linux/net/decnet/dn_table.c
Greg Kroah-Hartman b24413180f License cleanup: add SPDX GPL-2.0 license identifier to files with no license
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.

By default all files without license information are under the default
license of the kernel, which is GPL version 2.

Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier.  The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.

This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.

How this work was done:

Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
 - file had no licensing information it it.
 - file was a */uapi/* one with no licensing information in it,
 - file was a */uapi/* one with existing licensing information,

Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.

The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne.  Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.

The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed.  Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.

Criteria used to select files for SPDX license identifier tagging was:
 - Files considered eligible had to be source code files.
 - Make and config files were included as candidates if they contained >5
   lines of source
 - File already had some variant of a license header in it (even if <5
   lines).

All documentation files were explicitly excluded.

The following heuristics were used to determine which SPDX license
identifiers to apply.

 - when both scanners couldn't find any license traces, file was
   considered to have no license information in it, and the top level
   COPYING file license applied.

   For non */uapi/* files that summary was:

   SPDX license identifier                            # files
   ---------------------------------------------------|-------
   GPL-2.0                                              11139

   and resulted in the first patch in this series.

   If that file was a */uapi/* path one, it was "GPL-2.0 WITH
   Linux-syscall-note" otherwise it was "GPL-2.0".  Results of that was:

   SPDX license identifier                            # files
   ---------------------------------------------------|-------
   GPL-2.0 WITH Linux-syscall-note                        930

   and resulted in the second patch in this series.

 - if a file had some form of licensing information in it, and was one
   of the */uapi/* ones, it was denoted with the Linux-syscall-note if
   any GPL family license was found in the file or had no licensing in
   it (per prior point).  Results summary:

   SPDX license identifier                            # files
   ---------------------------------------------------|------
   GPL-2.0 WITH Linux-syscall-note                       270
   GPL-2.0+ WITH Linux-syscall-note                      169
   ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause)    21
   ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause)    17
   LGPL-2.1+ WITH Linux-syscall-note                      15
   GPL-1.0+ WITH Linux-syscall-note                       14
   ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause)    5
   LGPL-2.0+ WITH Linux-syscall-note                       4
   LGPL-2.1 WITH Linux-syscall-note                        3
   ((GPL-2.0 WITH Linux-syscall-note) OR MIT)              3
   ((GPL-2.0 WITH Linux-syscall-note) AND MIT)             1

   and that resulted in the third patch in this series.

 - when the two scanners agreed on the detected license(s), that became
   the concluded license(s).

 - when there was disagreement between the two scanners (one detected a
   license but the other didn't, or they both detected different
   licenses) a manual inspection of the file occurred.

 - In most cases a manual inspection of the information in the file
   resulted in a clear resolution of the license that should apply (and
   which scanner probably needed to revisit its heuristics).

 - When it was not immediately clear, the license identifier was
   confirmed with lawyers working with the Linux Foundation.

 - If there was any question as to the appropriate license identifier,
   the file was flagged for further research and to be revisited later
   in time.

In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.

Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights.  The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.

Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.

In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.

Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
 - a full scancode scan run, collecting the matched texts, detected
   license ids and scores
 - reviewing anything where there was a license detected (about 500+
   files) to ensure that the applied SPDX license was correct
 - reviewing anything where there was no detection but the patch license
   was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
   SPDX license was correct

This produced a worksheet with 20 files needing minor correction.  This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.

These .csv files were then reviewed by Greg.  Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected.  This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.)  Finally Greg ran the script using the .csv files to
generate the patches.

Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-02 11:10:55 +01:00

928 lines
20 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* DECnet An implementation of the DECnet protocol suite for the LINUX
* operating system. DECnet is implemented using the BSD Socket
* interface as the means of communication with the user level.
*
* DECnet Routing Forwarding Information Base (Routing Tables)
*
* Author: Steve Whitehouse <SteveW@ACM.org>
* Mostly copied from the IPv4 routing code
*
*
* Changes:
*
*/
#include <linux/string.h>
#include <linux/net.h>
#include <linux/socket.h>
#include <linux/slab.h>
#include <linux/sockios.h>
#include <linux/init.h>
#include <linux/skbuff.h>
#include <linux/rtnetlink.h>
#include <linux/proc_fs.h>
#include <linux/netdevice.h>
#include <linux/timer.h>
#include <linux/spinlock.h>
#include <linux/atomic.h>
#include <linux/uaccess.h>
#include <linux/route.h> /* RTF_xxx */
#include <net/neighbour.h>
#include <net/netlink.h>
#include <net/tcp.h>
#include <net/dst.h>
#include <net/flow.h>
#include <net/fib_rules.h>
#include <net/dn.h>
#include <net/dn_route.h>
#include <net/dn_fib.h>
#include <net/dn_neigh.h>
#include <net/dn_dev.h>
struct dn_zone
{
struct dn_zone *dz_next;
struct dn_fib_node **dz_hash;
int dz_nent;
int dz_divisor;
u32 dz_hashmask;
#define DZ_HASHMASK(dz) ((dz)->dz_hashmask)
int dz_order;
__le16 dz_mask;
#define DZ_MASK(dz) ((dz)->dz_mask)
};
struct dn_hash
{
struct dn_zone *dh_zones[17];
struct dn_zone *dh_zone_list;
};
#define dz_key_0(key) ((key).datum = 0)
#define for_nexthops(fi) { int nhsel; const struct dn_fib_nh *nh;\
for(nhsel = 0, nh = (fi)->fib_nh; nhsel < (fi)->fib_nhs; nh++, nhsel++)
#define endfor_nexthops(fi) }
#define DN_MAX_DIVISOR 1024
#define DN_S_ZOMBIE 1
#define DN_S_ACCESSED 2
#define DN_FIB_SCAN(f, fp) \
for( ; ((f) = *(fp)) != NULL; (fp) = &(f)->fn_next)
#define DN_FIB_SCAN_KEY(f, fp, key) \
for( ; ((f) = *(fp)) != NULL && dn_key_eq((f)->fn_key, (key)); (fp) = &(f)->fn_next)
#define RT_TABLE_MIN 1
#define DN_FIB_TABLE_HASHSZ 256
static struct hlist_head dn_fib_table_hash[DN_FIB_TABLE_HASHSZ];
static DEFINE_RWLOCK(dn_fib_tables_lock);
static struct kmem_cache *dn_hash_kmem __read_mostly;
static int dn_fib_hash_zombies;
static inline dn_fib_idx_t dn_hash(dn_fib_key_t key, struct dn_zone *dz)
{
u16 h = le16_to_cpu(key.datum)>>(16 - dz->dz_order);
h ^= (h >> 10);
h ^= (h >> 6);
h &= DZ_HASHMASK(dz);
return *(dn_fib_idx_t *)&h;
}
static inline dn_fib_key_t dz_key(__le16 dst, struct dn_zone *dz)
{
dn_fib_key_t k;
k.datum = dst & DZ_MASK(dz);
return k;
}
static inline struct dn_fib_node **dn_chain_p(dn_fib_key_t key, struct dn_zone *dz)
{
return &dz->dz_hash[dn_hash(key, dz).datum];
}
static inline struct dn_fib_node *dz_chain(dn_fib_key_t key, struct dn_zone *dz)
{
return dz->dz_hash[dn_hash(key, dz).datum];
}
static inline int dn_key_eq(dn_fib_key_t a, dn_fib_key_t b)
{
return a.datum == b.datum;
}
static inline int dn_key_leq(dn_fib_key_t a, dn_fib_key_t b)
{
return a.datum <= b.datum;
}
static inline void dn_rebuild_zone(struct dn_zone *dz,
struct dn_fib_node **old_ht,
int old_divisor)
{
struct dn_fib_node *f, **fp, *next;
int i;
for(i = 0; i < old_divisor; i++) {
for(f = old_ht[i]; f; f = next) {
next = f->fn_next;
for(fp = dn_chain_p(f->fn_key, dz);
*fp && dn_key_leq((*fp)->fn_key, f->fn_key);
fp = &(*fp)->fn_next)
/* NOTHING */;
f->fn_next = *fp;
*fp = f;
}
}
}
static void dn_rehash_zone(struct dn_zone *dz)
{
struct dn_fib_node **ht, **old_ht;
int old_divisor, new_divisor;
u32 new_hashmask;
old_divisor = dz->dz_divisor;
switch (old_divisor) {
case 16:
new_divisor = 256;
new_hashmask = 0xFF;
break;
default:
printk(KERN_DEBUG "DECnet: dn_rehash_zone: BUG! %d\n",
old_divisor);
case 256:
new_divisor = 1024;
new_hashmask = 0x3FF;
break;
}
ht = kcalloc(new_divisor, sizeof(struct dn_fib_node*), GFP_KERNEL);
if (ht == NULL)
return;
write_lock_bh(&dn_fib_tables_lock);
old_ht = dz->dz_hash;
dz->dz_hash = ht;
dz->dz_hashmask = new_hashmask;
dz->dz_divisor = new_divisor;
dn_rebuild_zone(dz, old_ht, old_divisor);
write_unlock_bh(&dn_fib_tables_lock);
kfree(old_ht);
}
static void dn_free_node(struct dn_fib_node *f)
{
dn_fib_release_info(DN_FIB_INFO(f));
kmem_cache_free(dn_hash_kmem, f);
}
static struct dn_zone *dn_new_zone(struct dn_hash *table, int z)
{
int i;
struct dn_zone *dz = kzalloc(sizeof(struct dn_zone), GFP_KERNEL);
if (!dz)
return NULL;
if (z) {
dz->dz_divisor = 16;
dz->dz_hashmask = 0x0F;
} else {
dz->dz_divisor = 1;
dz->dz_hashmask = 0;
}
dz->dz_hash = kcalloc(dz->dz_divisor, sizeof(struct dn_fib_node *), GFP_KERNEL);
if (!dz->dz_hash) {
kfree(dz);
return NULL;
}
dz->dz_order = z;
dz->dz_mask = dnet_make_mask(z);
for(i = z + 1; i <= 16; i++)
if (table->dh_zones[i])
break;
write_lock_bh(&dn_fib_tables_lock);
if (i>16) {
dz->dz_next = table->dh_zone_list;
table->dh_zone_list = dz;
} else {
dz->dz_next = table->dh_zones[i]->dz_next;
table->dh_zones[i]->dz_next = dz;
}
table->dh_zones[z] = dz;
write_unlock_bh(&dn_fib_tables_lock);
return dz;
}
static int dn_fib_nh_match(struct rtmsg *r, struct nlmsghdr *nlh, struct nlattr *attrs[], struct dn_fib_info *fi)
{
struct rtnexthop *nhp;
int nhlen;
if (attrs[RTA_PRIORITY] &&
nla_get_u32(attrs[RTA_PRIORITY]) != fi->fib_priority)
return 1;
if (attrs[RTA_OIF] || attrs[RTA_GATEWAY]) {
if ((!attrs[RTA_OIF] || nla_get_u32(attrs[RTA_OIF]) == fi->fib_nh->nh_oif) &&
(!attrs[RTA_GATEWAY] || nla_get_le16(attrs[RTA_GATEWAY]) != fi->fib_nh->nh_gw))
return 0;
return 1;
}
if (!attrs[RTA_MULTIPATH])
return 0;
nhp = nla_data(attrs[RTA_MULTIPATH]);
nhlen = nla_len(attrs[RTA_MULTIPATH]);
for_nexthops(fi) {
int attrlen = nhlen - sizeof(struct rtnexthop);
__le16 gw;
if (attrlen < 0 || (nhlen -= nhp->rtnh_len) < 0)
return -EINVAL;
if (nhp->rtnh_ifindex && nhp->rtnh_ifindex != nh->nh_oif)
return 1;
if (attrlen) {
struct nlattr *gw_attr;
gw_attr = nla_find((struct nlattr *) (nhp + 1), attrlen, RTA_GATEWAY);
gw = gw_attr ? nla_get_le16(gw_attr) : 0;
if (gw && gw != nh->nh_gw)
return 1;
}
nhp = RTNH_NEXT(nhp);
} endfor_nexthops(fi);
return 0;
}
static inline size_t dn_fib_nlmsg_size(struct dn_fib_info *fi)
{
size_t payload = NLMSG_ALIGN(sizeof(struct rtmsg))
+ nla_total_size(4) /* RTA_TABLE */
+ nla_total_size(2) /* RTA_DST */
+ nla_total_size(4) /* RTA_PRIORITY */
+ nla_total_size(TCP_CA_NAME_MAX); /* RTAX_CC_ALGO */
/* space for nested metrics */
payload += nla_total_size((RTAX_MAX * nla_total_size(4)));
if (fi->fib_nhs) {
/* Also handles the special case fib_nhs == 1 */
/* each nexthop is packed in an attribute */
size_t nhsize = nla_total_size(sizeof(struct rtnexthop));
/* may contain a gateway attribute */
nhsize += nla_total_size(4);
/* all nexthops are packed in a nested attribute */
payload += nla_total_size(fi->fib_nhs * nhsize);
}
return payload;
}
static int dn_fib_dump_info(struct sk_buff *skb, u32 portid, u32 seq, int event,
u32 tb_id, u8 type, u8 scope, void *dst, int dst_len,
struct dn_fib_info *fi, unsigned int flags)
{
struct rtmsg *rtm;
struct nlmsghdr *nlh;
nlh = nlmsg_put(skb, portid, seq, event, sizeof(*rtm), flags);
if (!nlh)
return -EMSGSIZE;
rtm = nlmsg_data(nlh);
rtm->rtm_family = AF_DECnet;
rtm->rtm_dst_len = dst_len;
rtm->rtm_src_len = 0;
rtm->rtm_tos = 0;
rtm->rtm_table = tb_id;
rtm->rtm_flags = fi->fib_flags;
rtm->rtm_scope = scope;
rtm->rtm_type = type;
rtm->rtm_protocol = fi->fib_protocol;
if (nla_put_u32(skb, RTA_TABLE, tb_id) < 0)
goto errout;
if (rtm->rtm_dst_len &&
nla_put(skb, RTA_DST, 2, dst) < 0)
goto errout;
if (fi->fib_priority &&
nla_put_u32(skb, RTA_PRIORITY, fi->fib_priority) < 0)
goto errout;
if (rtnetlink_put_metrics(skb, fi->fib_metrics) < 0)
goto errout;
if (fi->fib_nhs == 1) {
if (fi->fib_nh->nh_gw &&
nla_put_le16(skb, RTA_GATEWAY, fi->fib_nh->nh_gw) < 0)
goto errout;
if (fi->fib_nh->nh_oif &&
nla_put_u32(skb, RTA_OIF, fi->fib_nh->nh_oif) < 0)
goto errout;
}
if (fi->fib_nhs > 1) {
struct rtnexthop *nhp;
struct nlattr *mp_head;
if (!(mp_head = nla_nest_start(skb, RTA_MULTIPATH)))
goto errout;
for_nexthops(fi) {
if (!(nhp = nla_reserve_nohdr(skb, sizeof(*nhp))))
goto errout;
nhp->rtnh_flags = nh->nh_flags & 0xFF;
nhp->rtnh_hops = nh->nh_weight - 1;
nhp->rtnh_ifindex = nh->nh_oif;
if (nh->nh_gw &&
nla_put_le16(skb, RTA_GATEWAY, nh->nh_gw) < 0)
goto errout;
nhp->rtnh_len = skb_tail_pointer(skb) - (unsigned char *)nhp;
} endfor_nexthops(fi);
nla_nest_end(skb, mp_head);
}
nlmsg_end(skb, nlh);
return 0;
errout:
nlmsg_cancel(skb, nlh);
return -EMSGSIZE;
}
static void dn_rtmsg_fib(int event, struct dn_fib_node *f, int z, u32 tb_id,
struct nlmsghdr *nlh, struct netlink_skb_parms *req)
{
struct sk_buff *skb;
u32 portid = req ? req->portid : 0;
int err = -ENOBUFS;
skb = nlmsg_new(dn_fib_nlmsg_size(DN_FIB_INFO(f)), GFP_KERNEL);
if (skb == NULL)
goto errout;
err = dn_fib_dump_info(skb, portid, nlh->nlmsg_seq, event, tb_id,
f->fn_type, f->fn_scope, &f->fn_key, z,
DN_FIB_INFO(f), 0);
if (err < 0) {
/* -EMSGSIZE implies BUG in dn_fib_nlmsg_size() */
WARN_ON(err == -EMSGSIZE);
kfree_skb(skb);
goto errout;
}
rtnl_notify(skb, &init_net, portid, RTNLGRP_DECnet_ROUTE, nlh, GFP_KERNEL);
return;
errout:
if (err < 0)
rtnl_set_sk_err(&init_net, RTNLGRP_DECnet_ROUTE, err);
}
static __inline__ int dn_hash_dump_bucket(struct sk_buff *skb,
struct netlink_callback *cb,
struct dn_fib_table *tb,
struct dn_zone *dz,
struct dn_fib_node *f)
{
int i, s_i;
s_i = cb->args[4];
for(i = 0; f; i++, f = f->fn_next) {
if (i < s_i)
continue;
if (f->fn_state & DN_S_ZOMBIE)
continue;
if (dn_fib_dump_info(skb, NETLINK_CB(cb->skb).portid,
cb->nlh->nlmsg_seq,
RTM_NEWROUTE,
tb->n,
(f->fn_state & DN_S_ZOMBIE) ? 0 : f->fn_type,
f->fn_scope, &f->fn_key, dz->dz_order,
f->fn_info, NLM_F_MULTI) < 0) {
cb->args[4] = i;
return -1;
}
}
cb->args[4] = i;
return skb->len;
}
static __inline__ int dn_hash_dump_zone(struct sk_buff *skb,
struct netlink_callback *cb,
struct dn_fib_table *tb,
struct dn_zone *dz)
{
int h, s_h;
s_h = cb->args[3];
for(h = 0; h < dz->dz_divisor; h++) {
if (h < s_h)
continue;
if (h > s_h)
memset(&cb->args[4], 0, sizeof(cb->args) - 4*sizeof(cb->args[0]));
if (dz->dz_hash == NULL || dz->dz_hash[h] == NULL)
continue;
if (dn_hash_dump_bucket(skb, cb, tb, dz, dz->dz_hash[h]) < 0) {
cb->args[3] = h;
return -1;
}
}
cb->args[3] = h;
return skb->len;
}
static int dn_fib_table_dump(struct dn_fib_table *tb, struct sk_buff *skb,
struct netlink_callback *cb)
{
int m, s_m;
struct dn_zone *dz;
struct dn_hash *table = (struct dn_hash *)tb->data;
s_m = cb->args[2];
read_lock(&dn_fib_tables_lock);
for(dz = table->dh_zone_list, m = 0; dz; dz = dz->dz_next, m++) {
if (m < s_m)
continue;
if (m > s_m)
memset(&cb->args[3], 0, sizeof(cb->args) - 3*sizeof(cb->args[0]));
if (dn_hash_dump_zone(skb, cb, tb, dz) < 0) {
cb->args[2] = m;
read_unlock(&dn_fib_tables_lock);
return -1;
}
}
read_unlock(&dn_fib_tables_lock);
cb->args[2] = m;
return skb->len;
}
int dn_fib_dump(struct sk_buff *skb, struct netlink_callback *cb)
{
struct net *net = sock_net(skb->sk);
unsigned int h, s_h;
unsigned int e = 0, s_e;
struct dn_fib_table *tb;
int dumped = 0;
if (!net_eq(net, &init_net))
return 0;
if (nlmsg_len(cb->nlh) >= sizeof(struct rtmsg) &&
((struct rtmsg *)nlmsg_data(cb->nlh))->rtm_flags&RTM_F_CLONED)
return dn_cache_dump(skb, cb);
s_h = cb->args[0];
s_e = cb->args[1];
for (h = s_h; h < DN_FIB_TABLE_HASHSZ; h++, s_h = 0) {
e = 0;
hlist_for_each_entry(tb, &dn_fib_table_hash[h], hlist) {
if (e < s_e)
goto next;
if (dumped)
memset(&cb->args[2], 0, sizeof(cb->args) -
2 * sizeof(cb->args[0]));
if (tb->dump(tb, skb, cb) < 0)
goto out;
dumped = 1;
next:
e++;
}
}
out:
cb->args[1] = e;
cb->args[0] = h;
return skb->len;
}
static int dn_fib_table_insert(struct dn_fib_table *tb, struct rtmsg *r, struct nlattr *attrs[],
struct nlmsghdr *n, struct netlink_skb_parms *req)
{
struct dn_hash *table = (struct dn_hash *)tb->data;
struct dn_fib_node *new_f, *f, **fp, **del_fp;
struct dn_zone *dz;
struct dn_fib_info *fi;
int z = r->rtm_dst_len;
int type = r->rtm_type;
dn_fib_key_t key;
int err;
if (z > 16)
return -EINVAL;
dz = table->dh_zones[z];
if (!dz && !(dz = dn_new_zone(table, z)))
return -ENOBUFS;
dz_key_0(key);
if (attrs[RTA_DST]) {
__le16 dst = nla_get_le16(attrs[RTA_DST]);
if (dst & ~DZ_MASK(dz))
return -EINVAL;
key = dz_key(dst, dz);
}
if ((fi = dn_fib_create_info(r, attrs, n, &err)) == NULL)
return err;
if (dz->dz_nent > (dz->dz_divisor << 2) &&
dz->dz_divisor > DN_MAX_DIVISOR &&
(z==16 || (1<<z) > dz->dz_divisor))
dn_rehash_zone(dz);
fp = dn_chain_p(key, dz);
DN_FIB_SCAN(f, fp) {
if (dn_key_leq(key, f->fn_key))
break;
}
del_fp = NULL;
if (f && (f->fn_state & DN_S_ZOMBIE) &&
dn_key_eq(f->fn_key, key)) {
del_fp = fp;
fp = &f->fn_next;
f = *fp;
goto create;
}
DN_FIB_SCAN_KEY(f, fp, key) {
if (fi->fib_priority <= DN_FIB_INFO(f)->fib_priority)
break;
}
if (f && dn_key_eq(f->fn_key, key) &&
fi->fib_priority == DN_FIB_INFO(f)->fib_priority) {
struct dn_fib_node **ins_fp;
err = -EEXIST;
if (n->nlmsg_flags & NLM_F_EXCL)
goto out;
if (n->nlmsg_flags & NLM_F_REPLACE) {
del_fp = fp;
fp = &f->fn_next;
f = *fp;
goto replace;
}
ins_fp = fp;
err = -EEXIST;
DN_FIB_SCAN_KEY(f, fp, key) {
if (fi->fib_priority != DN_FIB_INFO(f)->fib_priority)
break;
if (f->fn_type == type &&
f->fn_scope == r->rtm_scope &&
DN_FIB_INFO(f) == fi)
goto out;
}
if (!(n->nlmsg_flags & NLM_F_APPEND)) {
fp = ins_fp;
f = *fp;
}
}
create:
err = -ENOENT;
if (!(n->nlmsg_flags & NLM_F_CREATE))
goto out;
replace:
err = -ENOBUFS;
new_f = kmem_cache_zalloc(dn_hash_kmem, GFP_KERNEL);
if (new_f == NULL)
goto out;
new_f->fn_key = key;
new_f->fn_type = type;
new_f->fn_scope = r->rtm_scope;
DN_FIB_INFO(new_f) = fi;
new_f->fn_next = f;
write_lock_bh(&dn_fib_tables_lock);
*fp = new_f;
write_unlock_bh(&dn_fib_tables_lock);
dz->dz_nent++;
if (del_fp) {
f = *del_fp;
write_lock_bh(&dn_fib_tables_lock);
*del_fp = f->fn_next;
write_unlock_bh(&dn_fib_tables_lock);
if (!(f->fn_state & DN_S_ZOMBIE))
dn_rtmsg_fib(RTM_DELROUTE, f, z, tb->n, n, req);
if (f->fn_state & DN_S_ACCESSED)
dn_rt_cache_flush(-1);
dn_free_node(f);
dz->dz_nent--;
} else {
dn_rt_cache_flush(-1);
}
dn_rtmsg_fib(RTM_NEWROUTE, new_f, z, tb->n, n, req);
return 0;
out:
dn_fib_release_info(fi);
return err;
}
static int dn_fib_table_delete(struct dn_fib_table *tb, struct rtmsg *r, struct nlattr *attrs[],
struct nlmsghdr *n, struct netlink_skb_parms *req)
{
struct dn_hash *table = (struct dn_hash*)tb->data;
struct dn_fib_node **fp, **del_fp, *f;
int z = r->rtm_dst_len;
struct dn_zone *dz;
dn_fib_key_t key;
int matched;
if (z > 16)
return -EINVAL;
if ((dz = table->dh_zones[z]) == NULL)
return -ESRCH;
dz_key_0(key);
if (attrs[RTA_DST]) {
__le16 dst = nla_get_le16(attrs[RTA_DST]);
if (dst & ~DZ_MASK(dz))
return -EINVAL;
key = dz_key(dst, dz);
}
fp = dn_chain_p(key, dz);
DN_FIB_SCAN(f, fp) {
if (dn_key_eq(f->fn_key, key))
break;
if (dn_key_leq(key, f->fn_key))
return -ESRCH;
}
matched = 0;
del_fp = NULL;
DN_FIB_SCAN_KEY(f, fp, key) {
struct dn_fib_info *fi = DN_FIB_INFO(f);
if (f->fn_state & DN_S_ZOMBIE)
return -ESRCH;
matched++;
if (del_fp == NULL &&
(!r->rtm_type || f->fn_type == r->rtm_type) &&
(r->rtm_scope == RT_SCOPE_NOWHERE || f->fn_scope == r->rtm_scope) &&
(!r->rtm_protocol ||
fi->fib_protocol == r->rtm_protocol) &&
dn_fib_nh_match(r, n, attrs, fi) == 0)
del_fp = fp;
}
if (del_fp) {
f = *del_fp;
dn_rtmsg_fib(RTM_DELROUTE, f, z, tb->n, n, req);
if (matched != 1) {
write_lock_bh(&dn_fib_tables_lock);
*del_fp = f->fn_next;
write_unlock_bh(&dn_fib_tables_lock);
if (f->fn_state & DN_S_ACCESSED)
dn_rt_cache_flush(-1);
dn_free_node(f);
dz->dz_nent--;
} else {
f->fn_state |= DN_S_ZOMBIE;
if (f->fn_state & DN_S_ACCESSED) {
f->fn_state &= ~DN_S_ACCESSED;
dn_rt_cache_flush(-1);
}
if (++dn_fib_hash_zombies > 128)
dn_fib_flush();
}
return 0;
}
return -ESRCH;
}
static inline int dn_flush_list(struct dn_fib_node **fp, int z, struct dn_hash *table)
{
int found = 0;
struct dn_fib_node *f;
while((f = *fp) != NULL) {
struct dn_fib_info *fi = DN_FIB_INFO(f);
if (fi && ((f->fn_state & DN_S_ZOMBIE) || (fi->fib_flags & RTNH_F_DEAD))) {
write_lock_bh(&dn_fib_tables_lock);
*fp = f->fn_next;
write_unlock_bh(&dn_fib_tables_lock);
dn_free_node(f);
found++;
continue;
}
fp = &f->fn_next;
}
return found;
}
static int dn_fib_table_flush(struct dn_fib_table *tb)
{
struct dn_hash *table = (struct dn_hash *)tb->data;
struct dn_zone *dz;
int found = 0;
dn_fib_hash_zombies = 0;
for(dz = table->dh_zone_list; dz; dz = dz->dz_next) {
int i;
int tmp = 0;
for(i = dz->dz_divisor-1; i >= 0; i--)
tmp += dn_flush_list(&dz->dz_hash[i], dz->dz_order, table);
dz->dz_nent -= tmp;
found += tmp;
}
return found;
}
static int dn_fib_table_lookup(struct dn_fib_table *tb, const struct flowidn *flp, struct dn_fib_res *res)
{
int err;
struct dn_zone *dz;
struct dn_hash *t = (struct dn_hash *)tb->data;
read_lock(&dn_fib_tables_lock);
for(dz = t->dh_zone_list; dz; dz = dz->dz_next) {
struct dn_fib_node *f;
dn_fib_key_t k = dz_key(flp->daddr, dz);
for(f = dz_chain(k, dz); f; f = f->fn_next) {
if (!dn_key_eq(k, f->fn_key)) {
if (dn_key_leq(k, f->fn_key))
break;
else
continue;
}
f->fn_state |= DN_S_ACCESSED;
if (f->fn_state&DN_S_ZOMBIE)
continue;
if (f->fn_scope < flp->flowidn_scope)
continue;
err = dn_fib_semantic_match(f->fn_type, DN_FIB_INFO(f), flp, res);
if (err == 0) {
res->type = f->fn_type;
res->scope = f->fn_scope;
res->prefixlen = dz->dz_order;
goto out;
}
if (err < 0)
goto out;
}
}
err = 1;
out:
read_unlock(&dn_fib_tables_lock);
return err;
}
struct dn_fib_table *dn_fib_get_table(u32 n, int create)
{
struct dn_fib_table *t;
unsigned int h;
if (n < RT_TABLE_MIN)
return NULL;
if (n > RT_TABLE_MAX)
return NULL;
h = n & (DN_FIB_TABLE_HASHSZ - 1);
rcu_read_lock();
hlist_for_each_entry_rcu(t, &dn_fib_table_hash[h], hlist) {
if (t->n == n) {
rcu_read_unlock();
return t;
}
}
rcu_read_unlock();
if (!create)
return NULL;
if (in_interrupt()) {
net_dbg_ratelimited("DECnet: BUG! Attempt to create routing table from interrupt\n");
return NULL;
}
t = kzalloc(sizeof(struct dn_fib_table) + sizeof(struct dn_hash),
GFP_KERNEL);
if (t == NULL)
return NULL;
t->n = n;
t->insert = dn_fib_table_insert;
t->delete = dn_fib_table_delete;
t->lookup = dn_fib_table_lookup;
t->flush = dn_fib_table_flush;
t->dump = dn_fib_table_dump;
hlist_add_head_rcu(&t->hlist, &dn_fib_table_hash[h]);
return t;
}
struct dn_fib_table *dn_fib_empty_table(void)
{
u32 id;
for(id = RT_TABLE_MIN; id <= RT_TABLE_MAX; id++)
if (dn_fib_get_table(id, 0) == NULL)
return dn_fib_get_table(id, 1);
return NULL;
}
void dn_fib_flush(void)
{
int flushed = 0;
struct dn_fib_table *tb;
unsigned int h;
for (h = 0; h < DN_FIB_TABLE_HASHSZ; h++) {
hlist_for_each_entry(tb, &dn_fib_table_hash[h], hlist)
flushed += tb->flush(tb);
}
if (flushed)
dn_rt_cache_flush(-1);
}
void __init dn_fib_table_init(void)
{
dn_hash_kmem = kmem_cache_create("dn_fib_info_cache",
sizeof(struct dn_fib_info),
0, SLAB_HWCACHE_ALIGN,
NULL);
}
void __exit dn_fib_table_cleanup(void)
{
struct dn_fib_table *t;
struct hlist_node *next;
unsigned int h;
write_lock(&dn_fib_tables_lock);
for (h = 0; h < DN_FIB_TABLE_HASHSZ; h++) {
hlist_for_each_entry_safe(t, next, &dn_fib_table_hash[h],
hlist) {
hlist_del(&t->hlist);
kfree(t);
}
}
write_unlock(&dn_fib_tables_lock);
}