linux/drivers/s390/cio/airq.c
Martin Schwidefsky 1f44a22577 s390: convert interrupt handling to use generic hardirq
With the introduction of PCI it became apparent that s390 should
convert to generic hardirqs as too many drivers do not have the
correct dependency for GENERIC_HARDIRQS. On the architecture
level s390 does not have irq lines. It has external interrupts,
I/O interrupts and adapter interrupts. This patch hard-codes all
external interrupts as irq #1, all I/O interrupts as irq #2 and
all adapter interrupts as irq #3. The additional information from
the lowcore associated with the interrupt is stored in the
pt_regs of the interrupt frame, where the interrupt handler can
pick it up. For PCI/MSI interrupts the adapter interrupt handler
scans the relevant bit fields and calls generic_handle_irq with
the virtual irq number for the MSI interrupt.

Reviewed-by: Sebastian Ott <sebott@linux.vnet.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2013-08-22 12:20:04 +02:00

266 lines
6.4 KiB
C

/*
* Support for adapter interruptions
*
* Copyright IBM Corp. 1999, 2007
* Author(s): Ingo Adlung <adlung@de.ibm.com>
* Cornelia Huck <cornelia.huck@de.ibm.com>
* Arnd Bergmann <arndb@de.ibm.com>
* Peter Oberparleiter <peter.oberparleiter@de.ibm.com>
*/
#include <linux/init.h>
#include <linux/irq.h>
#include <linux/kernel_stat.h>
#include <linux/module.h>
#include <linux/mutex.h>
#include <linux/rculist.h>
#include <linux/slab.h>
#include <asm/airq.h>
#include <asm/isc.h>
#include "cio.h"
#include "cio_debug.h"
#include "ioasm.h"
static DEFINE_SPINLOCK(airq_lists_lock);
static struct hlist_head airq_lists[MAX_ISC+1];
/**
* register_adapter_interrupt() - register adapter interrupt handler
* @airq: pointer to adapter interrupt descriptor
*
* Returns 0 on success, or -EINVAL.
*/
int register_adapter_interrupt(struct airq_struct *airq)
{
char dbf_txt[32];
if (!airq->handler || airq->isc > MAX_ISC)
return -EINVAL;
if (!airq->lsi_ptr) {
airq->lsi_ptr = kzalloc(1, GFP_KERNEL);
if (!airq->lsi_ptr)
return -ENOMEM;
airq->flags |= AIRQ_PTR_ALLOCATED;
}
if (!airq->lsi_mask)
airq->lsi_mask = 0xff;
snprintf(dbf_txt, sizeof(dbf_txt), "rairq:%p", airq);
CIO_TRACE_EVENT(4, dbf_txt);
isc_register(airq->isc);
spin_lock(&airq_lists_lock);
hlist_add_head_rcu(&airq->list, &airq_lists[airq->isc]);
spin_unlock(&airq_lists_lock);
return 0;
}
EXPORT_SYMBOL(register_adapter_interrupt);
/**
* unregister_adapter_interrupt - unregister adapter interrupt handler
* @airq: pointer to adapter interrupt descriptor
*/
void unregister_adapter_interrupt(struct airq_struct *airq)
{
char dbf_txt[32];
if (hlist_unhashed(&airq->list))
return;
snprintf(dbf_txt, sizeof(dbf_txt), "urairq:%p", airq);
CIO_TRACE_EVENT(4, dbf_txt);
spin_lock(&airq_lists_lock);
hlist_del_rcu(&airq->list);
spin_unlock(&airq_lists_lock);
synchronize_rcu();
isc_unregister(airq->isc);
if (airq->flags & AIRQ_PTR_ALLOCATED) {
kfree(airq->lsi_ptr);
airq->lsi_ptr = NULL;
airq->flags &= ~AIRQ_PTR_ALLOCATED;
}
}
EXPORT_SYMBOL(unregister_adapter_interrupt);
static irqreturn_t do_airq_interrupt(int irq, void *dummy)
{
struct tpi_info *tpi_info;
struct airq_struct *airq;
struct hlist_head *head;
__this_cpu_write(s390_idle.nohz_delay, 1);
tpi_info = (struct tpi_info *) &get_irq_regs()->int_code;
head = &airq_lists[tpi_info->isc];
rcu_read_lock();
hlist_for_each_entry_rcu(airq, head, list)
if ((*airq->lsi_ptr & airq->lsi_mask) != 0)
airq->handler(airq);
rcu_read_unlock();
return IRQ_HANDLED;
}
static struct irqaction airq_interrupt = {
.name = "AIO",
.handler = do_airq_interrupt,
};
void __init init_airq_interrupts(void)
{
irq_set_chip_and_handler(THIN_INTERRUPT,
&dummy_irq_chip, handle_percpu_irq);
setup_irq(THIN_INTERRUPT, &airq_interrupt);
}
/**
* airq_iv_create - create an interrupt vector
* @bits: number of bits in the interrupt vector
* @flags: allocation flags
*
* Returns a pointer to an interrupt vector structure
*/
struct airq_iv *airq_iv_create(unsigned long bits, unsigned long flags)
{
struct airq_iv *iv;
unsigned long size;
iv = kzalloc(sizeof(*iv), GFP_KERNEL);
if (!iv)
goto out;
iv->bits = bits;
size = BITS_TO_LONGS(bits) * sizeof(unsigned long);
iv->vector = kzalloc(size, GFP_KERNEL);
if (!iv->vector)
goto out_free;
if (flags & AIRQ_IV_ALLOC) {
iv->avail = kmalloc(size, GFP_KERNEL);
if (!iv->avail)
goto out_free;
memset(iv->avail, 0xff, size);
iv->end = 0;
} else
iv->end = bits;
if (flags & AIRQ_IV_BITLOCK) {
iv->bitlock = kzalloc(size, GFP_KERNEL);
if (!iv->bitlock)
goto out_free;
}
if (flags & AIRQ_IV_PTR) {
size = bits * sizeof(unsigned long);
iv->ptr = kzalloc(size, GFP_KERNEL);
if (!iv->ptr)
goto out_free;
}
if (flags & AIRQ_IV_DATA) {
size = bits * sizeof(unsigned int);
iv->data = kzalloc(size, GFP_KERNEL);
if (!iv->data)
goto out_free;
}
spin_lock_init(&iv->lock);
return iv;
out_free:
kfree(iv->ptr);
kfree(iv->bitlock);
kfree(iv->avail);
kfree(iv->vector);
kfree(iv);
out:
return NULL;
}
EXPORT_SYMBOL(airq_iv_create);
/**
* airq_iv_release - release an interrupt vector
* @iv: pointer to interrupt vector structure
*/
void airq_iv_release(struct airq_iv *iv)
{
kfree(iv->data);
kfree(iv->ptr);
kfree(iv->bitlock);
kfree(iv->vector);
kfree(iv->avail);
kfree(iv);
}
EXPORT_SYMBOL(airq_iv_release);
/**
* airq_iv_alloc_bit - allocate an irq bit from an interrupt vector
* @iv: pointer to an interrupt vector structure
*
* Returns the bit number of the allocated irq, or -1UL if no bit
* is available or the AIRQ_IV_ALLOC flag has not been specified
*/
unsigned long airq_iv_alloc_bit(struct airq_iv *iv)
{
const unsigned long be_to_le = BITS_PER_LONG - 1;
unsigned long bit;
if (!iv->avail)
return -1UL;
spin_lock(&iv->lock);
bit = find_first_bit_left(iv->avail, iv->bits);
if (bit < iv->bits) {
clear_bit(bit ^ be_to_le, iv->avail);
if (bit >= iv->end)
iv->end = bit + 1;
} else
bit = -1UL;
spin_unlock(&iv->lock);
return bit;
}
EXPORT_SYMBOL(airq_iv_alloc_bit);
/**
* airq_iv_free_bit - free an irq bit of an interrupt vector
* @iv: pointer to interrupt vector structure
* @bit: number of the irq bit to free
*/
void airq_iv_free_bit(struct airq_iv *iv, unsigned long bit)
{
const unsigned long be_to_le = BITS_PER_LONG - 1;
if (!iv->avail)
return;
spin_lock(&iv->lock);
/* Clear (possibly left over) interrupt bit */
clear_bit(bit ^ be_to_le, iv->vector);
/* Make the bit position available again */
set_bit(bit ^ be_to_le, iv->avail);
if (bit == iv->end - 1) {
/* Find new end of bit-field */
while (--iv->end > 0)
if (!test_bit((iv->end - 1) ^ be_to_le, iv->avail))
break;
}
spin_unlock(&iv->lock);
}
EXPORT_SYMBOL(airq_iv_free_bit);
/**
* airq_iv_scan - scan interrupt vector for non-zero bits
* @iv: pointer to interrupt vector structure
* @start: bit number to start the search
* @end: bit number to end the search
*
* Returns the bit number of the next non-zero interrupt bit, or
* -1UL if the scan completed without finding any more any non-zero bits.
*/
unsigned long airq_iv_scan(struct airq_iv *iv, unsigned long start,
unsigned long end)
{
const unsigned long be_to_le = BITS_PER_LONG - 1;
unsigned long bit;
/* Find non-zero bit starting from 'ivs->next'. */
bit = find_next_bit_left(iv->vector, end, start);
if (bit >= end)
return -1UL;
/* Clear interrupt bit (find left uses big-endian bit numbers) */
clear_bit(bit ^ be_to_le, iv->vector);
return bit;
}
EXPORT_SYMBOL(airq_iv_scan);