(&ctx->bitstream_mutex);
coda_fill_bitstream(ctx, &list);
mutex_unlock(&ctx->bitstream_mutex);
if (coda_get_bitstream_payload(ctx) < 512) {
ret = -EINVAL;
goto err;
}
}
ctx->streamon_out = 1;
} else {
ctx->streamon_cap = 1;
}
/* Don't start the coda unless both queues are on */
if (!(ctx->streamon_out && ctx->streamon_cap))
goto out;
q_data_dst = get_q_data(ctx, V4L2_BUF_TYPE_VIDEO_CAPTURE);
if ((q_data_src->width != q_data_dst->width &&
round_up(q_data_src->width, 16) != q_data_dst->width) ||
(q_data_src->height != q_data_dst->height &&
round_up(q_data_src->height, 16) != q_data_dst->height)) {
v4l2_err(v4l2_dev, "can't convert %dx%d to %dx%d\n",
q_data_src->width, q_data_src->height,
q_data_dst->width, q_data_dst->height);
ret = -EINVAL;
goto err;
}
/* Allow BIT decoder device_run with no new buffers queued */
if (ctx->inst_type == CODA_INST_DECODER && ctx->use_bit)
v4l2_m2m_set_src_buffered(ctx->fh.m2m_ctx, true);
ctx->gopcounter = ctx->params.gop_size - 1;
ctx->codec = coda_find_codec(ctx->dev, q_data_src->fourcc,
q_data_dst->fourcc);
if (!ctx->codec) {
v4l2_err(v4l2_dev, "couldn't tell instance type.\n");
ret = -EINVAL;
goto err;
}
if (q_data_dst->fourcc == V4L2_PIX_FMT_JPEG)
ctx->params.gop_size = 1;
ctx->gopcounter = ctx->params.gop_size - 1;
ret = ctx->ops->start_streaming(ctx);
if (ctx->inst_type == CODA_INST_DECODER) {
if (ret == -EAGAIN)
goto out;
}
if (ret < 0)
goto err;
out:
if (q->type == V4L2_BUF_TYPE_VIDEO_OUTPUT) {
list_for_each_entry_safe(m2m_buf, tmp, &list, list) {
list_del(&m2m_buf->list);
v4l2_m2m_buf_done(&m2m_buf->vb, VB2_BUF_STATE_DONE);
}
}
return 0;
err:
if (q->type == V4L2_BUF_TYPE_VIDEO_OUTPUT) {
list_for_each_entry_safe(m2m_buf, tmp, &list, list) {
list_del(&m2m_buf->list);
v4l2_m2m_buf_done(&m2m_buf->vb, VB2_BUF_STATE_QUEUED);
}
while ((buf = v4l2_m2m_src_buf_remove(ctx->fh.m2m_ctx)))
v4l2_m2m_buf_done(buf, VB2_BUF_STATE_QUEUED);
} else {
while ((buf = v4l2_m2m_dst_buf_remove(ctx->fh.m2m_ctx)))
v4l2_m2m_buf_done(buf, VB2_BUF_STATE_QUEUED);
}
return ret;
}
static void coda_stop_streaming(struct vb2_queue *q)
{
struct coda_ctx *ctx = vb2_get_drv_priv(q);
struct coda_dev *dev = ctx->dev;
struct vb2_v4l2_buffer *buf;
unsigned long flags;
bool stop;
stop = ctx->streamon_out && ctx->streamon_cap;
if (q->type == V4L2_BUF_TYPE_VIDEO_OUTPUT) {
v4l2_dbg(1, coda_debug, &dev->v4l2_dev,
"%s: output\n", __func__);
ctx->streamon_out = 0;
coda_bit_stream_end_flag(ctx);
ctx->qsequence = 0;
while ((buf = v4l2_m2m_src_buf_remove(ctx->fh.m2m_ctx)))
v4l2_m2m_buf_done(buf, VB2_BUF_STATE_ERROR);
} else {
v4l2_dbg(1, coda_debug, &dev->v4l2_dev,
"%s: capture\n", __func__);
ctx->streamon_cap = 0;
ctx->osequence = 0;
ctx->sequence_offset = 0;
while ((buf = v4l2_m2m_dst_buf_remove(ctx->fh.m2m_ctx)))
v4l2_m2m_buf_done(buf, VB2_BUF_STATE_ERROR);
}
if (stop) {
struct coda_buffer_meta *meta;
if (ctx->ops->seq_end_work) {
queue_work(dev->workqueue, &ctx->seq_end_work);
flush_work(&ctx->seq_end_work);
}
spin_lock_irqsave(&ctx->buffer_meta_lock, flags);
while (!list_empty(&ctx->buffer_meta_list)) {
meta = list_first_entry(&ctx->buffer_meta_list,
struct coda_buffer_meta, list);
list_del(&meta->list);
kfree(meta);
}
ctx->num_metas = 0;
spin_unlock_irqrestore(&ctx->buffer_meta_lock, flags);
kfifo_init(&ctx->bitstream_fifo,
ctx->bitstream.vaddr, ctx->bitstream.size);
ctx->runcounter = 0;
ctx->aborting = 0;
}
if (!ctx->streamon_out && !ctx->streamon_cap)
ctx->bit_stream_param &= ~CODA_BIT_STREAM_END_FLAG;
}
static const struct vb2_ops coda_qops = {
.queue_setup = coda_queue_setup,
.buf_prepare = coda_buf_prepare,
.buf_queue = coda_buf_queue,
.start_streaming = coda_start_streaming,
.stop_streaming = coda_stop_streaming,
.wait_prepare = vb2_ops_wait_prepare,
.wait_finish = vb2_ops_wait_finish,
};
static int coda_s_ctrl(struct v4l2_ctrl *ctrl)
{
struct coda_ctx *ctx =
container_of(ctrl->handler, struct coda_ctx, ctrls);
v4l2_dbg(1, coda_debug, &ctx->dev->v4l2_dev,
"s_ctrl: id = %d, val = %d\n", ctrl->id, ctrl->val);
switch (ctrl->id) {
case V4L2_CID_HFLIP:
if (ctrl->val)
ctx->params.rot_mode |= CODA_MIR_HOR;
else
ctx->params.rot_mode &= ~CODA_MIR_HOR;
break;
case V4L2_CID_VFLIP:
if (ctrl->val)
ctx->params.rot_mode |= CODA_MIR_VER;
else
ctx->params.rot_mode &= ~CODA_MIR_VER;
break;
case V4L2_CID_MPEG_VIDEO_BITRATE:
ctx->params.bitrate = ctrl->val / 1000;
break;
case V4L2_CID_MPEG_VIDEO_GOP_SIZE:
ctx->params.gop_size = ctrl->val;
break;
case V4L2_CID_MPEG_VIDEO_H264_I_FRAME_QP:
ctx->params.h264_intra_qp = ctrl->val;
break;
case V4L2_CID_MPEG_VIDEO_H264_P_FRAME_QP:
ctx->params.h264_inter_qp = ctrl->val;
break;
case V4L2_CID_MPEG_VIDEO_H264_MIN_QP:
ctx->params.h264_min_qp = ctrl->val;
break;
case V4L2_CID_MPEG_VIDEO_H264_MAX_QP:
ctx->params.h264_max_qp = ctrl->val;
break;
case V4L2_CID_MPEG_VIDEO_H264_LOOP_FILTER_ALPHA:
ctx->params.h264_deblk_alpha = ctrl->val;
break;
case V4L2_CID_MPEG_VIDEO_H264_LOOP_FILTER_BETA:
ctx->params.h264_deblk_beta = ctrl->val;
break;
case V4L2_CID_MPEG_VIDEO_H264_LOOP_FILTER_MODE:
ctx->params.h264_deblk_enabled = (ctrl->val ==
V4L2_MPEG_VIDEO_H264_LOOP_FILTER_MODE_ENABLED);
break;
case V4L2_CID_MPEG_VIDEO_H264_PROFILE:
/* TODO: switch between baseline and constrained baseline */
ctx->params.h264_profile_idc = 66;
break;
case V4L2_CID_MPEG_VIDEO_H264_LEVEL:
/* nothing to do, this is set by the encoder */
break;
case V4L2_CID_MPEG_VIDEO_MPEG4_I_FRAME_QP:
ctx->params.mpeg4_intra_qp = ctrl->val;
break;
case V4L2_CID_MPEG_VIDEO_MPEG4_P_FRAME_QP:
ctx->params.mpeg4_inter_qp = ctrl->val;
break;
case V4L2_CID_MPEG_VIDEO_MPEG4_PROFILE:
case V4L2_CID_MPEG_VIDEO_MPEG4_LEVEL:
/* nothing to do, these are fixed */
break;
case V4L2_CID_MPEG_VIDEO_MULTI_SLICE_MODE:
ctx->params.slice_mode = ctrl->val;
break;
case V4L2_CID_MPEG_VIDEO_MULTI_SLICE_MAX_MB:
ctx->params.slice_max_mb = ctrl->val;
break;
case V4L2_CID_MPEG_VIDEO_MULTI_SLICE_MAX_BYTES:
ctx->params.slice_max_bits = ctrl->val * 8;
break;
case V4L2_CID_MPEG_VIDEO_HEADER_MODE:
break;
case V4L2_CID_MPEG_VIDEO_CYCLIC_INTRA_REFRESH_MB:
ctx->params.intra_refresh = ctrl->val;
break;
case V4L2_CID_MPEG_VIDEO_FORCE_KEY_FRAME:
ctx->params.force_ipicture = true;
break;
case V4L2_CID_JPEG_COMPRESSION_QUALITY:
coda_set_jpeg_compression_quality(ctx, ctrl->val);
break;
case V4L2_CID_JPEG_RESTART_INTERVAL:
ctx->params.jpeg_restart_interval = ctrl->val;
break;
case V4L2_CID_MPEG_VIDEO_VBV_DELAY:
ctx->params.vbv_delay = ctrl->val;
break;
case V4L2_CID_MPEG_VIDEO_VBV_SIZE:
ctx->params.vbv_size = min(ctrl->val * 8192, 0x7fffffff);
break;
default:
v4l2_dbg(1, coda_debug, &ctx->dev->v4l2_dev,
"Invalid control, id=%d, val=%d\n",
ctrl->id, ctrl->val);
return -EINVAL;
}
return 0;
}
static const struct v4l2_ctrl_ops coda_ctrl_ops = {
.s_ctrl = coda_s_ctrl,
};
static void coda_encode_ctrls(struct coda_ctx *ctx)
{
int max_gop_size = (ctx->dev->devtype->product == CODA_DX6) ? 60 : 99;
v4l2_ctrl_new_std(&ctx->ctrls, &coda_ctrl_ops,
V4L2_CID_MPEG_VIDEO_BITRATE, 0, 32767000, 1000, 0);
v4l2_ctrl_new_std(&ctx->ctrls, &coda_ctrl_ops,
V4L2_CID_MPEG_VIDEO_GOP_SIZE, 0, max_gop_size, 1, 16);
v4l2_ctrl_new_std(&ctx->ctrls, &coda_ctrl_ops,
V4L2_CID_MPEG_VIDEO_H264_I_FRAME_QP, 0, 51, 1, 25);
v4l2_ctrl_new_std(&ctx->ctrls, &coda_ctrl_ops,
V4L2_CID_MPEG_VIDEO_H264_P_FRAME_QP, 0, 51, 1, 25);
if (ctx->dev->devtype->product != CODA_960) {
v4l2_ctrl_new_std(&ctx->ctrls, &coda_ctrl_ops,
V4L2_CID_MPEG_VIDEO_H264_MIN_QP, 0, 51, 1, 12);
}
v4l2_ctrl_new_std(&ctx->ctrls, &coda_ctrl_ops,
V4L2_CID_MPEG_VIDEO_H264_MAX_QP, 0, 51, 1, 51);
v4l2_ctrl_new_std(&ctx->ctrls, &coda_ctrl_ops,
V4L2_CID_MPEG_VIDEO_H264_LOOP_FILTER_ALPHA, 0, 15, 1, 0);
v4l2_ctrl_new_std(&ctx->ctrls, &coda_ctrl_ops,
V4L2_CID_MPEG_VIDEO_H264_LOOP_FILTER_BETA, 0, 15, 1, 0);
v4l2_ctrl_new_std_menu(&ctx->ctrls, &coda_ctrl_ops,
V4L2_CID_MPEG_VIDEO_H264_LOOP_FILTER_MODE,
V4L2_MPEG_VIDEO_H264_LOOP_FILTER_MODE_DISABLED, 0x0,
V4L2_MPEG_VIDEO_H264_LOOP_FILTER_MODE_ENABLED);
v4l2_ctrl_new_std_menu(&ctx->ctrls, &coda_ctrl_ops,
V4L2_CID_MPEG_VIDEO_H264_PROFILE,
V4L2_MPEG_VIDEO_H264_PROFILE_BASELINE, 0x0,
V4L2_MPEG_VIDEO_H264_PROFILE_BASELINE);
if (ctx->dev->devtype->product == CODA_HX4 ||
ctx->dev->devtype->product == CODA_7541) {
v4l2_ctrl_new_std_menu(&ctx->ctrls, &coda_ctrl_ops,
V4L2_CID_MPEG_VIDEO_H264_LEVEL,
V4L2_MPEG_VIDEO_H264_LEVEL_3_1,
~((1 << V4L2_MPEG_VIDEO_H264_LEVEL_2_0) |
(1 << V4L2_MPEG_VIDEO_H264_LEVEL_3_0) |
(1 << V4L2_MPEG_VIDEO_H264_LEVEL_3_1)),
V4L2_MPEG_VIDEO_H264_LEVEL_3_1);
}
if (ctx->dev->devtype->product == CODA_960) {
v4l2_ctrl_new_std_menu(&ctx->ctrls, &coda_ctrl_ops,
V4L2_CID_MPEG_VIDEO_H264_LEVEL,
V4L2_MPEG_VIDEO_H264_LEVEL_4_0,
~((1 << V4L2_MPEG_VIDEO_H264_LEVEL_2_0) |
(1 << V4L2_MPEG_VIDEO_H264_LEVEL_3_0) |
(1 << V4L2_MPEG_VIDEO_H264_LEVEL_3_1) |
(1 << V4L2_MPEG_VIDEO_H264_LEVEL_3_2) |
(1 << V4L2_MPEG_VIDEO_H264_LEVEL_4_0)),
V4L2_MPEG_VIDEO_H264_LEVEL_4_0);
}
v4l2_ctrl_new_std(&ctx->ctrls, &coda_ctrl_ops,
V4L2_CID_MPEG_VIDEO_MPEG4_I_FRAME_QP, 1, 31, 1, 2);
v4l2_ctrl_new_std(&ctx->ctrls, &coda_ctrl_ops,
V4L2_CID_MPEG_VIDEO_MPEG4_P_FRAME_QP, 1, 31, 1, 2);
v4l2_ctrl_new_std_menu(&ctx->ctrls, &coda_ctrl_ops,
V4L2_CID_MPEG_VIDEO_MPEG4_PROFILE,
V4L2_MPEG_VIDEO_MPEG4_PROFILE_SIMPLE, 0x0,
V4L2_MPEG_VIDEO_MPEG4_PROFILE_SIMPLE);
if (ctx->dev->devtype->product == CODA_HX4 ||
ctx->dev->devtype->product == CODA_7541 ||
ctx->dev->devtype->product == CODA_960) {
v4l2_ctrl_new_std_menu(&ctx->ctrls, &coda_ctrl_ops,
V4L2_CID_MPEG_VIDEO_MPEG4_LEVEL,
V4L2_MPEG_VIDEO_MPEG4_LEVEL_5,
~(1 << V4L2_MPEG_VIDEO_MPEG4_LEVEL_5),
V4L2_MPEG_VIDEO_MPEG4_LEVEL_5);
}
v4l2_ctrl_new_std_menu(&ctx->ctrls, &coda_ctrl_ops,
V4L2_CID_MPEG_VIDEO_MULTI_SLICE_MODE,
V4L2_MPEG_VIDEO_MULTI_SICE_MODE_MAX_BYTES, 0x0,
V4L2_MPEG_VIDEO_MULTI_SLICE_MODE_SINGLE);
v4l2_ctrl_new_std(&ctx->ctrls, &coda_ctrl_ops,
V4L2_CID_MPEG_VIDEO_MULTI_SLICE_MAX_MB, 1, 0x3fffffff, 1, 1);
v4l2_ctrl_new_std(&ctx->ctrls, &coda_ctrl_ops,
V4L2_CID_MPEG_VIDEO_MULTI_SLICE_MAX_BYTES, 1, 0x3fffffff, 1,
500);
v4l2_ctrl_new_std_menu(&ctx->ctrls, &coda_ctrl_ops,
V4L2_CID_MPEG_VIDEO_HEADER_MODE,
V4L2_MPEG_VIDEO_HEADER_MODE_JOINED_WITH_1ST_FRAME,
(1 << V4L2_MPEG_VIDEO_HEADER_MODE_SEPARATE),
V4L2_MPEG_VIDEO_HEADER_MODE_JOINED_WITH_1ST_FRAME);
v4l2_ctrl_new_std(&ctx->ctrls, &coda_ctrl_ops,
V4L2_CID_MPEG_VIDEO_CYCLIC_INTRA_REFRESH_MB, 0,
1920 * 1088 / 256, 1, 0);
v4l2_ctrl_new_std(&ctx->ctrls, &coda_ctrl_ops,
V4L2_CID_MPEG_VIDEO_VBV_DELAY, 0, 0x7fff, 1, 0);
/*
* The maximum VBV size value is 0x7fffffff bits,
* one bit less than 262144 KiB
*/
v4l2_ctrl_new_std(&ctx->ctrls, &coda_ctrl_ops,
V4L2_CID_MPEG_VIDEO_VBV_SIZE, 0, 262144, 1, 0);
}
static void coda_jpeg_encode_ctrls(struct coda_ctx *ctx)
{
v4l2_ctrl_new_std(&ctx->ctrls, &coda_ctrl_ops,
V4L2_CID_JPEG_COMPRESSION_QUALITY, 5, 100, 1, 50);
v4l2_ctrl_new_std(&ctx->ctrls, &coda_ctrl_ops,
V4L2_CID_JPEG_RESTART_INTERVAL, 0, 100, 1, 0);
}
static int coda_ctrls_setup(struct coda_ctx *ctx)
{
v4l2_ctrl_handler_init(&ctx->ctrls, 2);
v4l2_ctrl_new_std(&ctx->ctrls, &coda_ctrl_ops,
V4L2_CID_HFLIP, 0, 1, 1, 0);
v4l2_ctrl_new_std(&ctx->ctrls, &coda_ctrl_ops,
V4L2_CID_VFLIP, 0, 1, 1, 0);
if (ctx->inst_type == CODA_INST_ENCODER) {
if (ctx->cvd->dst_formats[0] == V4L2_PIX_FMT_JPEG)
coda_jpeg_encode_ctrls(ctx);
else
coda_encode_ctrls(ctx);
}
if (ctx->ctrls.error) {
v4l2_err(&ctx->dev->v4l2_dev,
"control initialization error (%d)",
ctx->ctrls.error);
return -EINVAL;
}
return v4l2_ctrl_handler_setup(&ctx->ctrls);
}
static int coda_queue_init(struct coda_ctx *ctx, struct vb2_queue *vq)
{
vq->drv_priv = ctx;
vq->ops = &coda_qops;
vq->buf_struct_size = sizeof(struct v4l2_m2m_buffer);
vq->timestamp_flags = V4L2_BUF_FLAG_TIMESTAMP_COPY;
vq->lock = &ctx->dev->dev_mutex;
/* One way to indicate end-of-stream for coda is to set the
* bytesused == 0. However by default videobuf2 handles bytesused
* equal to 0 as a special case and changes its value to the size
* of the buffer. Set the allow_zero_bytesused flag, so
* that videobuf2 will keep the value of bytesused intact.
*/
vq->allow_zero_bytesused = 1;
/*
* We might be fine with no buffers on some of the queues, but that
* would need to be reflected in job_ready(). Currently we expect all
* queues to have at least one buffer queued.
*/
vq->min_buffers_needed = 1;
vq->dev = &ctx->dev->plat_dev->dev;
return vb2_queue_init(vq);
}
int coda_encoder_queue_init(void *priv, struct vb2_queue *src_vq,
struct vb2_queue *dst_vq)
{
int ret;
src_vq->type = V4L2_BUF_TYPE_VIDEO_OUTPUT;
src_vq->io_modes = VB2_DMABUF | VB2_MMAP;
src_vq->mem_ops = &vb2_dma_contig_memops;
ret = coda_queue_init(priv, src_vq);
if (ret)
return ret;
dst_vq->type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
dst_vq->io_modes = VB2_DMABUF | VB2_MMAP;
dst_vq->mem_ops = &vb2_dma_contig_memops;
return coda_queue_init(priv, dst_vq);
}
int coda_decoder_queue_init(void *priv, struct vb2_queue *src_vq,
struct vb2_queue *dst_vq)
{
int ret;
src_vq->type = V4L2_BUF_TYPE_VIDEO_OUTPUT;
src_vq->io_modes = VB2_DMABUF | VB2_MMAP | VB2_USERPTR;
src_vq->mem_ops = &vb2_vmalloc_memops;
ret = coda_queue_init(priv, src_vq);
if (ret)
return ret;
dst_vq->type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
dst_vq->io_modes = VB2_DMABUF | VB2_MMAP;
dst_vq->mem_ops = &vb2_dma_contig_memops;
return coda_queue_init(priv, dst_vq);
}
static int coda_next_free_instance(struct coda_dev *dev)
{
int idx = ffz(dev->instance_mask);
if ((idx < 0) ||
(dev->devtype->product == CODA_DX6 && idx > CODADX6_MAX_INSTANCES))
return -EBUSY;
return idx;
}
/*
* File operations
*/
static int coda_open(struct file *file)
{
struct video_device *vdev = video_devdata(file);
struct coda_dev *dev = video_get_drvdata(vdev);
struct coda_ctx *ctx = NULL;
char *name;
int ret;
int idx;
ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
if (!ctx)
return -ENOMEM;
idx = coda_next_free_instance(dev);
if (idx < 0) {
ret = idx;
goto err_coda_max;
}
set_bit(idx, &dev->instance_mask);
name = kasprintf(GFP_KERNEL, "context%d", idx);
if (!name) {
ret = -ENOMEM;
goto err_coda_name_init;
}
ctx->debugfs_entry = debugfs_create_dir(name, dev->debugfs_root);
kfree(name);
ctx->cvd = to_coda_video_device(vdev);
ctx->inst_type = ctx->cvd->type;
ctx->ops = ctx->cvd->ops;
ctx->use_bit = !ctx->cvd->direct;
init_completion(&ctx->completion);
INIT_WORK(&ctx->pic_run_work, coda_pic_run_work);
if (ctx->ops->seq_end_work)
INIT_WORK(&ctx->seq_end_work, ctx->ops->seq_end_work);
v4l2_fh_init(&ctx->fh, video_devdata(file));
file->private_data = &ctx->fh;
v4l2_fh_add(&ctx->fh);
ctx->dev = dev;
ctx->idx = idx;
switch (dev->devtype->product) {
case CODA_960:
/*
* Enabling the BWB when decoding can hang the firmware with
* certain streams. The issue was tracked as ENGR00293425 by
* Freescale. As a workaround, disable BWB for all decoders.
* The enable_bwb module parameter allows to override this.
*/
if (enable_bwb || ctx->inst_type == CODA_INST_ENCODER)
ctx->frame_mem_ctrl = CODA9_FRAME_ENABLE_BWB;
/* fallthrough */
case CODA_HX4:
case CODA_7541:
ctx->reg_idx = 0;
break;
default:
ctx->reg_idx = idx;
}
if (ctx->dev->vdoa && !disable_vdoa) {
ctx->vdoa = vdoa_context_create(dev->vdoa);
if (!ctx->vdoa)
v4l2_warn(&dev->v4l2_dev,
"Failed to create vdoa context: not using vdoa");
}
ctx->use_vdoa = false;
/* Power up and upload firmware if necessary */
ret = pm_runtime_get_sync(&dev->plat_dev->dev);
if (ret < 0) {
v4l2_err(&dev->v4l2_dev, "failed to power up: %d\n", ret);
goto err_pm_get;
}
ret = clk_prepare_enable(dev->clk_per);
if (ret)
goto err_clk_per;
ret = clk_prepare_enable(dev->clk_ahb);
if (ret)
goto err_clk_ahb;
set_default_params(ctx);
ctx->fh.m2m_ctx = v4l2_m2m_ctx_init(dev->m2m_dev, ctx,
ctx->ops->queue_init);
if (IS_ERR(ctx->fh.m2m_ctx)) {
ret = PTR_ERR(ctx->fh.m2m_ctx);
v4l2_err(&dev->v4l2_dev, "%s return error (%d)\n",
__func__, ret);
goto err_ctx_init;
}
ret = coda_ctrls_setup(ctx);
if (ret) {
v4l2_err(&dev->v4l2_dev, "failed to setup coda controls\n");
goto err_ctrls_setup;
}
ctx->fh.ctrl_handler = &ctx->ctrls;
mutex_init(&ctx->bitstream_mutex);
mutex_init(&ctx->buffer_mutex);
INIT_LIST_HEAD(&ctx->buffer_meta_list);
spin_lock_init(&ctx->buffer_meta_lock);
coda_lock(ctx);
list_add(&ctx->list, &dev->instances);
coda_unlock(ctx);
v4l2_dbg(1, coda_debug, &dev->v4l2_dev, "Created instance %d (%p)\n",
ctx->idx, ctx);
return 0;
err_ctrls_setup:
v4l2_m2m_ctx_release(ctx->fh.m2m_ctx);
err_ctx_init:
clk_disable_unprepare(dev->clk_ahb);
err_clk_ahb:
clk_disable_unprepare(dev->clk_per);
err_clk_per:
pm_runtime_put_sync(&dev->plat_dev->dev);
err_pm_get:
v4l2_fh_del(&ctx->fh);
v4l2_fh_exit(&ctx->fh);
clear_bit(ctx->idx, &dev->instance_mask);
err_coda_name_init:
err_coda_max:
kfree(ctx);
return ret;
}
static int coda_release(struct file *file)
{
struct coda_dev *dev = video_drvdata(file);
struct coda_ctx *ctx = fh_to_ctx(file->private_data);
v4l2_dbg(1, coda_debug, &dev->v4l2_dev, "Releasing instance %p\n",
ctx);
if (ctx->inst_type == CODA_INST_DECODER && ctx->use_bit)
coda_bit_stream_end_flag(ctx);
/* If this instance is running, call .job_abort and wait for it to end */
v4l2_m2m_ctx_release(ctx->fh.m2m_ctx);
if (ctx->vdoa)
vdoa_context_destroy(ctx->vdoa);
/* In case the instance was not running, we still need to call SEQ_END */
if (ctx->ops->seq_end_work) {
queue_work(dev->workqueue, &ctx->seq_end_work);
flush_work(&ctx->seq_end_work);
}
coda_lock(ctx);
list_del(&ctx->list);
coda_unlock(ctx);
if (ctx->dev->devtype->product == CODA_DX6)
coda_free_aux_buf(dev, &ctx->workbuf);
v4l2_ctrl_handler_free(&ctx->ctrls);
clk_disable_unprepare(dev->clk_ahb);
clk_disable_unprepare(dev->clk_per);
pm_runtime_put_sync(&dev->plat_dev->dev);
v4l2_fh_del(&ctx->fh);
v4l2_fh_exit(&ctx->fh);
clear_bit(ctx->idx, &dev->instance_mask);
if (ctx->ops->release)
ctx->ops->release(ctx);
debugfs_remove_recursive(ctx->debugfs_entry);
kfree(ctx);
return 0;
}
static const struct v4l2_file_operations coda_fops = {
.owner = THIS_MODULE,
.open = coda_open,
.release = coda_release,
.poll = v4l2_m2m_fop_poll,
.unlocked_ioctl = video_ioctl2,
.mmap = v4l2_m2m_fop_mmap,
};
static int coda_hw_init(struct coda_dev *dev)
{
u32 data;
u16 *p;
int i, ret;
ret = clk_prepare_enable(dev->clk_per);
if (ret)
goto err_clk_per;
ret = clk_prepare_enable(dev->clk_ahb);
if (ret)
goto err_clk_ahb;
reset_control_reset(dev->rstc);
/*
* Copy the first CODA_ISRAM_SIZE in the internal SRAM.
* The 16-bit chars in the code buffer are in memory access
* order, re-sort them to CODA order for register download.
* Data in this SRAM survives a reboot.
*/
p = (u16 *)dev->codebuf.vaddr;
if (dev->devtype->product == CODA_DX6) {
for (i = 0; i < (CODA_ISRAM_SIZE / 2); i++) {
data = CODA_DOWN_ADDRESS_SET(i) |
CODA_DOWN_DATA_SET(p[i ^ 1]);
coda_write(dev, data, CODA_REG_BIT_CODE_DOWN);
}
} else {
for (i = 0; i < (CODA_ISRAM_SIZE / 2); i++) {
data = CODA_DOWN_ADDRESS_SET(i) |
CODA_DOWN_DATA_SET(p[round_down(i, 4) +
3 - (i % 4)]);
coda_write(dev, data, CODA_REG_BIT_CODE_DOWN);
}
}
/* Clear registers */
for (i = 0; i < 64; i++)
coda_write(dev, 0, CODA_REG_BIT_CODE_BUF_ADDR + i * 4);
/* Tell the BIT where to find everything it needs */
if (dev->devtype->product == CODA_960 ||
dev->devtype->product == CODA_7541 ||
dev->devtype->product == CODA_HX4) {
coda_write(dev, dev->tempbuf.paddr,
CODA_REG_BIT_TEMP_BUF_ADDR);
coda_write(dev, 0, CODA_REG_BIT_BIT_STREAM_PARAM);
} else {
coda_write(dev, dev->workbuf.paddr,
CODA_REG_BIT_WORK_BUF_ADDR);
}
coda_write(dev, dev->codebuf.paddr,
CODA_REG_BIT_CODE_BUF_ADDR);
coda_write(dev, 0, CODA_REG_BIT_CODE_RUN);
/* Set default values */
switch (dev->devtype->product) {
case CODA_DX6:
coda_write(dev, CODADX6_STREAM_BUF_PIC_FLUSH,
CODA_REG_BIT_STREAM_CTRL);
break;
default:
coda_write(dev, CODA7_STREAM_BUF_PIC_FLUSH,
CODA_REG_BIT_STREAM_CTRL);
}
if (dev->devtype->product == CODA_960)
coda_write(dev, CODA9_FRAME_ENABLE_BWB,
CODA_REG_BIT_FRAME_MEM_CTRL);
else
coda_write(dev, 0, CODA_REG_BIT_FRAME_MEM_CTRL);
if (dev->devtype->product != CODA_DX6)
coda_write(dev, 0, CODA7_REG_BIT_AXI_SRAM_USE);
coda_write(dev, CODA_INT_INTERRUPT_ENABLE,
CODA_REG_BIT_INT_ENABLE);
/* Reset VPU and start processor */
data = coda_read(dev, CODA_REG_BIT_CODE_RESET);
data |= CODA_REG_RESET_ENABLE;
coda_write(dev, data, CODA_REG_BIT_CODE_RESET);
udelay(10);
data &= ~CODA_REG_RESET_ENABLE;
coda_write(dev, data, CODA_REG_BIT_CODE_RESET);
coda_write(dev, CODA_REG_RUN_ENABLE, CODA_REG_BIT_CODE_RUN);
clk_disable_unprepare(dev->clk_ahb);
clk_disable_unprepare(dev->clk_per);
return 0;
err_clk_ahb:
clk_disable_unprepare(dev->clk_per);
err_clk_per:
return ret;
}
static int coda_register_device(struct coda_dev *dev, int i)
{
struct video_device *vfd = &dev->vfd[i];
if (i >= dev->devtype->num_vdevs)
return -EINVAL;
strlcpy(vfd->name, dev->devtype->vdevs[i]->name, sizeof(vfd->name));
vfd->fops = &coda_fops;
vfd->ioctl_ops = &coda_ioctl_ops;
vfd->release = video_device_release_empty,
vfd->lock = &dev->dev_mutex;
vfd->v4l2_dev = &dev->v4l2_dev;
vfd->vfl_dir = VFL_DIR_M2M;
video_set_drvdata(vfd, dev);
/* Not applicable, use the selection API instead */
v4l2_disable_ioctl(vfd, VIDIOC_CROPCAP);
v4l2_disable_ioctl(vfd, VIDIOC_G_CROP);
v4l2_disable_ioctl(vfd, VIDIOC_S_CROP);
return video_register_device(vfd, VFL_TYPE_GRABBER, 0);
}
static void coda_copy_firmware(struct coda_dev *dev, const u8 * const buf,
size_t size)
{
u32 *src = (u32 *)buf;
/* Check if the firmware has a 16-byte Freescale header, skip it */
if (buf[0] == 'M' && buf[1] == 'X')
src += 4;
/*
* Check whether the firmware is in native order or pre-reordered for
* memory access. The first instruction opcode always is 0xe40e.
*/
if (__le16_to_cpup((__le16 *)src) == 0xe40e) {
u32 *dst = dev->codebuf.vaddr;
int i;
/* Firmware in native order, reorder while copying */
if (dev->devtype->product == CODA_DX6) {
for (i = 0; i < (size - 16) / 4; i++)
dst[i] = (src[i] << 16) | (src[i] >> 16);
} else {
for (i = 0; i < (size - 16) / 4; i += 2) {
dst[i] = (src[i + 1] << 16) | (src[i + 1] >> 16);
dst[i + 1] = (src[i] << 16) | (src[i] >> 16);
}
}
} else {
/* Copy the already reordered firmware image */
memcpy(dev->codebuf.vaddr, src, size);
}
}
static void coda_fw_callback(const struct firmware *fw, void *context);
static int coda_firmware_request(struct coda_dev *dev)
{
char *fw;
if (dev->firmware >= ARRAY_SIZE(dev->devtype->firmware))
return -EINVAL;
fw = dev->devtype->firmware[dev->firmware];
dev_dbg(&dev->plat_dev->dev, "requesting firmware '%s' for %s\n", fw,
coda_product_name(dev->devtype->product));
return request_firmware_nowait(THIS_MODULE, true, fw,
&dev->plat_dev->dev, GFP_KERNEL, dev,
coda_fw_callback);
}
static void coda_fw_callback(const struct firmware *fw, void *context)
{
struct coda_dev *dev = context;
struct platform_device *pdev = dev->plat_dev;
int i, ret;
if (!fw) {
dev->firmware++;
ret = coda_firmware_request(dev);
if (ret < 0) {
v4l2_err(&dev->v4l2_dev, "firmware request failed\n");
goto put_pm;
}
return;
}
if (dev->firmware > 0) {
/*
* Since we can't suppress warnings for failed asynchronous
* firmware requests, report that the fallback firmware was
* found.
*/
dev_info(&pdev->dev, "Using fallback firmware %s\n",
dev->devtype->firmware[dev->firmware]);
}
/* allocate auxiliary per-device code buffer for the BIT processor */
ret = coda_alloc_aux_buf(dev, &dev->codebuf, fw->size, "codebuf",
dev->debugfs_root);
if (ret < 0)
goto put_pm;
coda_copy_firmware(dev, fw->data, fw->size);
release_firmware(fw);
ret = coda_hw_init(dev);
if (ret < 0) {
v4l2_err(&dev->v4l2_dev, "HW initialization failed\n");
goto put_pm;
}
ret = coda_check_firmware(dev);
if (ret < 0)
goto put_pm;
dev->m2m_dev = v4l2_m2m_init(&coda_m2m_ops);
if (IS_ERR(dev->m2m_dev)) {
v4l2_err(&dev->v4l2_dev, "Failed to init mem2mem device\n");
goto put_pm;
}
for (i = 0; i < dev->devtype->num_vdevs; i++) {
ret = coda_register_device(dev, i);
if (ret) {
v4l2_err(&dev->v4l2_dev,
"Failed to register %s video device: %d\n",
dev->devtype->vdevs[i]->name, ret);
goto rel_vfd;
}
}
v4l2_info(&dev->v4l2_dev, "codec registered as /dev/video[%d-%d]\n",
dev->vfd[0].num, dev->vfd[i - 1].num);
pm_runtime_put_sync(&pdev->dev);
return;
rel_vfd:
while (--i >= 0)
video_unregister_device(&dev->vfd[i]);
v4l2_m2m_release(dev->m2m_dev);
put_pm:
pm_runtime_put_sync(&pdev->dev);
}
enum coda_platform {
CODA_IMX27,
CODA_IMX51,
CODA_IMX53,
CODA_IMX6Q,
CODA_IMX6DL,
};
static const struct coda_devtype coda_devdata[] = {
[CODA_IMX27] = {
.firmware = {
"vpu_fw_imx27_TO2.bin",
"vpu/vpu_fw_imx27_TO2.bin",
"v4l-codadx6-imx27.bin"
},
.product = CODA_DX6,
.codecs = codadx6_codecs,
.num_codecs = ARRAY_SIZE(codadx6_codecs),
.vdevs = codadx6_video_devices,
.num_vdevs = ARRAY_SIZE(codadx6_video_devices),
.workbuf_size = 288 * 1024 + FMO_SLICE_SAVE_BUF_SIZE * 8 * 1024,
.iram_size = 0xb000,
},
[CODA_IMX51] = {
.firmware = {
"vpu_fw_imx51.bin",
"vpu/vpu_fw_imx51.bin",
"v4l-codahx4-imx51.bin"
},
.product = CODA_HX4,
.codecs = codahx4_codecs,
.num_codecs = ARRAY_SIZE(codahx4_codecs),
.vdevs = codahx4_video_devices,
.num_vdevs = ARRAY_SIZE(codahx4_video_devices),
.workbuf_size = 128 * 1024,
.tempbuf_size = 304 * 1024,
.iram_size = 0x14000,
},
[CODA_IMX53] = {
.firmware = {
"vpu_fw_imx53.bin",
"vpu/vpu_fw_imx53.bin",
"v4l-coda7541-imx53.bin"
},
.product = CODA_7541,
.codecs = coda7_codecs,
.num_codecs = ARRAY_SIZE(coda7_codecs),
.vdevs = coda7_video_devices,
.num_vdevs = ARRAY_SIZE(coda7_video_devices),
.workbuf_size = 128 * 1024,
.tempbuf_size = 304 * 1024,
.iram_size = 0x14000,
},
[CODA_IMX6Q] = {
.firmware = {
"vpu_fw_imx6q.bin",
"vpu/vpu_fw_imx6q.bin",
"v4l-coda960-imx6q.bin"
},
.product = CODA_960,
.codecs = coda9_codecs,
.num_codecs = ARRAY_SIZE(coda9_codecs),
.vdevs = coda9_video_devices,
.num_vdevs = ARRAY_SIZE(coda9_video_devices),
.workbuf_size = 80 * 1024,
.tempbuf_size = 204 * 1024,
.iram_size = 0x21000,
},
[CODA_IMX6DL] = {
.firmware = {
"vpu_fw_imx6d.bin",
"vpu/vpu_fw_imx6d.bin",
"v4l-coda960-imx6dl.bin"
},
.product = CODA_960,
.codecs = coda9_codecs,
.num_codecs = ARRAY_SIZE(coda9_codecs),
.vdevs = coda9_video_devices,
.num_vdevs = ARRAY_SIZE(coda9_video_devices),
.workbuf_size = 80 * 1024,
.tempbuf_size = 204 * 1024,
.iram_size = 0x1f000, /* leave 4k for suspend code */
},
};
static const struct platform_device_id coda_platform_ids[] = {
{ .name = "coda-imx27", .driver_data = CODA_IMX27 },
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(platform, coda_platform_ids);
#ifdef CONFIG_OF
static const struct of_device_id coda_dt_ids[] = {
{ .compatible = "fsl,imx27-vpu", .data = &coda_devdata[CODA_IMX27] },
{ .compatible = "fsl,imx51-vpu", .data = &coda_devdata[CODA_IMX51] },
{ .compatible = "fsl,imx53-vpu", .data = &coda_devdata[CODA_IMX53] },
{ .compatible = "fsl,imx6q-vpu", .data = &coda_devdata[CODA_IMX6Q] },
{ .compatible = "fsl,imx6dl-vpu", .data = &coda_devdata[CODA_IMX6DL] },
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, coda_dt_ids);
#endif
static int coda_probe(struct platform_device *pdev)
{
const struct of_device_id *of_id =
of_match_device(of_match_ptr(coda_dt_ids), &pdev->dev);
const struct platform_device_id *pdev_id;
struct coda_platform_data *pdata = pdev->dev.platform_data;
struct device_node *np = pdev->dev.of_node;
struct gen_pool *pool;
struct coda_dev *dev;
struct resource *res;
int ret, irq;
dev = devm_kzalloc(&pdev->dev, sizeof(*dev), GFP_KERNEL);
if (!dev)
return -ENOMEM;
pdev_id = of_id ? of_id->data : platform_get_device_id(pdev);
if (of_id)
dev->devtype = of_id->data;
else if (pdev_id)
dev->devtype = &coda_devdata[pdev_id->driver_data];
else
return -EINVAL;
spin_lock_init(&dev->irqlock);
INIT_LIST_HEAD(&dev->instances);
dev->plat_dev = pdev;
dev->clk_per = devm_clk_get(&pdev->dev, "per");
if (IS_ERR(dev->clk_per)) {
dev_err(&pdev->dev, "Could not get per clock\n");
return PTR_ERR(dev->clk_per);
}
dev->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
if (IS_ERR(dev->clk_ahb)) {
dev_err(&pdev->dev, "Could not get ahb clock\n");
return PTR_ERR(dev->clk_ahb);
}
/* Get memory for physical registers */
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
dev->regs_base = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(dev->regs_base))
return PTR_ERR(dev->regs_base);
/* IRQ */
irq = platform_get_irq_byname(pdev, "bit");
if (irq < 0)
irq = platform_get_irq(pdev, 0);
if (irq < 0) {
dev_err(&pdev->dev, "failed to get irq resource\n");
return irq;
}
ret = devm_request_threaded_irq(&pdev->dev, irq, NULL, coda_irq_handler,
IRQF_ONESHOT, dev_name(&pdev->dev), dev);
if (ret < 0) {
dev_err(&pdev->dev, "failed to request irq: %d\n", ret);
return ret;
}
dev->rstc = devm_reset_control_get_optional_exclusive(&pdev->dev,
NULL);
if (IS_ERR(dev->rstc)) {
ret = PTR_ERR(dev->rstc);
dev_err(&pdev->dev, "failed get reset control: %d\n", ret);
return ret;
}
/* Get IRAM pool from device tree or platform data */
pool = of_gen_pool_get(np, "iram", 0);
if (!pool && pdata)
pool = gen_pool_get(pdata->iram_dev, NULL);
if (!pool) {
dev_err(&pdev->dev, "iram pool not available\n");
return -ENOMEM;
}
dev->iram_pool = pool;
/* Get vdoa_data if supported by the platform */
dev->vdoa = coda_get_vdoa_data();
if (PTR_ERR(dev->vdoa) == -EPROBE_DEFER)
return -EPROBE_DEFER;
ret = v4l2_device_register(&pdev->dev, &dev->v4l2_dev);
if (ret)
return ret;
mutex_init(&dev->dev_mutex);
mutex_init(&dev->coda_mutex);
dev->debugfs_root = debugfs_create_dir("coda", NULL);
if (!dev->debugfs_root)
dev_warn(&pdev->dev, "failed to create debugfs root\n");
/* allocate auxiliary per-device buffers for the BIT processor */
if (dev->devtype->product == CODA_DX6) {
ret = coda_alloc_aux_buf(dev, &dev->workbuf,
dev->devtype->workbuf_size, "workbuf",
dev->debugfs_root);
if (ret < 0)
goto err_v4l2_register;
}
if (dev->devtype->tempbuf_size) {
ret = coda_alloc_aux_buf(dev, &dev->tempbuf,
dev->devtype->tempbuf_size, "tempbuf",
dev->debugfs_root);
if (ret < 0)
goto err_v4l2_register;
}
dev->iram.size = dev->devtype->iram_size;
dev->iram.vaddr = gen_pool_dma_alloc(dev->iram_pool, dev->iram.size,
&dev->iram.paddr);
if (!dev->iram.vaddr) {
dev_warn(&pdev->dev, "unable to alloc iram\n");
} else {
memset(dev->iram.vaddr, 0, dev->iram.size);
dev->iram.blob.data = dev->iram.vaddr;
dev->iram.blob.size = dev->iram.size;
dev->iram.dentry = debugfs_create_blob("iram", 0644,
dev->debugfs_root,
&dev->iram.blob);
}
dev->workqueue = alloc_workqueue("coda", WQ_UNBOUND | WQ_MEM_RECLAIM, 1);
if (!dev->workqueue) {
dev_err(&pdev->dev, "unable to alloc workqueue\n");
ret = -ENOMEM;
goto err_v4l2_register;
}
platform_set_drvdata(pdev, dev);
/*
* Start activated so we can directly call coda_hw_init in
* coda_fw_callback regardless of whether CONFIG_PM is
* enabled or whether the device is associated with a PM domain.
*/
pm_runtime_get_noresume(&pdev->dev);
pm_runtime_set_active(&pdev->dev);
pm_runtime_enable(&pdev->dev);
ret = coda_firmware_request(dev);
if (ret)
goto err_alloc_workqueue;
return 0;
err_alloc_workqueue:
destroy_workqueue(dev->workqueue);
err_v4l2_register:
v4l2_device_unregister(&dev->v4l2_dev);
return ret;
}
static int coda_remove(struct platform_device *pdev)
{
struct coda_dev *dev = platform_get_drvdata(pdev);
int i;
for (i = 0; i < ARRAY_SIZE(dev->vfd); i++) {
if (video_get_drvdata(&dev->vfd[i]))
video_unregister_device(&dev->vfd[i]);
}
if (dev->m2m_dev)
v4l2_m2m_release(dev->m2m_dev);
pm_runtime_disable(&pdev->dev);
v4l2_device_unregister(&dev->v4l2_dev);
destroy_workqueue(dev->workqueue);
if (dev->iram.vaddr)
gen_pool_free(dev->iram_pool, (unsigned long)dev->iram.vaddr,
dev->iram.size);
coda_free_aux_buf(dev, &dev->codebuf);
coda_free_aux_buf(dev, &dev->tempbuf);
coda_free_aux_buf(dev, &dev->workbuf);
debugfs_remove_recursive(dev->debugfs_root);
return 0;
}
#ifdef CONFIG_PM
static int coda_runtime_resume(struct device *dev)
{
struct coda_dev *cdev = dev_get_drvdata(dev);
int ret = 0;
if (dev->pm_domain && cdev->codebuf.vaddr) {
ret = coda_hw_init(cdev);
if (ret)
v4l2_err(&cdev->v4l2_dev, "HW initialization failed\n");
}
return ret;
}
#endif
static const struct dev_pm_ops coda_pm_ops = {
SET_RUNTIME_PM_OPS(NULL, coda_runtime_resume, NULL)
};
static struct platform_driver coda_driver = {
.probe = coda_probe,
.remove = coda_remove,
.driver = {
.name = CODA_NAME,
.of_match_table = of_match_ptr(coda_dt_ids),
.pm = &coda_pm_ops,
},
.id_table = coda_platform_ids,
};
module_platform_driver(coda_driver);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Javier Martin <javier.martin@vista-silicon.com>");
MODULE_DESCRIPTION("Coda multi-standard codec V4L2 driver");