forked from Minki/linux
d71b5564c0
This patch introduces a new inline function, cur_cp_version, to reduce redundant codes. Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
845 lines
21 KiB
C
845 lines
21 KiB
C
/*
|
|
* fs/f2fs/checkpoint.c
|
|
*
|
|
* Copyright (c) 2012 Samsung Electronics Co., Ltd.
|
|
* http://www.samsung.com/
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License version 2 as
|
|
* published by the Free Software Foundation.
|
|
*/
|
|
#include <linux/fs.h>
|
|
#include <linux/bio.h>
|
|
#include <linux/mpage.h>
|
|
#include <linux/writeback.h>
|
|
#include <linux/blkdev.h>
|
|
#include <linux/f2fs_fs.h>
|
|
#include <linux/pagevec.h>
|
|
#include <linux/swap.h>
|
|
|
|
#include "f2fs.h"
|
|
#include "node.h"
|
|
#include "segment.h"
|
|
#include <trace/events/f2fs.h>
|
|
|
|
static struct kmem_cache *orphan_entry_slab;
|
|
static struct kmem_cache *inode_entry_slab;
|
|
|
|
/*
|
|
* We guarantee no failure on the returned page.
|
|
*/
|
|
struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
|
|
{
|
|
struct address_space *mapping = sbi->meta_inode->i_mapping;
|
|
struct page *page = NULL;
|
|
repeat:
|
|
page = grab_cache_page(mapping, index);
|
|
if (!page) {
|
|
cond_resched();
|
|
goto repeat;
|
|
}
|
|
|
|
/* We wait writeback only inside grab_meta_page() */
|
|
wait_on_page_writeback(page);
|
|
SetPageUptodate(page);
|
|
return page;
|
|
}
|
|
|
|
/*
|
|
* We guarantee no failure on the returned page.
|
|
*/
|
|
struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
|
|
{
|
|
struct address_space *mapping = sbi->meta_inode->i_mapping;
|
|
struct page *page;
|
|
repeat:
|
|
page = grab_cache_page(mapping, index);
|
|
if (!page) {
|
|
cond_resched();
|
|
goto repeat;
|
|
}
|
|
if (PageUptodate(page))
|
|
goto out;
|
|
|
|
if (f2fs_readpage(sbi, page, index, READ_SYNC))
|
|
goto repeat;
|
|
|
|
lock_page(page);
|
|
if (page->mapping != mapping) {
|
|
f2fs_put_page(page, 1);
|
|
goto repeat;
|
|
}
|
|
out:
|
|
mark_page_accessed(page);
|
|
return page;
|
|
}
|
|
|
|
static int f2fs_write_meta_page(struct page *page,
|
|
struct writeback_control *wbc)
|
|
{
|
|
struct inode *inode = page->mapping->host;
|
|
struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
|
|
|
|
/* Should not write any meta pages, if any IO error was occurred */
|
|
if (wbc->for_reclaim ||
|
|
is_set_ckpt_flags(F2FS_CKPT(sbi), CP_ERROR_FLAG)) {
|
|
dec_page_count(sbi, F2FS_DIRTY_META);
|
|
wbc->pages_skipped++;
|
|
set_page_dirty(page);
|
|
return AOP_WRITEPAGE_ACTIVATE;
|
|
}
|
|
|
|
wait_on_page_writeback(page);
|
|
|
|
write_meta_page(sbi, page);
|
|
dec_page_count(sbi, F2FS_DIRTY_META);
|
|
unlock_page(page);
|
|
return 0;
|
|
}
|
|
|
|
static int f2fs_write_meta_pages(struct address_space *mapping,
|
|
struct writeback_control *wbc)
|
|
{
|
|
struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
|
|
struct block_device *bdev = sbi->sb->s_bdev;
|
|
long written;
|
|
|
|
if (wbc->for_kupdate)
|
|
return 0;
|
|
|
|
if (get_pages(sbi, F2FS_DIRTY_META) == 0)
|
|
return 0;
|
|
|
|
/* if mounting is failed, skip writing node pages */
|
|
mutex_lock(&sbi->cp_mutex);
|
|
written = sync_meta_pages(sbi, META, bio_get_nr_vecs(bdev));
|
|
mutex_unlock(&sbi->cp_mutex);
|
|
wbc->nr_to_write -= written;
|
|
return 0;
|
|
}
|
|
|
|
long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
|
|
long nr_to_write)
|
|
{
|
|
struct address_space *mapping = sbi->meta_inode->i_mapping;
|
|
pgoff_t index = 0, end = LONG_MAX;
|
|
struct pagevec pvec;
|
|
long nwritten = 0;
|
|
struct writeback_control wbc = {
|
|
.for_reclaim = 0,
|
|
};
|
|
|
|
pagevec_init(&pvec, 0);
|
|
|
|
while (index <= end) {
|
|
int i, nr_pages;
|
|
nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
|
|
PAGECACHE_TAG_DIRTY,
|
|
min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
|
|
if (nr_pages == 0)
|
|
break;
|
|
|
|
for (i = 0; i < nr_pages; i++) {
|
|
struct page *page = pvec.pages[i];
|
|
lock_page(page);
|
|
BUG_ON(page->mapping != mapping);
|
|
BUG_ON(!PageDirty(page));
|
|
clear_page_dirty_for_io(page);
|
|
if (f2fs_write_meta_page(page, &wbc)) {
|
|
unlock_page(page);
|
|
break;
|
|
}
|
|
if (nwritten++ >= nr_to_write)
|
|
break;
|
|
}
|
|
pagevec_release(&pvec);
|
|
cond_resched();
|
|
}
|
|
|
|
if (nwritten)
|
|
f2fs_submit_bio(sbi, type, nr_to_write == LONG_MAX);
|
|
|
|
return nwritten;
|
|
}
|
|
|
|
static int f2fs_set_meta_page_dirty(struct page *page)
|
|
{
|
|
struct address_space *mapping = page->mapping;
|
|
struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
|
|
|
|
SetPageUptodate(page);
|
|
if (!PageDirty(page)) {
|
|
__set_page_dirty_nobuffers(page);
|
|
inc_page_count(sbi, F2FS_DIRTY_META);
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
const struct address_space_operations f2fs_meta_aops = {
|
|
.writepage = f2fs_write_meta_page,
|
|
.writepages = f2fs_write_meta_pages,
|
|
.set_page_dirty = f2fs_set_meta_page_dirty,
|
|
};
|
|
|
|
int acquire_orphan_inode(struct f2fs_sb_info *sbi)
|
|
{
|
|
unsigned int max_orphans;
|
|
int err = 0;
|
|
|
|
/*
|
|
* considering 512 blocks in a segment 5 blocks are needed for cp
|
|
* and log segment summaries. Remaining blocks are used to keep
|
|
* orphan entries with the limitation one reserved segment
|
|
* for cp pack we can have max 1020*507 orphan entries
|
|
*/
|
|
max_orphans = (sbi->blocks_per_seg - 5) * F2FS_ORPHANS_PER_BLOCK;
|
|
mutex_lock(&sbi->orphan_inode_mutex);
|
|
if (sbi->n_orphans >= max_orphans)
|
|
err = -ENOSPC;
|
|
else
|
|
sbi->n_orphans++;
|
|
mutex_unlock(&sbi->orphan_inode_mutex);
|
|
return err;
|
|
}
|
|
|
|
void release_orphan_inode(struct f2fs_sb_info *sbi)
|
|
{
|
|
mutex_lock(&sbi->orphan_inode_mutex);
|
|
sbi->n_orphans--;
|
|
mutex_unlock(&sbi->orphan_inode_mutex);
|
|
}
|
|
|
|
void add_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
|
|
{
|
|
struct list_head *head, *this;
|
|
struct orphan_inode_entry *new = NULL, *orphan = NULL;
|
|
|
|
mutex_lock(&sbi->orphan_inode_mutex);
|
|
head = &sbi->orphan_inode_list;
|
|
list_for_each(this, head) {
|
|
orphan = list_entry(this, struct orphan_inode_entry, list);
|
|
if (orphan->ino == ino)
|
|
goto out;
|
|
if (orphan->ino > ino)
|
|
break;
|
|
orphan = NULL;
|
|
}
|
|
retry:
|
|
new = kmem_cache_alloc(orphan_entry_slab, GFP_ATOMIC);
|
|
if (!new) {
|
|
cond_resched();
|
|
goto retry;
|
|
}
|
|
new->ino = ino;
|
|
|
|
/* add new_oentry into list which is sorted by inode number */
|
|
if (orphan)
|
|
list_add(&new->list, this->prev);
|
|
else
|
|
list_add_tail(&new->list, head);
|
|
out:
|
|
mutex_unlock(&sbi->orphan_inode_mutex);
|
|
}
|
|
|
|
void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
|
|
{
|
|
struct list_head *head;
|
|
struct orphan_inode_entry *orphan;
|
|
|
|
mutex_lock(&sbi->orphan_inode_mutex);
|
|
head = &sbi->orphan_inode_list;
|
|
list_for_each_entry(orphan, head, list) {
|
|
if (orphan->ino == ino) {
|
|
list_del(&orphan->list);
|
|
kmem_cache_free(orphan_entry_slab, orphan);
|
|
sbi->n_orphans--;
|
|
break;
|
|
}
|
|
}
|
|
mutex_unlock(&sbi->orphan_inode_mutex);
|
|
}
|
|
|
|
static void recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
|
|
{
|
|
struct inode *inode = f2fs_iget(sbi->sb, ino);
|
|
BUG_ON(IS_ERR(inode));
|
|
clear_nlink(inode);
|
|
|
|
/* truncate all the data during iput */
|
|
iput(inode);
|
|
}
|
|
|
|
int recover_orphan_inodes(struct f2fs_sb_info *sbi)
|
|
{
|
|
block_t start_blk, orphan_blkaddr, i, j;
|
|
|
|
if (!is_set_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG))
|
|
return 0;
|
|
|
|
sbi->por_doing = 1;
|
|
start_blk = __start_cp_addr(sbi) + 1;
|
|
orphan_blkaddr = __start_sum_addr(sbi) - 1;
|
|
|
|
for (i = 0; i < orphan_blkaddr; i++) {
|
|
struct page *page = get_meta_page(sbi, start_blk + i);
|
|
struct f2fs_orphan_block *orphan_blk;
|
|
|
|
orphan_blk = (struct f2fs_orphan_block *)page_address(page);
|
|
for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) {
|
|
nid_t ino = le32_to_cpu(orphan_blk->ino[j]);
|
|
recover_orphan_inode(sbi, ino);
|
|
}
|
|
f2fs_put_page(page, 1);
|
|
}
|
|
/* clear Orphan Flag */
|
|
clear_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG);
|
|
sbi->por_doing = 0;
|
|
return 0;
|
|
}
|
|
|
|
static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk)
|
|
{
|
|
struct list_head *head, *this, *next;
|
|
struct f2fs_orphan_block *orphan_blk = NULL;
|
|
struct page *page = NULL;
|
|
unsigned int nentries = 0;
|
|
unsigned short index = 1;
|
|
unsigned short orphan_blocks;
|
|
|
|
orphan_blocks = (unsigned short)((sbi->n_orphans +
|
|
(F2FS_ORPHANS_PER_BLOCK - 1)) / F2FS_ORPHANS_PER_BLOCK);
|
|
|
|
mutex_lock(&sbi->orphan_inode_mutex);
|
|
head = &sbi->orphan_inode_list;
|
|
|
|
/* loop for each orphan inode entry and write them in Jornal block */
|
|
list_for_each_safe(this, next, head) {
|
|
struct orphan_inode_entry *orphan;
|
|
|
|
orphan = list_entry(this, struct orphan_inode_entry, list);
|
|
|
|
if (nentries == F2FS_ORPHANS_PER_BLOCK) {
|
|
/*
|
|
* an orphan block is full of 1020 entries,
|
|
* then we need to flush current orphan blocks
|
|
* and bring another one in memory
|
|
*/
|
|
orphan_blk->blk_addr = cpu_to_le16(index);
|
|
orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
|
|
orphan_blk->entry_count = cpu_to_le32(nentries);
|
|
set_page_dirty(page);
|
|
f2fs_put_page(page, 1);
|
|
index++;
|
|
start_blk++;
|
|
nentries = 0;
|
|
page = NULL;
|
|
}
|
|
if (page)
|
|
goto page_exist;
|
|
|
|
page = grab_meta_page(sbi, start_blk);
|
|
orphan_blk = (struct f2fs_orphan_block *)page_address(page);
|
|
memset(orphan_blk, 0, sizeof(*orphan_blk));
|
|
page_exist:
|
|
orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino);
|
|
}
|
|
if (!page)
|
|
goto end;
|
|
|
|
orphan_blk->blk_addr = cpu_to_le16(index);
|
|
orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
|
|
orphan_blk->entry_count = cpu_to_le32(nentries);
|
|
set_page_dirty(page);
|
|
f2fs_put_page(page, 1);
|
|
end:
|
|
mutex_unlock(&sbi->orphan_inode_mutex);
|
|
}
|
|
|
|
static struct page *validate_checkpoint(struct f2fs_sb_info *sbi,
|
|
block_t cp_addr, unsigned long long *version)
|
|
{
|
|
struct page *cp_page_1, *cp_page_2 = NULL;
|
|
unsigned long blk_size = sbi->blocksize;
|
|
struct f2fs_checkpoint *cp_block;
|
|
unsigned long long cur_version = 0, pre_version = 0;
|
|
size_t crc_offset;
|
|
__u32 crc = 0;
|
|
|
|
/* Read the 1st cp block in this CP pack */
|
|
cp_page_1 = get_meta_page(sbi, cp_addr);
|
|
|
|
/* get the version number */
|
|
cp_block = (struct f2fs_checkpoint *)page_address(cp_page_1);
|
|
crc_offset = le32_to_cpu(cp_block->checksum_offset);
|
|
if (crc_offset >= blk_size)
|
|
goto invalid_cp1;
|
|
|
|
crc = le32_to_cpu(*((__u32 *)((unsigned char *)cp_block + crc_offset)));
|
|
if (!f2fs_crc_valid(crc, cp_block, crc_offset))
|
|
goto invalid_cp1;
|
|
|
|
pre_version = cur_cp_version(cp_block);
|
|
|
|
/* Read the 2nd cp block in this CP pack */
|
|
cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1;
|
|
cp_page_2 = get_meta_page(sbi, cp_addr);
|
|
|
|
cp_block = (struct f2fs_checkpoint *)page_address(cp_page_2);
|
|
crc_offset = le32_to_cpu(cp_block->checksum_offset);
|
|
if (crc_offset >= blk_size)
|
|
goto invalid_cp2;
|
|
|
|
crc = le32_to_cpu(*((__u32 *)((unsigned char *)cp_block + crc_offset)));
|
|
if (!f2fs_crc_valid(crc, cp_block, crc_offset))
|
|
goto invalid_cp2;
|
|
|
|
cur_version = cur_cp_version(cp_block);
|
|
|
|
if (cur_version == pre_version) {
|
|
*version = cur_version;
|
|
f2fs_put_page(cp_page_2, 1);
|
|
return cp_page_1;
|
|
}
|
|
invalid_cp2:
|
|
f2fs_put_page(cp_page_2, 1);
|
|
invalid_cp1:
|
|
f2fs_put_page(cp_page_1, 1);
|
|
return NULL;
|
|
}
|
|
|
|
int get_valid_checkpoint(struct f2fs_sb_info *sbi)
|
|
{
|
|
struct f2fs_checkpoint *cp_block;
|
|
struct f2fs_super_block *fsb = sbi->raw_super;
|
|
struct page *cp1, *cp2, *cur_page;
|
|
unsigned long blk_size = sbi->blocksize;
|
|
unsigned long long cp1_version = 0, cp2_version = 0;
|
|
unsigned long long cp_start_blk_no;
|
|
|
|
sbi->ckpt = kzalloc(blk_size, GFP_KERNEL);
|
|
if (!sbi->ckpt)
|
|
return -ENOMEM;
|
|
/*
|
|
* Finding out valid cp block involves read both
|
|
* sets( cp pack1 and cp pack 2)
|
|
*/
|
|
cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr);
|
|
cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version);
|
|
|
|
/* The second checkpoint pack should start at the next segment */
|
|
cp_start_blk_no += 1 << le32_to_cpu(fsb->log_blocks_per_seg);
|
|
cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version);
|
|
|
|
if (cp1 && cp2) {
|
|
if (ver_after(cp2_version, cp1_version))
|
|
cur_page = cp2;
|
|
else
|
|
cur_page = cp1;
|
|
} else if (cp1) {
|
|
cur_page = cp1;
|
|
} else if (cp2) {
|
|
cur_page = cp2;
|
|
} else {
|
|
goto fail_no_cp;
|
|
}
|
|
|
|
cp_block = (struct f2fs_checkpoint *)page_address(cur_page);
|
|
memcpy(sbi->ckpt, cp_block, blk_size);
|
|
|
|
f2fs_put_page(cp1, 1);
|
|
f2fs_put_page(cp2, 1);
|
|
return 0;
|
|
|
|
fail_no_cp:
|
|
kfree(sbi->ckpt);
|
|
return -EINVAL;
|
|
}
|
|
|
|
static int __add_dirty_inode(struct inode *inode, struct dir_inode_entry *new)
|
|
{
|
|
struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
|
|
struct list_head *head = &sbi->dir_inode_list;
|
|
struct list_head *this;
|
|
|
|
list_for_each(this, head) {
|
|
struct dir_inode_entry *entry;
|
|
entry = list_entry(this, struct dir_inode_entry, list);
|
|
if (entry->inode == inode)
|
|
return -EEXIST;
|
|
}
|
|
list_add_tail(&new->list, head);
|
|
#ifdef CONFIG_F2FS_STAT_FS
|
|
sbi->n_dirty_dirs++;
|
|
#endif
|
|
return 0;
|
|
}
|
|
|
|
void set_dirty_dir_page(struct inode *inode, struct page *page)
|
|
{
|
|
struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
|
|
struct dir_inode_entry *new;
|
|
|
|
if (!S_ISDIR(inode->i_mode))
|
|
return;
|
|
retry:
|
|
new = kmem_cache_alloc(inode_entry_slab, GFP_NOFS);
|
|
if (!new) {
|
|
cond_resched();
|
|
goto retry;
|
|
}
|
|
new->inode = inode;
|
|
INIT_LIST_HEAD(&new->list);
|
|
|
|
spin_lock(&sbi->dir_inode_lock);
|
|
if (__add_dirty_inode(inode, new))
|
|
kmem_cache_free(inode_entry_slab, new);
|
|
|
|
inc_page_count(sbi, F2FS_DIRTY_DENTS);
|
|
inode_inc_dirty_dents(inode);
|
|
SetPagePrivate(page);
|
|
spin_unlock(&sbi->dir_inode_lock);
|
|
}
|
|
|
|
void add_dirty_dir_inode(struct inode *inode)
|
|
{
|
|
struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
|
|
struct dir_inode_entry *new;
|
|
retry:
|
|
new = kmem_cache_alloc(inode_entry_slab, GFP_NOFS);
|
|
if (!new) {
|
|
cond_resched();
|
|
goto retry;
|
|
}
|
|
new->inode = inode;
|
|
INIT_LIST_HEAD(&new->list);
|
|
|
|
spin_lock(&sbi->dir_inode_lock);
|
|
if (__add_dirty_inode(inode, new))
|
|
kmem_cache_free(inode_entry_slab, new);
|
|
spin_unlock(&sbi->dir_inode_lock);
|
|
}
|
|
|
|
void remove_dirty_dir_inode(struct inode *inode)
|
|
{
|
|
struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
|
|
struct list_head *head = &sbi->dir_inode_list;
|
|
struct list_head *this;
|
|
|
|
if (!S_ISDIR(inode->i_mode))
|
|
return;
|
|
|
|
spin_lock(&sbi->dir_inode_lock);
|
|
if (atomic_read(&F2FS_I(inode)->dirty_dents)) {
|
|
spin_unlock(&sbi->dir_inode_lock);
|
|
return;
|
|
}
|
|
|
|
list_for_each(this, head) {
|
|
struct dir_inode_entry *entry;
|
|
entry = list_entry(this, struct dir_inode_entry, list);
|
|
if (entry->inode == inode) {
|
|
list_del(&entry->list);
|
|
kmem_cache_free(inode_entry_slab, entry);
|
|
#ifdef CONFIG_F2FS_STAT_FS
|
|
sbi->n_dirty_dirs--;
|
|
#endif
|
|
break;
|
|
}
|
|
}
|
|
spin_unlock(&sbi->dir_inode_lock);
|
|
|
|
/* Only from the recovery routine */
|
|
if (is_inode_flag_set(F2FS_I(inode), FI_DELAY_IPUT)) {
|
|
clear_inode_flag(F2FS_I(inode), FI_DELAY_IPUT);
|
|
iput(inode);
|
|
}
|
|
}
|
|
|
|
struct inode *check_dirty_dir_inode(struct f2fs_sb_info *sbi, nid_t ino)
|
|
{
|
|
struct list_head *head = &sbi->dir_inode_list;
|
|
struct list_head *this;
|
|
struct inode *inode = NULL;
|
|
|
|
spin_lock(&sbi->dir_inode_lock);
|
|
list_for_each(this, head) {
|
|
struct dir_inode_entry *entry;
|
|
entry = list_entry(this, struct dir_inode_entry, list);
|
|
if (entry->inode->i_ino == ino) {
|
|
inode = entry->inode;
|
|
break;
|
|
}
|
|
}
|
|
spin_unlock(&sbi->dir_inode_lock);
|
|
return inode;
|
|
}
|
|
|
|
void sync_dirty_dir_inodes(struct f2fs_sb_info *sbi)
|
|
{
|
|
struct list_head *head = &sbi->dir_inode_list;
|
|
struct dir_inode_entry *entry;
|
|
struct inode *inode;
|
|
retry:
|
|
spin_lock(&sbi->dir_inode_lock);
|
|
if (list_empty(head)) {
|
|
spin_unlock(&sbi->dir_inode_lock);
|
|
return;
|
|
}
|
|
entry = list_entry(head->next, struct dir_inode_entry, list);
|
|
inode = igrab(entry->inode);
|
|
spin_unlock(&sbi->dir_inode_lock);
|
|
if (inode) {
|
|
filemap_flush(inode->i_mapping);
|
|
iput(inode);
|
|
} else {
|
|
/*
|
|
* We should submit bio, since it exists several
|
|
* wribacking dentry pages in the freeing inode.
|
|
*/
|
|
f2fs_submit_bio(sbi, DATA, true);
|
|
}
|
|
goto retry;
|
|
}
|
|
|
|
/*
|
|
* Freeze all the FS-operations for checkpoint.
|
|
*/
|
|
static void block_operations(struct f2fs_sb_info *sbi)
|
|
{
|
|
struct writeback_control wbc = {
|
|
.sync_mode = WB_SYNC_ALL,
|
|
.nr_to_write = LONG_MAX,
|
|
.for_reclaim = 0,
|
|
};
|
|
struct blk_plug plug;
|
|
|
|
blk_start_plug(&plug);
|
|
|
|
retry_flush_dents:
|
|
mutex_lock_all(sbi);
|
|
|
|
/* write all the dirty dentry pages */
|
|
if (get_pages(sbi, F2FS_DIRTY_DENTS)) {
|
|
mutex_unlock_all(sbi);
|
|
sync_dirty_dir_inodes(sbi);
|
|
goto retry_flush_dents;
|
|
}
|
|
|
|
/*
|
|
* POR: we should ensure that there is no dirty node pages
|
|
* until finishing nat/sit flush.
|
|
*/
|
|
retry_flush_nodes:
|
|
mutex_lock(&sbi->node_write);
|
|
|
|
if (get_pages(sbi, F2FS_DIRTY_NODES)) {
|
|
mutex_unlock(&sbi->node_write);
|
|
sync_node_pages(sbi, 0, &wbc);
|
|
goto retry_flush_nodes;
|
|
}
|
|
blk_finish_plug(&plug);
|
|
}
|
|
|
|
static void unblock_operations(struct f2fs_sb_info *sbi)
|
|
{
|
|
mutex_unlock(&sbi->node_write);
|
|
mutex_unlock_all(sbi);
|
|
}
|
|
|
|
static void do_checkpoint(struct f2fs_sb_info *sbi, bool is_umount)
|
|
{
|
|
struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
|
|
nid_t last_nid = 0;
|
|
block_t start_blk;
|
|
struct page *cp_page;
|
|
unsigned int data_sum_blocks, orphan_blocks;
|
|
__u32 crc32 = 0;
|
|
void *kaddr;
|
|
int i;
|
|
|
|
/* Flush all the NAT/SIT pages */
|
|
while (get_pages(sbi, F2FS_DIRTY_META))
|
|
sync_meta_pages(sbi, META, LONG_MAX);
|
|
|
|
next_free_nid(sbi, &last_nid);
|
|
|
|
/*
|
|
* modify checkpoint
|
|
* version number is already updated
|
|
*/
|
|
ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi));
|
|
ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi));
|
|
ckpt->free_segment_count = cpu_to_le32(free_segments(sbi));
|
|
for (i = 0; i < 3; i++) {
|
|
ckpt->cur_node_segno[i] =
|
|
cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE));
|
|
ckpt->cur_node_blkoff[i] =
|
|
cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE));
|
|
ckpt->alloc_type[i + CURSEG_HOT_NODE] =
|
|
curseg_alloc_type(sbi, i + CURSEG_HOT_NODE);
|
|
}
|
|
for (i = 0; i < 3; i++) {
|
|
ckpt->cur_data_segno[i] =
|
|
cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA));
|
|
ckpt->cur_data_blkoff[i] =
|
|
cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA));
|
|
ckpt->alloc_type[i + CURSEG_HOT_DATA] =
|
|
curseg_alloc_type(sbi, i + CURSEG_HOT_DATA);
|
|
}
|
|
|
|
ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi));
|
|
ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi));
|
|
ckpt->next_free_nid = cpu_to_le32(last_nid);
|
|
|
|
/* 2 cp + n data seg summary + orphan inode blocks */
|
|
data_sum_blocks = npages_for_summary_flush(sbi);
|
|
if (data_sum_blocks < 3)
|
|
set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
|
|
else
|
|
clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
|
|
|
|
orphan_blocks = (sbi->n_orphans + F2FS_ORPHANS_PER_BLOCK - 1)
|
|
/ F2FS_ORPHANS_PER_BLOCK;
|
|
ckpt->cp_pack_start_sum = cpu_to_le32(1 + orphan_blocks);
|
|
|
|
if (is_umount) {
|
|
set_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
|
|
ckpt->cp_pack_total_block_count = cpu_to_le32(2 +
|
|
data_sum_blocks + orphan_blocks + NR_CURSEG_NODE_TYPE);
|
|
} else {
|
|
clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
|
|
ckpt->cp_pack_total_block_count = cpu_to_le32(2 +
|
|
data_sum_blocks + orphan_blocks);
|
|
}
|
|
|
|
if (sbi->n_orphans)
|
|
set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
|
|
else
|
|
clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
|
|
|
|
/* update SIT/NAT bitmap */
|
|
get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP));
|
|
get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP));
|
|
|
|
crc32 = f2fs_crc32(ckpt, le32_to_cpu(ckpt->checksum_offset));
|
|
*((__le32 *)((unsigned char *)ckpt +
|
|
le32_to_cpu(ckpt->checksum_offset)))
|
|
= cpu_to_le32(crc32);
|
|
|
|
start_blk = __start_cp_addr(sbi);
|
|
|
|
/* write out checkpoint buffer at block 0 */
|
|
cp_page = grab_meta_page(sbi, start_blk++);
|
|
kaddr = page_address(cp_page);
|
|
memcpy(kaddr, ckpt, (1 << sbi->log_blocksize));
|
|
set_page_dirty(cp_page);
|
|
f2fs_put_page(cp_page, 1);
|
|
|
|
if (sbi->n_orphans) {
|
|
write_orphan_inodes(sbi, start_blk);
|
|
start_blk += orphan_blocks;
|
|
}
|
|
|
|
write_data_summaries(sbi, start_blk);
|
|
start_blk += data_sum_blocks;
|
|
if (is_umount) {
|
|
write_node_summaries(sbi, start_blk);
|
|
start_blk += NR_CURSEG_NODE_TYPE;
|
|
}
|
|
|
|
/* writeout checkpoint block */
|
|
cp_page = grab_meta_page(sbi, start_blk);
|
|
kaddr = page_address(cp_page);
|
|
memcpy(kaddr, ckpt, (1 << sbi->log_blocksize));
|
|
set_page_dirty(cp_page);
|
|
f2fs_put_page(cp_page, 1);
|
|
|
|
/* wait for previous submitted node/meta pages writeback */
|
|
while (get_pages(sbi, F2FS_WRITEBACK))
|
|
congestion_wait(BLK_RW_ASYNC, HZ / 50);
|
|
|
|
filemap_fdatawait_range(sbi->node_inode->i_mapping, 0, LONG_MAX);
|
|
filemap_fdatawait_range(sbi->meta_inode->i_mapping, 0, LONG_MAX);
|
|
|
|
/* update user_block_counts */
|
|
sbi->last_valid_block_count = sbi->total_valid_block_count;
|
|
sbi->alloc_valid_block_count = 0;
|
|
|
|
/* Here, we only have one bio having CP pack */
|
|
sync_meta_pages(sbi, META_FLUSH, LONG_MAX);
|
|
|
|
if (!is_set_ckpt_flags(ckpt, CP_ERROR_FLAG)) {
|
|
clear_prefree_segments(sbi);
|
|
F2FS_RESET_SB_DIRT(sbi);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* We guarantee that this checkpoint procedure should not fail.
|
|
*/
|
|
void write_checkpoint(struct f2fs_sb_info *sbi, bool is_umount)
|
|
{
|
|
struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
|
|
unsigned long long ckpt_ver;
|
|
|
|
trace_f2fs_write_checkpoint(sbi->sb, is_umount, "start block_ops");
|
|
|
|
mutex_lock(&sbi->cp_mutex);
|
|
block_operations(sbi);
|
|
|
|
trace_f2fs_write_checkpoint(sbi->sb, is_umount, "finish block_ops");
|
|
|
|
f2fs_submit_bio(sbi, DATA, true);
|
|
f2fs_submit_bio(sbi, NODE, true);
|
|
f2fs_submit_bio(sbi, META, true);
|
|
|
|
/*
|
|
* update checkpoint pack index
|
|
* Increase the version number so that
|
|
* SIT entries and seg summaries are written at correct place
|
|
*/
|
|
ckpt_ver = cur_cp_version(ckpt);
|
|
ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver);
|
|
|
|
/* write cached NAT/SIT entries to NAT/SIT area */
|
|
flush_nat_entries(sbi);
|
|
flush_sit_entries(sbi);
|
|
|
|
/* unlock all the fs_lock[] in do_checkpoint() */
|
|
do_checkpoint(sbi, is_umount);
|
|
|
|
unblock_operations(sbi);
|
|
mutex_unlock(&sbi->cp_mutex);
|
|
|
|
trace_f2fs_write_checkpoint(sbi->sb, is_umount, "finish checkpoint");
|
|
}
|
|
|
|
void init_orphan_info(struct f2fs_sb_info *sbi)
|
|
{
|
|
mutex_init(&sbi->orphan_inode_mutex);
|
|
INIT_LIST_HEAD(&sbi->orphan_inode_list);
|
|
sbi->n_orphans = 0;
|
|
}
|
|
|
|
int __init create_checkpoint_caches(void)
|
|
{
|
|
orphan_entry_slab = f2fs_kmem_cache_create("f2fs_orphan_entry",
|
|
sizeof(struct orphan_inode_entry), NULL);
|
|
if (unlikely(!orphan_entry_slab))
|
|
return -ENOMEM;
|
|
inode_entry_slab = f2fs_kmem_cache_create("f2fs_dirty_dir_entry",
|
|
sizeof(struct dir_inode_entry), NULL);
|
|
if (unlikely(!inode_entry_slab)) {
|
|
kmem_cache_destroy(orphan_entry_slab);
|
|
return -ENOMEM;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
void destroy_checkpoint_caches(void)
|
|
{
|
|
kmem_cache_destroy(orphan_entry_slab);
|
|
kmem_cache_destroy(inode_entry_slab);
|
|
}
|