linux/drivers/net/can/spi/hi311x.c
Akshay Bhat 57e83fb9b7 can: hi311x: Add Holt HI-311x CAN driver
This patch adds support for the Holt HI-311x CAN controller. The HI311x
CAN controller is capable of transmitting and receiving standard data
frames, extended data frames and remote frames. The HI311x interfaces
with the host over SPI.

Datasheet: www.holtic.com/documents/371-hi-3110_v-rev-jpdf.do

Signed-off-by: Akshay Bhat <nodeax@gmail.com>
Acked-by: Wolfgang Grandegger <wg@grandegger.com>
Signed-off-by: Marc Kleine-Budde <mkl@pengutronix.de>
2017-04-04 17:35:59 +02:00

1077 lines
26 KiB
C

/* CAN bus driver for Holt HI3110 CAN Controller with SPI Interface
*
* Copyright(C) Timesys Corporation 2016
*
* Based on Microchip 251x CAN Controller (mcp251x) Linux kernel driver
* Copyright 2009 Christian Pellegrin EVOL S.r.l.
* Copyright 2007 Raymarine UK, Ltd. All Rights Reserved.
* Copyright 2006 Arcom Control Systems Ltd.
*
* Based on CAN bus driver for the CCAN controller written by
* - Sascha Hauer, Marc Kleine-Budde, Pengutronix
* - Simon Kallweit, intefo AG
* Copyright 2007
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/can/core.h>
#include <linux/can/dev.h>
#include <linux/can/led.h>
#include <linux/clk.h>
#include <linux/completion.h>
#include <linux/delay.h>
#include <linux/device.h>
#include <linux/dma-mapping.h>
#include <linux/freezer.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/netdevice.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/platform_device.h>
#include <linux/regulator/consumer.h>
#include <linux/slab.h>
#include <linux/spi/spi.h>
#include <linux/uaccess.h>
#define HI3110_MASTER_RESET 0x56
#define HI3110_READ_CTRL0 0xD2
#define HI3110_READ_CTRL1 0xD4
#define HI3110_READ_STATF 0xE2
#define HI3110_WRITE_CTRL0 0x14
#define HI3110_WRITE_CTRL1 0x16
#define HI3110_WRITE_INTE 0x1C
#define HI3110_WRITE_BTR0 0x18
#define HI3110_WRITE_BTR1 0x1A
#define HI3110_READ_BTR0 0xD6
#define HI3110_READ_BTR1 0xD8
#define HI3110_READ_INTF 0xDE
#define HI3110_READ_ERR 0xDC
#define HI3110_READ_FIFO_WOTIME 0x48
#define HI3110_WRITE_FIFO 0x12
#define HI3110_READ_MESSTAT 0xDA
#define HI3110_READ_REC 0xEA
#define HI3110_READ_TEC 0xEC
#define HI3110_CTRL0_MODE_MASK (7 << 5)
#define HI3110_CTRL0_NORMAL_MODE (0 << 5)
#define HI3110_CTRL0_LOOPBACK_MODE (1 << 5)
#define HI3110_CTRL0_MONITOR_MODE (2 << 5)
#define HI3110_CTRL0_SLEEP_MODE (3 << 5)
#define HI3110_CTRL0_INIT_MODE (4 << 5)
#define HI3110_CTRL1_TXEN BIT(7)
#define HI3110_INT_RXTMP BIT(7)
#define HI3110_INT_RXFIFO BIT(6)
#define HI3110_INT_TXCPLT BIT(5)
#define HI3110_INT_BUSERR BIT(4)
#define HI3110_INT_MCHG BIT(3)
#define HI3110_INT_WAKEUP BIT(2)
#define HI3110_INT_F1MESS BIT(1)
#define HI3110_INT_F0MESS BIT(0)
#define HI3110_ERR_BUSOFF BIT(7)
#define HI3110_ERR_TXERRP BIT(6)
#define HI3110_ERR_RXERRP BIT(5)
#define HI3110_ERR_BITERR BIT(4)
#define HI3110_ERR_FRMERR BIT(3)
#define HI3110_ERR_CRCERR BIT(2)
#define HI3110_ERR_ACKERR BIT(1)
#define HI3110_ERR_STUFERR BIT(0)
#define HI3110_ERR_PROTOCOL_MASK (0x1F)
#define HI3110_ERR_PASSIVE_MASK (0x60)
#define HI3110_STAT_RXFMTY BIT(1)
#define HI3110_STAT_BUSOFF BIT(2)
#define HI3110_STAT_ERRP BIT(3)
#define HI3110_STAT_ERRW BIT(4)
#define HI3110_BTR0_SJW_SHIFT 6
#define HI3110_BTR0_BRP_SHIFT 0
#define HI3110_BTR1_SAMP_3PERBIT (1 << 7)
#define HI3110_BTR1_SAMP_1PERBIT (0 << 7)
#define HI3110_BTR1_TSEG2_SHIFT 4
#define HI3110_BTR1_TSEG1_SHIFT 0
#define HI3110_FIFO_WOTIME_TAG_OFF 0
#define HI3110_FIFO_WOTIME_ID_OFF 1
#define HI3110_FIFO_WOTIME_DLC_OFF 5
#define HI3110_FIFO_WOTIME_DAT_OFF 6
#define HI3110_FIFO_WOTIME_TAG_IDE BIT(7)
#define HI3110_FIFO_WOTIME_ID_RTR BIT(0)
#define HI3110_FIFO_TAG_OFF 0
#define HI3110_FIFO_ID_OFF 1
#define HI3110_FIFO_STD_DLC_OFF 3
#define HI3110_FIFO_STD_DATA_OFF 4
#define HI3110_FIFO_EXT_DLC_OFF 5
#define HI3110_FIFO_EXT_DATA_OFF 6
#define HI3110_CAN_MAX_DATA_LEN 8
#define HI3110_RX_BUF_LEN 15
#define HI3110_TX_STD_BUF_LEN 12
#define HI3110_TX_EXT_BUF_LEN 14
#define HI3110_CAN_FRAME_MAX_BITS 128
#define HI3110_EFF_FLAGS 0x18 /* IDE + SRR */
#define HI3110_TX_ECHO_SKB_MAX 1
#define HI3110_OST_DELAY_MS (10)
#define DEVICE_NAME "hi3110"
static int hi3110_enable_dma = 1; /* Enable SPI DMA. Default: 1 (On) */
module_param(hi3110_enable_dma, int, 0444);
MODULE_PARM_DESC(hi3110_enable_dma, "Enable SPI DMA. Default: 1 (On)");
static const struct can_bittiming_const hi3110_bittiming_const = {
.name = DEVICE_NAME,
.tseg1_min = 2,
.tseg1_max = 16,
.tseg2_min = 2,
.tseg2_max = 8,
.sjw_max = 4,
.brp_min = 1,
.brp_max = 64,
.brp_inc = 1,
};
enum hi3110_model {
CAN_HI3110_HI3110 = 0x3110,
};
struct hi3110_priv {
struct can_priv can;
struct net_device *net;
struct spi_device *spi;
enum hi3110_model model;
struct mutex hi3110_lock; /* SPI device lock */
u8 *spi_tx_buf;
u8 *spi_rx_buf;
dma_addr_t spi_tx_dma;
dma_addr_t spi_rx_dma;
struct sk_buff *tx_skb;
int tx_len;
struct workqueue_struct *wq;
struct work_struct tx_work;
struct work_struct restart_work;
int force_quit;
int after_suspend;
#define HI3110_AFTER_SUSPEND_UP 1
#define HI3110_AFTER_SUSPEND_DOWN 2
#define HI3110_AFTER_SUSPEND_POWER 4
#define HI3110_AFTER_SUSPEND_RESTART 8
int restart_tx;
struct regulator *power;
struct regulator *transceiver;
struct clk *clk;
};
static void hi3110_clean(struct net_device *net)
{
struct hi3110_priv *priv = netdev_priv(net);
if (priv->tx_skb || priv->tx_len)
net->stats.tx_errors++;
if (priv->tx_skb)
dev_kfree_skb(priv->tx_skb);
if (priv->tx_len)
can_free_echo_skb(priv->net, 0);
priv->tx_skb = NULL;
priv->tx_len = 0;
}
/* Note about handling of error return of hi3110_spi_trans: accessing
* registers via SPI is not really different conceptually than using
* normal I/O assembler instructions, although it's much more
* complicated from a practical POV. So it's not advisable to always
* check the return value of this function. Imagine that every
* read{b,l}, write{b,l} and friends would be bracketed in "if ( < 0)
* error();", it would be a great mess (well there are some situation
* when exception handling C++ like could be useful after all). So we
* just check that transfers are OK at the beginning of our
* conversation with the chip and to avoid doing really nasty things
* (like injecting bogus packets in the network stack).
*/
static int hi3110_spi_trans(struct spi_device *spi, int len)
{
struct hi3110_priv *priv = spi_get_drvdata(spi);
struct spi_transfer t = {
.tx_buf = priv->spi_tx_buf,
.rx_buf = priv->spi_rx_buf,
.len = len,
.cs_change = 0,
};
struct spi_message m;
int ret;
spi_message_init(&m);
if (hi3110_enable_dma) {
t.tx_dma = priv->spi_tx_dma;
t.rx_dma = priv->spi_rx_dma;
m.is_dma_mapped = 1;
}
spi_message_add_tail(&t, &m);
ret = spi_sync(spi, &m);
if (ret)
dev_err(&spi->dev, "spi transfer failed: ret = %d\n", ret);
return ret;
}
static u8 hi3110_cmd(struct spi_device *spi, u8 command)
{
struct hi3110_priv *priv = spi_get_drvdata(spi);
priv->spi_tx_buf[0] = command;
dev_dbg(&spi->dev, "hi3110_cmd: %02X\n", command);
return hi3110_spi_trans(spi, 1);
}
static u8 hi3110_read(struct spi_device *spi, u8 command)
{
struct hi3110_priv *priv = spi_get_drvdata(spi);
u8 val = 0;
priv->spi_tx_buf[0] = command;
hi3110_spi_trans(spi, 2);
val = priv->spi_rx_buf[1];
return val;
}
static void hi3110_write(struct spi_device *spi, u8 reg, u8 val)
{
struct hi3110_priv *priv = spi_get_drvdata(spi);
priv->spi_tx_buf[0] = reg;
priv->spi_tx_buf[1] = val;
hi3110_spi_trans(spi, 2);
}
static void hi3110_hw_tx_frame(struct spi_device *spi, u8 *buf, int len)
{
struct hi3110_priv *priv = spi_get_drvdata(spi);
priv->spi_tx_buf[0] = HI3110_WRITE_FIFO;
memcpy(priv->spi_tx_buf + 1, buf, len);
hi3110_spi_trans(spi, len + 1);
}
static void hi3110_hw_tx(struct spi_device *spi, struct can_frame *frame)
{
u8 buf[HI3110_TX_EXT_BUF_LEN];
buf[HI3110_FIFO_TAG_OFF] = 0;
if (frame->can_id & CAN_EFF_FLAG) {
/* Extended frame */
buf[HI3110_FIFO_ID_OFF] = (frame->can_id & CAN_EFF_MASK) >> 21;
buf[HI3110_FIFO_ID_OFF + 1] =
(((frame->can_id & CAN_EFF_MASK) >> 13) & 0xe0) |
HI3110_EFF_FLAGS |
(((frame->can_id & CAN_EFF_MASK) >> 15) & 0x07);
buf[HI3110_FIFO_ID_OFF + 2] =
(frame->can_id & CAN_EFF_MASK) >> 7;
buf[HI3110_FIFO_ID_OFF + 3] =
((frame->can_id & CAN_EFF_MASK) << 1) |
((frame->can_id & CAN_RTR_FLAG) ? 1 : 0);
buf[HI3110_FIFO_EXT_DLC_OFF] = frame->can_dlc;
memcpy(buf + HI3110_FIFO_EXT_DATA_OFF,
frame->data, frame->can_dlc);
hi3110_hw_tx_frame(spi, buf, HI3110_TX_EXT_BUF_LEN -
(HI3110_CAN_MAX_DATA_LEN - frame->can_dlc));
} else {
/* Standard frame */
buf[HI3110_FIFO_ID_OFF] = (frame->can_id & CAN_SFF_MASK) >> 3;
buf[HI3110_FIFO_ID_OFF + 1] =
((frame->can_id & CAN_SFF_MASK) << 5) |
((frame->can_id & CAN_RTR_FLAG) ? (1 << 4) : 0);
buf[HI3110_FIFO_STD_DLC_OFF] = frame->can_dlc;
memcpy(buf + HI3110_FIFO_STD_DATA_OFF,
frame->data, frame->can_dlc);
hi3110_hw_tx_frame(spi, buf, HI3110_TX_STD_BUF_LEN -
(HI3110_CAN_MAX_DATA_LEN - frame->can_dlc));
}
}
static void hi3110_hw_rx_frame(struct spi_device *spi, u8 *buf)
{
struct hi3110_priv *priv = spi_get_drvdata(spi);
priv->spi_tx_buf[0] = HI3110_READ_FIFO_WOTIME;
hi3110_spi_trans(spi, HI3110_RX_BUF_LEN);
memcpy(buf, priv->spi_rx_buf + 1, HI3110_RX_BUF_LEN - 1);
}
static void hi3110_hw_rx(struct spi_device *spi)
{
struct hi3110_priv *priv = spi_get_drvdata(spi);
struct sk_buff *skb;
struct can_frame *frame;
u8 buf[HI3110_RX_BUF_LEN - 1];
skb = alloc_can_skb(priv->net, &frame);
if (!skb) {
priv->net->stats.rx_dropped++;
return;
}
hi3110_hw_rx_frame(spi, buf);
if (buf[HI3110_FIFO_WOTIME_TAG_OFF] & HI3110_FIFO_WOTIME_TAG_IDE) {
/* IDE is recessive (1), indicating extended 29-bit frame */
frame->can_id = CAN_EFF_FLAG;
frame->can_id |=
(buf[HI3110_FIFO_WOTIME_ID_OFF] << 21) |
(((buf[HI3110_FIFO_WOTIME_ID_OFF + 1] & 0xE0) >> 5) << 18) |
((buf[HI3110_FIFO_WOTIME_ID_OFF + 1] & 0x07) << 15) |
(buf[HI3110_FIFO_WOTIME_ID_OFF + 2] << 7) |
(buf[HI3110_FIFO_WOTIME_ID_OFF + 3] >> 1);
} else {
/* IDE is dominant (0), frame indicating standard 11-bit */
frame->can_id =
(buf[HI3110_FIFO_WOTIME_ID_OFF] << 3) |
((buf[HI3110_FIFO_WOTIME_ID_OFF + 1] & 0xE0) >> 5);
}
/* Data length */
frame->can_dlc = get_can_dlc(buf[HI3110_FIFO_WOTIME_DLC_OFF] & 0x0F);
if (buf[HI3110_FIFO_WOTIME_ID_OFF + 3] & HI3110_FIFO_WOTIME_ID_RTR)
frame->can_id |= CAN_RTR_FLAG;
else
memcpy(frame->data, buf + HI3110_FIFO_WOTIME_DAT_OFF,
frame->can_dlc);
priv->net->stats.rx_packets++;
priv->net->stats.rx_bytes += frame->can_dlc;
can_led_event(priv->net, CAN_LED_EVENT_RX);
netif_rx_ni(skb);
}
static void hi3110_hw_sleep(struct spi_device *spi)
{
hi3110_write(spi, HI3110_WRITE_CTRL0, HI3110_CTRL0_SLEEP_MODE);
}
static netdev_tx_t hi3110_hard_start_xmit(struct sk_buff *skb,
struct net_device *net)
{
struct hi3110_priv *priv = netdev_priv(net);
struct spi_device *spi = priv->spi;
if (priv->tx_skb || priv->tx_len) {
dev_err(&spi->dev, "hard_xmit called while tx busy\n");
return NETDEV_TX_BUSY;
}
if (can_dropped_invalid_skb(net, skb))
return NETDEV_TX_OK;
netif_stop_queue(net);
priv->tx_skb = skb;
queue_work(priv->wq, &priv->tx_work);
return NETDEV_TX_OK;
}
static int hi3110_do_set_mode(struct net_device *net, enum can_mode mode)
{
struct hi3110_priv *priv = netdev_priv(net);
switch (mode) {
case CAN_MODE_START:
hi3110_clean(net);
/* We have to delay work since SPI I/O may sleep */
priv->can.state = CAN_STATE_ERROR_ACTIVE;
priv->restart_tx = 1;
if (priv->can.restart_ms == 0)
priv->after_suspend = HI3110_AFTER_SUSPEND_RESTART;
queue_work(priv->wq, &priv->restart_work);
break;
default:
return -EOPNOTSUPP;
}
return 0;
}
static int hi3110_get_berr_counter(const struct net_device *net,
struct can_berr_counter *bec)
{
struct hi3110_priv *priv = netdev_priv(net);
struct spi_device *spi = priv->spi;
bec->txerr = hi3110_read(spi, HI3110_READ_TEC);
bec->rxerr = hi3110_read(spi, HI3110_READ_REC);
return 0;
}
static int hi3110_set_normal_mode(struct spi_device *spi)
{
struct hi3110_priv *priv = spi_get_drvdata(spi);
u8 reg = 0;
hi3110_write(spi, HI3110_WRITE_INTE, HI3110_INT_BUSERR |
HI3110_INT_RXFIFO | HI3110_INT_TXCPLT);
/* Enable TX */
hi3110_write(spi, HI3110_WRITE_CTRL1, HI3110_CTRL1_TXEN);
if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK)
reg = HI3110_CTRL0_LOOPBACK_MODE;
else if (priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY)
reg = HI3110_CTRL0_MONITOR_MODE;
else
reg = HI3110_CTRL0_NORMAL_MODE;
hi3110_write(spi, HI3110_WRITE_CTRL0, reg);
/* Wait for the device to enter the mode */
mdelay(HI3110_OST_DELAY_MS);
reg = hi3110_read(spi, HI3110_READ_CTRL0);
if ((reg & HI3110_CTRL0_MODE_MASK) != reg)
return -EBUSY;
priv->can.state = CAN_STATE_ERROR_ACTIVE;
return 0;
}
static int hi3110_do_set_bittiming(struct net_device *net)
{
struct hi3110_priv *priv = netdev_priv(net);
struct can_bittiming *bt = &priv->can.bittiming;
struct spi_device *spi = priv->spi;
hi3110_write(spi, HI3110_WRITE_BTR0,
((bt->sjw - 1) << HI3110_BTR0_SJW_SHIFT) |
((bt->brp - 1) << HI3110_BTR0_BRP_SHIFT));
hi3110_write(spi, HI3110_WRITE_BTR1,
(priv->can.ctrlmode &
CAN_CTRLMODE_3_SAMPLES ?
HI3110_BTR1_SAMP_3PERBIT : HI3110_BTR1_SAMP_1PERBIT) |
((bt->phase_seg1 + bt->prop_seg - 1)
<< HI3110_BTR1_TSEG1_SHIFT) |
((bt->phase_seg2 - 1) << HI3110_BTR1_TSEG2_SHIFT));
dev_dbg(&spi->dev, "BT: 0x%02x 0x%02x\n",
hi3110_read(spi, HI3110_READ_BTR0),
hi3110_read(spi, HI3110_READ_BTR1));
return 0;
}
static int hi3110_setup(struct net_device *net)
{
hi3110_do_set_bittiming(net);
return 0;
}
static int hi3110_hw_reset(struct spi_device *spi)
{
u8 reg;
int ret;
/* Wait for oscillator startup timer after power up */
mdelay(HI3110_OST_DELAY_MS);
ret = hi3110_cmd(spi, HI3110_MASTER_RESET);
if (ret)
return ret;
/* Wait for oscillator startup timer after reset */
mdelay(HI3110_OST_DELAY_MS);
reg = hi3110_read(spi, HI3110_READ_CTRL0);
if ((reg & HI3110_CTRL0_MODE_MASK) != HI3110_CTRL0_INIT_MODE)
return -ENODEV;
/* As per the datasheet it appears the error flags are
* not cleared on reset. Explicitly clear them by performing a read
*/
hi3110_read(spi, HI3110_READ_ERR);
return 0;
}
static int hi3110_hw_probe(struct spi_device *spi)
{
u8 statf;
hi3110_hw_reset(spi);
/* Confirm correct operation by checking against reset values
* in datasheet
*/
statf = hi3110_read(spi, HI3110_READ_STATF);
dev_dbg(&spi->dev, "statf: %02X\n", statf);
if (statf != 0x82)
return -ENODEV;
return 0;
}
static int hi3110_power_enable(struct regulator *reg, int enable)
{
if (IS_ERR_OR_NULL(reg))
return 0;
if (enable)
return regulator_enable(reg);
else
return regulator_disable(reg);
}
static int hi3110_stop(struct net_device *net)
{
struct hi3110_priv *priv = netdev_priv(net);
struct spi_device *spi = priv->spi;
close_candev(net);
priv->force_quit = 1;
free_irq(spi->irq, priv);
destroy_workqueue(priv->wq);
priv->wq = NULL;
mutex_lock(&priv->hi3110_lock);
/* Disable transmit, interrupts and clear flags */
hi3110_write(spi, HI3110_WRITE_CTRL1, 0x0);
hi3110_write(spi, HI3110_WRITE_INTE, 0x0);
hi3110_read(spi, HI3110_READ_INTF);
hi3110_clean(net);
hi3110_hw_sleep(spi);
hi3110_power_enable(priv->transceiver, 0);
priv->can.state = CAN_STATE_STOPPED;
mutex_unlock(&priv->hi3110_lock);
can_led_event(net, CAN_LED_EVENT_STOP);
return 0;
}
static void hi3110_tx_work_handler(struct work_struct *ws)
{
struct hi3110_priv *priv = container_of(ws, struct hi3110_priv,
tx_work);
struct spi_device *spi = priv->spi;
struct net_device *net = priv->net;
struct can_frame *frame;
mutex_lock(&priv->hi3110_lock);
if (priv->tx_skb) {
if (priv->can.state == CAN_STATE_BUS_OFF) {
hi3110_clean(net);
} else {
frame = (struct can_frame *)priv->tx_skb->data;
hi3110_hw_tx(spi, frame);
priv->tx_len = 1 + frame->can_dlc;
can_put_echo_skb(priv->tx_skb, net, 0);
priv->tx_skb = NULL;
}
}
mutex_unlock(&priv->hi3110_lock);
}
static void hi3110_restart_work_handler(struct work_struct *ws)
{
struct hi3110_priv *priv = container_of(ws, struct hi3110_priv,
restart_work);
struct spi_device *spi = priv->spi;
struct net_device *net = priv->net;
mutex_lock(&priv->hi3110_lock);
if (priv->after_suspend) {
hi3110_hw_reset(spi);
hi3110_setup(net);
if (priv->after_suspend & HI3110_AFTER_SUSPEND_RESTART) {
hi3110_set_normal_mode(spi);
} else if (priv->after_suspend & HI3110_AFTER_SUSPEND_UP) {
netif_device_attach(net);
hi3110_clean(net);
hi3110_set_normal_mode(spi);
netif_wake_queue(net);
} else {
hi3110_hw_sleep(spi);
}
priv->after_suspend = 0;
priv->force_quit = 0;
}
if (priv->restart_tx) {
priv->restart_tx = 0;
hi3110_hw_reset(spi);
hi3110_setup(net);
hi3110_clean(net);
hi3110_set_normal_mode(spi);
netif_wake_queue(net);
}
mutex_unlock(&priv->hi3110_lock);
}
static irqreturn_t hi3110_can_ist(int irq, void *dev_id)
{
struct hi3110_priv *priv = dev_id;
struct spi_device *spi = priv->spi;
struct net_device *net = priv->net;
mutex_lock(&priv->hi3110_lock);
while (!priv->force_quit) {
enum can_state new_state;
u8 intf, eflag, statf;
while (!(HI3110_STAT_RXFMTY &
(statf = hi3110_read(spi, HI3110_READ_STATF)))) {
hi3110_hw_rx(spi);
}
intf = hi3110_read(spi, HI3110_READ_INTF);
eflag = hi3110_read(spi, HI3110_READ_ERR);
/* Update can state */
if (eflag & HI3110_ERR_BUSOFF)
new_state = CAN_STATE_BUS_OFF;
else if (eflag & HI3110_ERR_PASSIVE_MASK)
new_state = CAN_STATE_ERROR_PASSIVE;
else if (statf & HI3110_STAT_ERRW)
new_state = CAN_STATE_ERROR_WARNING;
else
new_state = CAN_STATE_ERROR_ACTIVE;
if (new_state != priv->can.state) {
struct can_frame *cf;
struct sk_buff *skb;
enum can_state rx_state, tx_state;
u8 rxerr, txerr;
skb = alloc_can_err_skb(net, &cf);
if (!skb)
break;
txerr = hi3110_read(spi, HI3110_READ_TEC);
rxerr = hi3110_read(spi, HI3110_READ_REC);
cf->data[6] = txerr;
cf->data[7] = rxerr;
tx_state = txerr >= rxerr ? new_state : 0;
rx_state = txerr <= rxerr ? new_state : 0;
can_change_state(net, cf, tx_state, rx_state);
netif_rx_ni(skb);
if (new_state == CAN_STATE_BUS_OFF) {
can_bus_off(net);
if (priv->can.restart_ms == 0) {
priv->force_quit = 1;
hi3110_hw_sleep(spi);
break;
}
}
}
/* Update bus errors */
if ((intf & HI3110_INT_BUSERR) &&
(priv->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING)) {
struct can_frame *cf;
struct sk_buff *skb;
/* Check for protocol errors */
if (eflag & HI3110_ERR_PROTOCOL_MASK) {
skb = alloc_can_err_skb(net, &cf);
if (!skb)
break;
cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR;
priv->can.can_stats.bus_error++;
priv->net->stats.rx_errors++;
if (eflag & HI3110_ERR_BITERR)
cf->data[2] |= CAN_ERR_PROT_BIT;
else if (eflag & HI3110_ERR_FRMERR)
cf->data[2] |= CAN_ERR_PROT_FORM;
else if (eflag & HI3110_ERR_STUFERR)
cf->data[2] |= CAN_ERR_PROT_STUFF;
else if (eflag & HI3110_ERR_CRCERR)
cf->data[3] |= CAN_ERR_PROT_LOC_CRC_SEQ;
else if (eflag & HI3110_ERR_ACKERR)
cf->data[3] |= CAN_ERR_PROT_LOC_ACK;
cf->data[6] = hi3110_read(spi, HI3110_READ_TEC);
cf->data[7] = hi3110_read(spi, HI3110_READ_REC);
netdev_dbg(priv->net, "Bus Error\n");
netif_rx_ni(skb);
}
}
if (intf == 0)
break;
if (intf & HI3110_INT_TXCPLT) {
net->stats.tx_packets++;
net->stats.tx_bytes += priv->tx_len - 1;
can_led_event(net, CAN_LED_EVENT_TX);
if (priv->tx_len) {
can_get_echo_skb(net, 0);
priv->tx_len = 0;
}
netif_wake_queue(net);
}
}
mutex_unlock(&priv->hi3110_lock);
return IRQ_HANDLED;
}
static int hi3110_open(struct net_device *net)
{
struct hi3110_priv *priv = netdev_priv(net);
struct spi_device *spi = priv->spi;
unsigned long flags = IRQF_ONESHOT | IRQF_TRIGGER_RISING;
int ret;
ret = open_candev(net);
if (ret)
return ret;
mutex_lock(&priv->hi3110_lock);
hi3110_power_enable(priv->transceiver, 1);
priv->force_quit = 0;
priv->tx_skb = NULL;
priv->tx_len = 0;
ret = request_threaded_irq(spi->irq, NULL, hi3110_can_ist,
flags, DEVICE_NAME, priv);
if (ret) {
dev_err(&spi->dev, "failed to acquire irq %d\n", spi->irq);
goto out_close;
}
priv->wq = alloc_workqueue("hi3110_wq", WQ_FREEZABLE | WQ_MEM_RECLAIM,
0);
if (!priv->wq) {
ret = -ENOMEM;
goto out_free_irq;
}
INIT_WORK(&priv->tx_work, hi3110_tx_work_handler);
INIT_WORK(&priv->restart_work, hi3110_restart_work_handler);
ret = hi3110_hw_reset(spi);
if (ret)
goto out_free_wq;
ret = hi3110_setup(net);
if (ret)
goto out_free_wq;
ret = hi3110_set_normal_mode(spi);
if (ret)
goto out_free_wq;
can_led_event(net, CAN_LED_EVENT_OPEN);
netif_wake_queue(net);
mutex_unlock(&priv->hi3110_lock);
return 0;
out_free_wq:
destroy_workqueue(priv->wq);
out_free_irq:
free_irq(spi->irq, priv);
hi3110_hw_sleep(spi);
out_close:
hi3110_power_enable(priv->transceiver, 0);
close_candev(net);
mutex_unlock(&priv->hi3110_lock);
return ret;
}
static const struct net_device_ops hi3110_netdev_ops = {
.ndo_open = hi3110_open,
.ndo_stop = hi3110_stop,
.ndo_start_xmit = hi3110_hard_start_xmit,
};
static const struct of_device_id hi3110_of_match[] = {
{
.compatible = "holt,hi3110",
.data = (void *)CAN_HI3110_HI3110,
},
{ }
};
MODULE_DEVICE_TABLE(of, hi3110_of_match);
static const struct spi_device_id hi3110_id_table[] = {
{
.name = "hi3110",
.driver_data = (kernel_ulong_t)CAN_HI3110_HI3110,
},
{ }
};
MODULE_DEVICE_TABLE(spi, hi3110_id_table);
static int hi3110_can_probe(struct spi_device *spi)
{
const struct of_device_id *of_id = of_match_device(hi3110_of_match,
&spi->dev);
struct net_device *net;
struct hi3110_priv *priv;
struct clk *clk;
int freq, ret;
clk = devm_clk_get(&spi->dev, NULL);
if (IS_ERR(clk)) {
dev_err(&spi->dev, "no CAN clock source defined\n");
return PTR_ERR(clk);
}
freq = clk_get_rate(clk);
/* Sanity check */
if (freq > 40000000)
return -ERANGE;
/* Allocate can/net device */
net = alloc_candev(sizeof(struct hi3110_priv), HI3110_TX_ECHO_SKB_MAX);
if (!net)
return -ENOMEM;
if (!IS_ERR(clk)) {
ret = clk_prepare_enable(clk);
if (ret)
goto out_free;
}
net->netdev_ops = &hi3110_netdev_ops;
net->flags |= IFF_ECHO;
priv = netdev_priv(net);
priv->can.bittiming_const = &hi3110_bittiming_const;
priv->can.do_set_mode = hi3110_do_set_mode;
priv->can.do_get_berr_counter = hi3110_get_berr_counter;
priv->can.clock.freq = freq / 2;
priv->can.ctrlmode_supported = CAN_CTRLMODE_3_SAMPLES |
CAN_CTRLMODE_LOOPBACK |
CAN_CTRLMODE_LISTENONLY |
CAN_CTRLMODE_BERR_REPORTING;
if (of_id)
priv->model = (enum hi3110_model)of_id->data;
else
priv->model = spi_get_device_id(spi)->driver_data;
priv->net = net;
priv->clk = clk;
spi_set_drvdata(spi, priv);
/* Configure the SPI bus */
spi->bits_per_word = 8;
ret = spi_setup(spi);
if (ret)
goto out_clk;
priv->power = devm_regulator_get_optional(&spi->dev, "vdd");
priv->transceiver = devm_regulator_get_optional(&spi->dev, "xceiver");
if ((PTR_ERR(priv->power) == -EPROBE_DEFER) ||
(PTR_ERR(priv->transceiver) == -EPROBE_DEFER)) {
ret = -EPROBE_DEFER;
goto out_clk;
}
ret = hi3110_power_enable(priv->power, 1);
if (ret)
goto out_clk;
priv->spi = spi;
mutex_init(&priv->hi3110_lock);
/* If requested, allocate DMA buffers */
if (hi3110_enable_dma) {
spi->dev.coherent_dma_mask = ~0;
/* Minimum coherent DMA allocation is PAGE_SIZE, so allocate
* that much and share it between Tx and Rx DMA buffers.
*/
priv->spi_tx_buf = dmam_alloc_coherent(&spi->dev,
PAGE_SIZE,
&priv->spi_tx_dma,
GFP_DMA);
if (priv->spi_tx_buf) {
priv->spi_rx_buf = (priv->spi_tx_buf + (PAGE_SIZE / 2));
priv->spi_rx_dma = (dma_addr_t)(priv->spi_tx_dma +
(PAGE_SIZE / 2));
} else {
/* Fall back to non-DMA */
hi3110_enable_dma = 0;
}
}
/* Allocate non-DMA buffers */
if (!hi3110_enable_dma) {
priv->spi_tx_buf = devm_kzalloc(&spi->dev, HI3110_RX_BUF_LEN,
GFP_KERNEL);
if (!priv->spi_tx_buf) {
ret = -ENOMEM;
goto error_probe;
}
priv->spi_rx_buf = devm_kzalloc(&spi->dev, HI3110_RX_BUF_LEN,
GFP_KERNEL);
if (!priv->spi_rx_buf) {
ret = -ENOMEM;
goto error_probe;
}
}
SET_NETDEV_DEV(net, &spi->dev);
ret = hi3110_hw_probe(spi);
if (ret) {
if (ret == -ENODEV)
dev_err(&spi->dev, "Cannot initialize %x. Wrong wiring?\n",
priv->model);
goto error_probe;
}
hi3110_hw_sleep(spi);
ret = register_candev(net);
if (ret)
goto error_probe;
devm_can_led_init(net);
netdev_info(net, "%x successfully initialized.\n", priv->model);
return 0;
error_probe:
hi3110_power_enable(priv->power, 0);
out_clk:
if (!IS_ERR(clk))
clk_disable_unprepare(clk);
out_free:
free_candev(net);
dev_err(&spi->dev, "Probe failed, err=%d\n", -ret);
return ret;
}
static int hi3110_can_remove(struct spi_device *spi)
{
struct hi3110_priv *priv = spi_get_drvdata(spi);
struct net_device *net = priv->net;
unregister_candev(net);
hi3110_power_enable(priv->power, 0);
if (!IS_ERR(priv->clk))
clk_disable_unprepare(priv->clk);
free_candev(net);
return 0;
}
static int __maybe_unused hi3110_can_suspend(struct device *dev)
{
struct spi_device *spi = to_spi_device(dev);
struct hi3110_priv *priv = spi_get_drvdata(spi);
struct net_device *net = priv->net;
priv->force_quit = 1;
disable_irq(spi->irq);
/* Note: at this point neither IST nor workqueues are running.
* open/stop cannot be called anyway so locking is not needed
*/
if (netif_running(net)) {
netif_device_detach(net);
hi3110_hw_sleep(spi);
hi3110_power_enable(priv->transceiver, 0);
priv->after_suspend = HI3110_AFTER_SUSPEND_UP;
} else {
priv->after_suspend = HI3110_AFTER_SUSPEND_DOWN;
}
if (!IS_ERR_OR_NULL(priv->power)) {
regulator_disable(priv->power);
priv->after_suspend |= HI3110_AFTER_SUSPEND_POWER;
}
return 0;
}
static int __maybe_unused hi3110_can_resume(struct device *dev)
{
struct spi_device *spi = to_spi_device(dev);
struct hi3110_priv *priv = spi_get_drvdata(spi);
if (priv->after_suspend & HI3110_AFTER_SUSPEND_POWER)
hi3110_power_enable(priv->power, 1);
if (priv->after_suspend & HI3110_AFTER_SUSPEND_UP) {
hi3110_power_enable(priv->transceiver, 1);
queue_work(priv->wq, &priv->restart_work);
} else {
priv->after_suspend = 0;
}
priv->force_quit = 0;
enable_irq(spi->irq);
return 0;
}
static SIMPLE_DEV_PM_OPS(hi3110_can_pm_ops, hi3110_can_suspend, hi3110_can_resume);
static struct spi_driver hi3110_can_driver = {
.driver = {
.name = DEVICE_NAME,
.of_match_table = hi3110_of_match,
.pm = &hi3110_can_pm_ops,
},
.id_table = hi3110_id_table,
.probe = hi3110_can_probe,
.remove = hi3110_can_remove,
};
module_spi_driver(hi3110_can_driver);
MODULE_AUTHOR("Akshay Bhat <akshay.bhat@timesys.com>");
MODULE_AUTHOR("Casey Fitzpatrick <casey.fitzpatrick@timesys.com>");
MODULE_DESCRIPTION("Holt HI-3110 CAN driver");
MODULE_LICENSE("GPL v2");