linux/drivers/gpu/drm/i915/gem/i915_gem_context.c
Chris Wilson 22ca8a452e drm/i915/gt: Wait for RCUs frees before asserting idle on unload
During driver unload, we have many asserts that we have released our
bookkeeping structs and are idle. In some cases, these struct are
protected by RCU and we do not release them until after an RCU grace
period.

Reported-by: Maarten Lankhorst <maarten.lankhorst@linux.intel.com>
Fixes: 130a95e909 ("drm/i915/gem: Consolidate ctx->engines[] release")
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Cc: Mika Kuoppala <mika.kuoppala@linux.intel.com>
Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Reviewed-by: Mika Kuoppala <mika.kuoppala@linux.intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20200312115307.16460-1-chris@chris-wilson.co.uk
2020-03-12 20:47:24 +00:00

2647 lines
62 KiB
C

/*
* SPDX-License-Identifier: MIT
*
* Copyright © 2011-2012 Intel Corporation
*/
/*
* This file implements HW context support. On gen5+ a HW context consists of an
* opaque GPU object which is referenced at times of context saves and restores.
* With RC6 enabled, the context is also referenced as the GPU enters and exists
* from RC6 (GPU has it's own internal power context, except on gen5). Though
* something like a context does exist for the media ring, the code only
* supports contexts for the render ring.
*
* In software, there is a distinction between contexts created by the user,
* and the default HW context. The default HW context is used by GPU clients
* that do not request setup of their own hardware context. The default
* context's state is never restored to help prevent programming errors. This
* would happen if a client ran and piggy-backed off another clients GPU state.
* The default context only exists to give the GPU some offset to load as the
* current to invoke a save of the context we actually care about. In fact, the
* code could likely be constructed, albeit in a more complicated fashion, to
* never use the default context, though that limits the driver's ability to
* swap out, and/or destroy other contexts.
*
* All other contexts are created as a request by the GPU client. These contexts
* store GPU state, and thus allow GPU clients to not re-emit state (and
* potentially query certain state) at any time. The kernel driver makes
* certain that the appropriate commands are inserted.
*
* The context life cycle is semi-complicated in that context BOs may live
* longer than the context itself because of the way the hardware, and object
* tracking works. Below is a very crude representation of the state machine
* describing the context life.
* refcount pincount active
* S0: initial state 0 0 0
* S1: context created 1 0 0
* S2: context is currently running 2 1 X
* S3: GPU referenced, but not current 2 0 1
* S4: context is current, but destroyed 1 1 0
* S5: like S3, but destroyed 1 0 1
*
* The most common (but not all) transitions:
* S0->S1: client creates a context
* S1->S2: client submits execbuf with context
* S2->S3: other clients submits execbuf with context
* S3->S1: context object was retired
* S3->S2: clients submits another execbuf
* S2->S4: context destroy called with current context
* S3->S5->S0: destroy path
* S4->S5->S0: destroy path on current context
*
* There are two confusing terms used above:
* The "current context" means the context which is currently running on the
* GPU. The GPU has loaded its state already and has stored away the gtt
* offset of the BO. The GPU is not actively referencing the data at this
* offset, but it will on the next context switch. The only way to avoid this
* is to do a GPU reset.
*
* An "active context' is one which was previously the "current context" and is
* on the active list waiting for the next context switch to occur. Until this
* happens, the object must remain at the same gtt offset. It is therefore
* possible to destroy a context, but it is still active.
*
*/
#include <linux/log2.h>
#include <linux/nospec.h>
#include "gt/gen6_ppgtt.h"
#include "gt/intel_context.h"
#include "gt/intel_context_param.h"
#include "gt/intel_engine_heartbeat.h"
#include "gt/intel_engine_user.h"
#include "gt/intel_ring.h"
#include "i915_gem_context.h"
#include "i915_globals.h"
#include "i915_trace.h"
#include "i915_user_extensions.h"
#define ALL_L3_SLICES(dev) (1 << NUM_L3_SLICES(dev)) - 1
static struct i915_global_gem_context {
struct i915_global base;
struct kmem_cache *slab_luts;
} global;
struct i915_lut_handle *i915_lut_handle_alloc(void)
{
return kmem_cache_alloc(global.slab_luts, GFP_KERNEL);
}
void i915_lut_handle_free(struct i915_lut_handle *lut)
{
return kmem_cache_free(global.slab_luts, lut);
}
static void lut_close(struct i915_gem_context *ctx)
{
struct radix_tree_iter iter;
void __rcu **slot;
lockdep_assert_held(&ctx->mutex);
rcu_read_lock();
radix_tree_for_each_slot(slot, &ctx->handles_vma, &iter, 0) {
struct i915_vma *vma = rcu_dereference_raw(*slot);
struct drm_i915_gem_object *obj = vma->obj;
struct i915_lut_handle *lut;
if (!kref_get_unless_zero(&obj->base.refcount))
continue;
rcu_read_unlock();
i915_gem_object_lock(obj);
list_for_each_entry(lut, &obj->lut_list, obj_link) {
if (lut->ctx != ctx)
continue;
if (lut->handle != iter.index)
continue;
list_del(&lut->obj_link);
break;
}
i915_gem_object_unlock(obj);
rcu_read_lock();
if (&lut->obj_link != &obj->lut_list) {
i915_lut_handle_free(lut);
radix_tree_iter_delete(&ctx->handles_vma, &iter, slot);
if (atomic_dec_and_test(&vma->open_count) &&
!i915_vma_is_ggtt(vma))
i915_vma_close(vma);
i915_gem_object_put(obj);
}
i915_gem_object_put(obj);
}
rcu_read_unlock();
}
static struct intel_context *
lookup_user_engine(struct i915_gem_context *ctx,
unsigned long flags,
const struct i915_engine_class_instance *ci)
#define LOOKUP_USER_INDEX BIT(0)
{
int idx;
if (!!(flags & LOOKUP_USER_INDEX) != i915_gem_context_user_engines(ctx))
return ERR_PTR(-EINVAL);
if (!i915_gem_context_user_engines(ctx)) {
struct intel_engine_cs *engine;
engine = intel_engine_lookup_user(ctx->i915,
ci->engine_class,
ci->engine_instance);
if (!engine)
return ERR_PTR(-EINVAL);
idx = engine->legacy_idx;
} else {
idx = ci->engine_instance;
}
return i915_gem_context_get_engine(ctx, idx);
}
static struct i915_address_space *
context_get_vm_rcu(struct i915_gem_context *ctx)
{
GEM_BUG_ON(!rcu_access_pointer(ctx->vm));
do {
struct i915_address_space *vm;
/*
* We do not allow downgrading from full-ppgtt [to a shared
* global gtt], so ctx->vm cannot become NULL.
*/
vm = rcu_dereference(ctx->vm);
if (!kref_get_unless_zero(&vm->ref))
continue;
/*
* This ppgtt may have be reallocated between
* the read and the kref, and reassigned to a third
* context. In order to avoid inadvertent sharing
* of this ppgtt with that third context (and not
* src), we have to confirm that we have the same
* ppgtt after passing through the strong memory
* barrier implied by a successful
* kref_get_unless_zero().
*
* Once we have acquired the current ppgtt of ctx,
* we no longer care if it is released from ctx, as
* it cannot be reallocated elsewhere.
*/
if (vm == rcu_access_pointer(ctx->vm))
return rcu_pointer_handoff(vm);
i915_vm_put(vm);
} while (1);
}
static void intel_context_set_gem(struct intel_context *ce,
struct i915_gem_context *ctx)
{
GEM_BUG_ON(rcu_access_pointer(ce->gem_context));
RCU_INIT_POINTER(ce->gem_context, ctx);
if (!test_bit(CONTEXT_ALLOC_BIT, &ce->flags))
ce->ring = __intel_context_ring_size(SZ_16K);
if (rcu_access_pointer(ctx->vm)) {
struct i915_address_space *vm;
rcu_read_lock();
vm = context_get_vm_rcu(ctx); /* hmm */
rcu_read_unlock();
i915_vm_put(ce->vm);
ce->vm = vm;
}
GEM_BUG_ON(ce->timeline);
if (ctx->timeline)
ce->timeline = intel_timeline_get(ctx->timeline);
if (ctx->sched.priority >= I915_PRIORITY_NORMAL &&
intel_engine_has_semaphores(ce->engine))
__set_bit(CONTEXT_USE_SEMAPHORES, &ce->flags);
}
static void __free_engines(struct i915_gem_engines *e, unsigned int count)
{
while (count--) {
if (!e->engines[count])
continue;
intel_context_put(e->engines[count]);
}
kfree(e);
}
static void free_engines(struct i915_gem_engines *e)
{
__free_engines(e, e->num_engines);
}
static void free_engines_rcu(struct rcu_head *rcu)
{
struct i915_gem_engines *engines =
container_of(rcu, struct i915_gem_engines, rcu);
i915_sw_fence_fini(&engines->fence);
free_engines(engines);
}
static int __i915_sw_fence_call
engines_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
{
struct i915_gem_engines *engines =
container_of(fence, typeof(*engines), fence);
switch (state) {
case FENCE_COMPLETE:
if (!list_empty(&engines->link)) {
struct i915_gem_context *ctx = engines->ctx;
unsigned long flags;
spin_lock_irqsave(&ctx->stale.lock, flags);
list_del(&engines->link);
spin_unlock_irqrestore(&ctx->stale.lock, flags);
}
i915_gem_context_put(engines->ctx);
break;
case FENCE_FREE:
init_rcu_head(&engines->rcu);
call_rcu(&engines->rcu, free_engines_rcu);
break;
}
return NOTIFY_DONE;
}
static struct i915_gem_engines *alloc_engines(unsigned int count)
{
struct i915_gem_engines *e;
e = kzalloc(struct_size(e, engines, count), GFP_KERNEL);
if (!e)
return NULL;
i915_sw_fence_init(&e->fence, engines_notify);
return e;
}
static struct i915_gem_engines *default_engines(struct i915_gem_context *ctx)
{
const struct intel_gt *gt = &ctx->i915->gt;
struct intel_engine_cs *engine;
struct i915_gem_engines *e;
enum intel_engine_id id;
e = alloc_engines(I915_NUM_ENGINES);
if (!e)
return ERR_PTR(-ENOMEM);
for_each_engine(engine, gt, id) {
struct intel_context *ce;
if (engine->legacy_idx == INVALID_ENGINE)
continue;
GEM_BUG_ON(engine->legacy_idx >= I915_NUM_ENGINES);
GEM_BUG_ON(e->engines[engine->legacy_idx]);
ce = intel_context_create(engine);
if (IS_ERR(ce)) {
__free_engines(e, e->num_engines + 1);
return ERR_CAST(ce);
}
intel_context_set_gem(ce, ctx);
e->engines[engine->legacy_idx] = ce;
e->num_engines = max(e->num_engines, engine->legacy_idx);
}
e->num_engines++;
return e;
}
static void i915_gem_context_free(struct i915_gem_context *ctx)
{
GEM_BUG_ON(!i915_gem_context_is_closed(ctx));
spin_lock(&ctx->i915->gem.contexts.lock);
list_del(&ctx->link);
spin_unlock(&ctx->i915->gem.contexts.lock);
mutex_destroy(&ctx->engines_mutex);
if (ctx->timeline)
intel_timeline_put(ctx->timeline);
put_pid(ctx->pid);
mutex_destroy(&ctx->mutex);
kfree_rcu(ctx, rcu);
}
static void contexts_free_all(struct llist_node *list)
{
struct i915_gem_context *ctx, *cn;
llist_for_each_entry_safe(ctx, cn, list, free_link)
i915_gem_context_free(ctx);
}
static void contexts_flush_free(struct i915_gem_contexts *gc)
{
contexts_free_all(llist_del_all(&gc->free_list));
}
static void contexts_free_worker(struct work_struct *work)
{
struct i915_gem_contexts *gc =
container_of(work, typeof(*gc), free_work);
contexts_flush_free(gc);
}
void i915_gem_context_release(struct kref *ref)
{
struct i915_gem_context *ctx = container_of(ref, typeof(*ctx), ref);
struct i915_gem_contexts *gc = &ctx->i915->gem.contexts;
trace_i915_context_free(ctx);
if (llist_add(&ctx->free_link, &gc->free_list))
schedule_work(&gc->free_work);
}
static inline struct i915_gem_engines *
__context_engines_static(const struct i915_gem_context *ctx)
{
return rcu_dereference_protected(ctx->engines, true);
}
static bool __reset_engine(struct intel_engine_cs *engine)
{
struct intel_gt *gt = engine->gt;
bool success = false;
if (!intel_has_reset_engine(gt))
return false;
if (!test_and_set_bit(I915_RESET_ENGINE + engine->id,
&gt->reset.flags)) {
success = intel_engine_reset(engine, NULL) == 0;
clear_and_wake_up_bit(I915_RESET_ENGINE + engine->id,
&gt->reset.flags);
}
return success;
}
static void __reset_context(struct i915_gem_context *ctx,
struct intel_engine_cs *engine)
{
intel_gt_handle_error(engine->gt, engine->mask, 0,
"context closure in %s", ctx->name);
}
static bool __cancel_engine(struct intel_engine_cs *engine)
{
/*
* Send a "high priority pulse" down the engine to cause the
* current request to be momentarily preempted. (If it fails to
* be preempted, it will be reset). As we have marked our context
* as banned, any incomplete request, including any running, will
* be skipped following the preemption.
*
* If there is no hangchecking (one of the reasons why we try to
* cancel the context) and no forced preemption, there may be no
* means by which we reset the GPU and evict the persistent hog.
* Ergo if we are unable to inject a preemptive pulse that can
* kill the banned context, we fallback to doing a local reset
* instead.
*/
if (IS_ACTIVE(CONFIG_DRM_I915_PREEMPT_TIMEOUT) &&
!intel_engine_pulse(engine))
return true;
/* If we are unable to send a pulse, try resetting this engine. */
return __reset_engine(engine);
}
static struct intel_engine_cs *__active_engine(struct i915_request *rq)
{
struct intel_engine_cs *engine, *locked;
/*
* Serialise with __i915_request_submit() so that it sees
* is-banned?, or we know the request is already inflight.
*/
locked = READ_ONCE(rq->engine);
spin_lock_irq(&locked->active.lock);
while (unlikely(locked != (engine = READ_ONCE(rq->engine)))) {
spin_unlock(&locked->active.lock);
spin_lock(&engine->active.lock);
locked = engine;
}
engine = NULL;
if (i915_request_is_active(rq) && rq->fence.error != -EIO)
engine = rq->engine;
spin_unlock_irq(&locked->active.lock);
return engine;
}
static struct intel_engine_cs *active_engine(struct intel_context *ce)
{
struct intel_engine_cs *engine = NULL;
struct i915_request *rq;
if (!ce->timeline)
return NULL;
mutex_lock(&ce->timeline->mutex);
list_for_each_entry_reverse(rq, &ce->timeline->requests, link) {
if (i915_request_completed(rq))
break;
/* Check with the backend if the request is inflight */
engine = __active_engine(rq);
if (engine)
break;
}
mutex_unlock(&ce->timeline->mutex);
return engine;
}
static void kill_engines(struct i915_gem_engines *engines)
{
struct i915_gem_engines_iter it;
struct intel_context *ce;
/*
* Map the user's engine back to the actual engines; one virtual
* engine will be mapped to multiple engines, and using ctx->engine[]
* the same engine may be have multiple instances in the user's map.
* However, we only care about pending requests, so only include
* engines on which there are incomplete requests.
*/
for_each_gem_engine(ce, engines, it) {
struct intel_engine_cs *engine;
if (intel_context_set_banned(ce))
continue;
/*
* Check the current active state of this context; if we
* are currently executing on the GPU we need to evict
* ourselves. On the other hand, if we haven't yet been
* submitted to the GPU or if everything is complete,
* we have nothing to do.
*/
engine = active_engine(ce);
/* First attempt to gracefully cancel the context */
if (engine && !__cancel_engine(engine))
/*
* If we are unable to send a preemptive pulse to bump
* the context from the GPU, we have to resort to a full
* reset. We hope the collateral damage is worth it.
*/
__reset_context(engines->ctx, engine);
}
}
static void kill_stale_engines(struct i915_gem_context *ctx)
{
struct i915_gem_engines *pos, *next;
spin_lock_irq(&ctx->stale.lock);
GEM_BUG_ON(!i915_gem_context_is_closed(ctx));
list_for_each_entry_safe(pos, next, &ctx->stale.engines, link) {
if (!i915_sw_fence_await(&pos->fence)) {
list_del_init(&pos->link);
continue;
}
spin_unlock_irq(&ctx->stale.lock);
kill_engines(pos);
spin_lock_irq(&ctx->stale.lock);
GEM_BUG_ON(i915_sw_fence_signaled(&pos->fence));
list_safe_reset_next(pos, next, link);
list_del_init(&pos->link); /* decouple from FENCE_COMPLETE */
i915_sw_fence_complete(&pos->fence);
}
spin_unlock_irq(&ctx->stale.lock);
}
static void kill_context(struct i915_gem_context *ctx)
{
kill_stale_engines(ctx);
}
static void engines_idle_release(struct i915_gem_context *ctx,
struct i915_gem_engines *engines)
{
struct i915_gem_engines_iter it;
struct intel_context *ce;
INIT_LIST_HEAD(&engines->link);
engines->ctx = i915_gem_context_get(ctx);
for_each_gem_engine(ce, engines, it) {
struct dma_fence *fence;
int err = 0;
/* serialises with execbuf */
RCU_INIT_POINTER(ce->gem_context, NULL);
if (!intel_context_pin_if_active(ce))
continue;
fence = i915_active_fence_get(&ce->timeline->last_request);
if (fence) {
err = i915_sw_fence_await_dma_fence(&engines->fence,
fence, 0,
GFP_KERNEL);
dma_fence_put(fence);
}
intel_context_unpin(ce);
if (err < 0)
goto kill;
}
spin_lock_irq(&ctx->stale.lock);
if (!i915_gem_context_is_closed(ctx))
list_add_tail(&engines->link, &ctx->stale.engines);
spin_unlock_irq(&ctx->stale.lock);
kill:
if (list_empty(&engines->link)) /* raced, already closed */
kill_engines(engines);
i915_sw_fence_commit(&engines->fence);
}
static void set_closed_name(struct i915_gem_context *ctx)
{
char *s;
/* Replace '[]' with '<>' to indicate closed in debug prints */
s = strrchr(ctx->name, '[');
if (!s)
return;
*s = '<';
s = strchr(s + 1, ']');
if (s)
*s = '>';
}
static void context_close(struct i915_gem_context *ctx)
{
struct i915_address_space *vm;
/* Flush any concurrent set_engines() */
mutex_lock(&ctx->engines_mutex);
engines_idle_release(ctx, rcu_replace_pointer(ctx->engines, NULL, 1));
i915_gem_context_set_closed(ctx);
mutex_unlock(&ctx->engines_mutex);
mutex_lock(&ctx->mutex);
set_closed_name(ctx);
vm = i915_gem_context_vm(ctx);
if (vm)
i915_vm_close(vm);
ctx->file_priv = ERR_PTR(-EBADF);
/*
* The LUT uses the VMA as a backpointer to unref the object,
* so we need to clear the LUT before we close all the VMA (inside
* the ppgtt).
*/
lut_close(ctx);
mutex_unlock(&ctx->mutex);
/*
* If the user has disabled hangchecking, we can not be sure that
* the batches will ever complete after the context is closed,
* keeping the context and all resources pinned forever. So in this
* case we opt to forcibly kill off all remaining requests on
* context close.
*/
if (!i915_gem_context_is_persistent(ctx) ||
!i915_modparams.enable_hangcheck)
kill_context(ctx);
i915_gem_context_put(ctx);
}
static int __context_set_persistence(struct i915_gem_context *ctx, bool state)
{
if (i915_gem_context_is_persistent(ctx) == state)
return 0;
if (state) {
/*
* Only contexts that are short-lived [that will expire or be
* reset] are allowed to survive past termination. We require
* hangcheck to ensure that the persistent requests are healthy.
*/
if (!i915_modparams.enable_hangcheck)
return -EINVAL;
i915_gem_context_set_persistence(ctx);
} else {
/* To cancel a context we use "preempt-to-idle" */
if (!(ctx->i915->caps.scheduler & I915_SCHEDULER_CAP_PREEMPTION))
return -ENODEV;
/*
* If the cancel fails, we then need to reset, cleanly!
*
* If the per-engine reset fails, all hope is lost! We resort
* to a full GPU reset in that unlikely case, but realistically
* if the engine could not reset, the full reset does not fare
* much better. The damage has been done.
*
* However, if we cannot reset an engine by itself, we cannot
* cleanup a hanging persistent context without causing
* colateral damage, and we should not pretend we can by
* exposing the interface.
*/
if (!intel_has_reset_engine(&ctx->i915->gt))
return -ENODEV;
i915_gem_context_clear_persistence(ctx);
}
return 0;
}
static struct i915_gem_context *
__create_context(struct drm_i915_private *i915)
{
struct i915_gem_context *ctx;
struct i915_gem_engines *e;
int err;
int i;
ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
if (!ctx)
return ERR_PTR(-ENOMEM);
kref_init(&ctx->ref);
ctx->i915 = i915;
ctx->sched.priority = I915_USER_PRIORITY(I915_PRIORITY_NORMAL);
mutex_init(&ctx->mutex);
spin_lock_init(&ctx->stale.lock);
INIT_LIST_HEAD(&ctx->stale.engines);
mutex_init(&ctx->engines_mutex);
e = default_engines(ctx);
if (IS_ERR(e)) {
err = PTR_ERR(e);
goto err_free;
}
RCU_INIT_POINTER(ctx->engines, e);
INIT_RADIX_TREE(&ctx->handles_vma, GFP_KERNEL);
/* NB: Mark all slices as needing a remap so that when the context first
* loads it will restore whatever remap state already exists. If there
* is no remap info, it will be a NOP. */
ctx->remap_slice = ALL_L3_SLICES(i915);
i915_gem_context_set_bannable(ctx);
i915_gem_context_set_recoverable(ctx);
__context_set_persistence(ctx, true /* cgroup hook? */);
for (i = 0; i < ARRAY_SIZE(ctx->hang_timestamp); i++)
ctx->hang_timestamp[i] = jiffies - CONTEXT_FAST_HANG_JIFFIES;
spin_lock(&i915->gem.contexts.lock);
list_add_tail(&ctx->link, &i915->gem.contexts.list);
spin_unlock(&i915->gem.contexts.lock);
return ctx;
err_free:
kfree(ctx);
return ERR_PTR(err);
}
static int
context_apply_all(struct i915_gem_context *ctx,
int (*fn)(struct intel_context *ce, void *data),
void *data)
{
struct i915_gem_engines_iter it;
struct intel_context *ce;
int err = 0;
for_each_gem_engine(ce, i915_gem_context_lock_engines(ctx), it) {
err = fn(ce, data);
if (err)
break;
}
i915_gem_context_unlock_engines(ctx);
return err;
}
static int __apply_ppgtt(struct intel_context *ce, void *vm)
{
i915_vm_put(ce->vm);
ce->vm = i915_vm_get(vm);
return 0;
}
static struct i915_address_space *
__set_ppgtt(struct i915_gem_context *ctx, struct i915_address_space *vm)
{
struct i915_address_space *old = i915_gem_context_vm(ctx);
GEM_BUG_ON(old && i915_vm_is_4lvl(vm) != i915_vm_is_4lvl(old));
rcu_assign_pointer(ctx->vm, i915_vm_open(vm));
context_apply_all(ctx, __apply_ppgtt, vm);
return old;
}
static void __assign_ppgtt(struct i915_gem_context *ctx,
struct i915_address_space *vm)
{
if (vm == rcu_access_pointer(ctx->vm))
return;
vm = __set_ppgtt(ctx, vm);
if (vm)
i915_vm_close(vm);
}
static void __set_timeline(struct intel_timeline **dst,
struct intel_timeline *src)
{
struct intel_timeline *old = *dst;
*dst = src ? intel_timeline_get(src) : NULL;
if (old)
intel_timeline_put(old);
}
static int __apply_timeline(struct intel_context *ce, void *timeline)
{
__set_timeline(&ce->timeline, timeline);
return 0;
}
static void __assign_timeline(struct i915_gem_context *ctx,
struct intel_timeline *timeline)
{
__set_timeline(&ctx->timeline, timeline);
context_apply_all(ctx, __apply_timeline, timeline);
}
static struct i915_gem_context *
i915_gem_create_context(struct drm_i915_private *i915, unsigned int flags)
{
struct i915_gem_context *ctx;
if (flags & I915_CONTEXT_CREATE_FLAGS_SINGLE_TIMELINE &&
!HAS_EXECLISTS(i915))
return ERR_PTR(-EINVAL);
/* Reap the stale contexts */
contexts_flush_free(&i915->gem.contexts);
ctx = __create_context(i915);
if (IS_ERR(ctx))
return ctx;
if (HAS_FULL_PPGTT(i915)) {
struct i915_ppgtt *ppgtt;
ppgtt = i915_ppgtt_create(&i915->gt);
if (IS_ERR(ppgtt)) {
drm_dbg(&i915->drm, "PPGTT setup failed (%ld)\n",
PTR_ERR(ppgtt));
context_close(ctx);
return ERR_CAST(ppgtt);
}
mutex_lock(&ctx->mutex);
__assign_ppgtt(ctx, &ppgtt->vm);
mutex_unlock(&ctx->mutex);
i915_vm_put(&ppgtt->vm);
}
if (flags & I915_CONTEXT_CREATE_FLAGS_SINGLE_TIMELINE) {
struct intel_timeline *timeline;
timeline = intel_timeline_create(&i915->gt, NULL);
if (IS_ERR(timeline)) {
context_close(ctx);
return ERR_CAST(timeline);
}
__assign_timeline(ctx, timeline);
intel_timeline_put(timeline);
}
trace_i915_context_create(ctx);
return ctx;
}
static void init_contexts(struct i915_gem_contexts *gc)
{
spin_lock_init(&gc->lock);
INIT_LIST_HEAD(&gc->list);
INIT_WORK(&gc->free_work, contexts_free_worker);
init_llist_head(&gc->free_list);
}
void i915_gem_init__contexts(struct drm_i915_private *i915)
{
init_contexts(&i915->gem.contexts);
drm_dbg(&i915->drm, "%s context support initialized\n",
DRIVER_CAPS(i915)->has_logical_contexts ?
"logical" : "fake");
}
void i915_gem_driver_release__contexts(struct drm_i915_private *i915)
{
flush_work(&i915->gem.contexts.free_work);
rcu_barrier(); /* and flush the left over RCU frees */
}
static int gem_context_register(struct i915_gem_context *ctx,
struct drm_i915_file_private *fpriv,
u32 *id)
{
struct i915_address_space *vm;
int ret;
ctx->file_priv = fpriv;
mutex_lock(&ctx->mutex);
vm = i915_gem_context_vm(ctx);
if (vm)
WRITE_ONCE(vm->file, fpriv); /* XXX */
mutex_unlock(&ctx->mutex);
ctx->pid = get_task_pid(current, PIDTYPE_PID);
snprintf(ctx->name, sizeof(ctx->name), "%s[%d]",
current->comm, pid_nr(ctx->pid));
/* And finally expose ourselves to userspace via the idr */
ret = xa_alloc(&fpriv->context_xa, id, ctx, xa_limit_32b, GFP_KERNEL);
if (ret)
put_pid(fetch_and_zero(&ctx->pid));
return ret;
}
int i915_gem_context_open(struct drm_i915_private *i915,
struct drm_file *file)
{
struct drm_i915_file_private *file_priv = file->driver_priv;
struct i915_gem_context *ctx;
int err;
u32 id;
xa_init_flags(&file_priv->context_xa, XA_FLAGS_ALLOC);
/* 0 reserved for invalid/unassigned ppgtt */
xa_init_flags(&file_priv->vm_xa, XA_FLAGS_ALLOC1);
ctx = i915_gem_create_context(i915, 0);
if (IS_ERR(ctx)) {
err = PTR_ERR(ctx);
goto err;
}
err = gem_context_register(ctx, file_priv, &id);
if (err < 0)
goto err_ctx;
GEM_BUG_ON(id);
return 0;
err_ctx:
context_close(ctx);
err:
xa_destroy(&file_priv->vm_xa);
xa_destroy(&file_priv->context_xa);
return err;
}
void i915_gem_context_close(struct drm_file *file)
{
struct drm_i915_file_private *file_priv = file->driver_priv;
struct drm_i915_private *i915 = file_priv->dev_priv;
struct i915_address_space *vm;
struct i915_gem_context *ctx;
unsigned long idx;
xa_for_each(&file_priv->context_xa, idx, ctx)
context_close(ctx);
xa_destroy(&file_priv->context_xa);
xa_for_each(&file_priv->vm_xa, idx, vm)
i915_vm_put(vm);
xa_destroy(&file_priv->vm_xa);
contexts_flush_free(&i915->gem.contexts);
}
int i915_gem_vm_create_ioctl(struct drm_device *dev, void *data,
struct drm_file *file)
{
struct drm_i915_private *i915 = to_i915(dev);
struct drm_i915_gem_vm_control *args = data;
struct drm_i915_file_private *file_priv = file->driver_priv;
struct i915_ppgtt *ppgtt;
u32 id;
int err;
if (!HAS_FULL_PPGTT(i915))
return -ENODEV;
if (args->flags)
return -EINVAL;
ppgtt = i915_ppgtt_create(&i915->gt);
if (IS_ERR(ppgtt))
return PTR_ERR(ppgtt);
ppgtt->vm.file = file_priv;
if (args->extensions) {
err = i915_user_extensions(u64_to_user_ptr(args->extensions),
NULL, 0,
ppgtt);
if (err)
goto err_put;
}
err = xa_alloc(&file_priv->vm_xa, &id, &ppgtt->vm,
xa_limit_32b, GFP_KERNEL);
if (err)
goto err_put;
GEM_BUG_ON(id == 0); /* reserved for invalid/unassigned ppgtt */
args->vm_id = id;
return 0;
err_put:
i915_vm_put(&ppgtt->vm);
return err;
}
int i915_gem_vm_destroy_ioctl(struct drm_device *dev, void *data,
struct drm_file *file)
{
struct drm_i915_file_private *file_priv = file->driver_priv;
struct drm_i915_gem_vm_control *args = data;
struct i915_address_space *vm;
if (args->flags)
return -EINVAL;
if (args->extensions)
return -EINVAL;
vm = xa_erase(&file_priv->vm_xa, args->vm_id);
if (!vm)
return -ENOENT;
i915_vm_put(vm);
return 0;
}
struct context_barrier_task {
struct i915_active base;
void (*task)(void *data);
void *data;
};
__i915_active_call
static void cb_retire(struct i915_active *base)
{
struct context_barrier_task *cb = container_of(base, typeof(*cb), base);
if (cb->task)
cb->task(cb->data);
i915_active_fini(&cb->base);
kfree(cb);
}
static inline struct i915_gem_engines *
__context_engines_await(const struct i915_gem_context *ctx)
{
struct i915_gem_engines *engines;
rcu_read_lock();
do {
engines = rcu_dereference(ctx->engines);
if (unlikely(!engines))
break;
if (unlikely(!i915_sw_fence_await(&engines->fence)))
continue;
if (likely(engines == rcu_access_pointer(ctx->engines)))
break;
i915_sw_fence_complete(&engines->fence);
} while (1);
rcu_read_unlock();
return engines;
}
I915_SELFTEST_DECLARE(static intel_engine_mask_t context_barrier_inject_fault);
static int context_barrier_task(struct i915_gem_context *ctx,
intel_engine_mask_t engines,
bool (*skip)(struct intel_context *ce, void *data),
int (*emit)(struct i915_request *rq, void *data),
void (*task)(void *data),
void *data)
{
struct context_barrier_task *cb;
struct i915_gem_engines_iter it;
struct i915_gem_engines *e;
struct intel_context *ce;
int err = 0;
GEM_BUG_ON(!task);
cb = kmalloc(sizeof(*cb), GFP_KERNEL);
if (!cb)
return -ENOMEM;
i915_active_init(&cb->base, NULL, cb_retire);
err = i915_active_acquire(&cb->base);
if (err) {
kfree(cb);
return err;
}
e = __context_engines_await(ctx);
if (!e) {
i915_active_release(&cb->base);
return -ENOENT;
}
for_each_gem_engine(ce, e, it) {
struct i915_request *rq;
if (I915_SELFTEST_ONLY(context_barrier_inject_fault &
ce->engine->mask)) {
err = -ENXIO;
break;
}
if (!(ce->engine->mask & engines))
continue;
if (skip && skip(ce, data))
continue;
rq = intel_context_create_request(ce);
if (IS_ERR(rq)) {
err = PTR_ERR(rq);
break;
}
err = 0;
if (emit)
err = emit(rq, data);
if (err == 0)
err = i915_active_add_request(&cb->base, rq);
i915_request_add(rq);
if (err)
break;
}
i915_sw_fence_complete(&e->fence);
cb->task = err ? NULL : task; /* caller needs to unwind instead */
cb->data = data;
i915_active_release(&cb->base);
return err;
}
static int get_ppgtt(struct drm_i915_file_private *file_priv,
struct i915_gem_context *ctx,
struct drm_i915_gem_context_param *args)
{
struct i915_address_space *vm;
int err;
u32 id;
if (!rcu_access_pointer(ctx->vm))
return -ENODEV;
rcu_read_lock();
vm = context_get_vm_rcu(ctx);
rcu_read_unlock();
if (!vm)
return -ENODEV;
err = xa_alloc(&file_priv->vm_xa, &id, vm, xa_limit_32b, GFP_KERNEL);
if (err)
goto err_put;
i915_vm_open(vm);
GEM_BUG_ON(id == 0); /* reserved for invalid/unassigned ppgtt */
args->value = id;
args->size = 0;
err_put:
i915_vm_put(vm);
return err;
}
static void set_ppgtt_barrier(void *data)
{
struct i915_address_space *old = data;
if (INTEL_GEN(old->i915) < 8)
gen6_ppgtt_unpin_all(i915_vm_to_ppgtt(old));
i915_vm_close(old);
}
static int emit_ppgtt_update(struct i915_request *rq, void *data)
{
struct i915_address_space *vm = rq->context->vm;
struct intel_engine_cs *engine = rq->engine;
u32 base = engine->mmio_base;
u32 *cs;
int i;
if (i915_vm_is_4lvl(vm)) {
struct i915_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
const dma_addr_t pd_daddr = px_dma(ppgtt->pd);
cs = intel_ring_begin(rq, 6);
if (IS_ERR(cs))
return PTR_ERR(cs);
*cs++ = MI_LOAD_REGISTER_IMM(2);
*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(base, 0));
*cs++ = upper_32_bits(pd_daddr);
*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(base, 0));
*cs++ = lower_32_bits(pd_daddr);
*cs++ = MI_NOOP;
intel_ring_advance(rq, cs);
} else if (HAS_LOGICAL_RING_CONTEXTS(engine->i915)) {
struct i915_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
int err;
/* Magic required to prevent forcewake errors! */
err = engine->emit_flush(rq, EMIT_INVALIDATE);
if (err)
return err;
cs = intel_ring_begin(rq, 4 * GEN8_3LVL_PDPES + 2);
if (IS_ERR(cs))
return PTR_ERR(cs);
*cs++ = MI_LOAD_REGISTER_IMM(2 * GEN8_3LVL_PDPES) | MI_LRI_FORCE_POSTED;
for (i = GEN8_3LVL_PDPES; i--; ) {
const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(base, i));
*cs++ = upper_32_bits(pd_daddr);
*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(base, i));
*cs++ = lower_32_bits(pd_daddr);
}
*cs++ = MI_NOOP;
intel_ring_advance(rq, cs);
}
return 0;
}
static bool skip_ppgtt_update(struct intel_context *ce, void *data)
{
if (!test_bit(CONTEXT_ALLOC_BIT, &ce->flags))
return true;
if (HAS_LOGICAL_RING_CONTEXTS(ce->engine->i915))
return false;
if (!atomic_read(&ce->pin_count))
return true;
/* ppGTT is not part of the legacy context image */
if (gen6_ppgtt_pin(i915_vm_to_ppgtt(ce->vm)))
return true;
return false;
}
static int set_ppgtt(struct drm_i915_file_private *file_priv,
struct i915_gem_context *ctx,
struct drm_i915_gem_context_param *args)
{
struct i915_address_space *vm, *old;
int err;
if (args->size)
return -EINVAL;
if (!rcu_access_pointer(ctx->vm))
return -ENODEV;
if (upper_32_bits(args->value))
return -ENOENT;
rcu_read_lock();
vm = xa_load(&file_priv->vm_xa, args->value);
if (vm && !kref_get_unless_zero(&vm->ref))
vm = NULL;
rcu_read_unlock();
if (!vm)
return -ENOENT;
err = mutex_lock_interruptible(&ctx->mutex);
if (err)
goto out;
if (i915_gem_context_is_closed(ctx)) {
err = -ENOENT;
goto unlock;
}
if (vm == rcu_access_pointer(ctx->vm))
goto unlock;
/* Teardown the existing obj:vma cache, it will have to be rebuilt. */
lut_close(ctx);
old = __set_ppgtt(ctx, vm);
/*
* We need to flush any requests using the current ppgtt before
* we release it as the requests do not hold a reference themselves,
* only indirectly through the context.
*/
err = context_barrier_task(ctx, ALL_ENGINES,
skip_ppgtt_update,
emit_ppgtt_update,
set_ppgtt_barrier,
old);
if (err) {
i915_vm_close(__set_ppgtt(ctx, old));
i915_vm_close(old);
}
unlock:
mutex_unlock(&ctx->mutex);
out:
i915_vm_put(vm);
return err;
}
static int __apply_ringsize(struct intel_context *ce, void *sz)
{
return intel_context_set_ring_size(ce, (unsigned long)sz);
}
static int set_ringsize(struct i915_gem_context *ctx,
struct drm_i915_gem_context_param *args)
{
if (!HAS_LOGICAL_RING_CONTEXTS(ctx->i915))
return -ENODEV;
if (args->size)
return -EINVAL;
if (!IS_ALIGNED(args->value, I915_GTT_PAGE_SIZE))
return -EINVAL;
if (args->value < I915_GTT_PAGE_SIZE)
return -EINVAL;
if (args->value > 128 * I915_GTT_PAGE_SIZE)
return -EINVAL;
return context_apply_all(ctx,
__apply_ringsize,
__intel_context_ring_size(args->value));
}
static int __get_ringsize(struct intel_context *ce, void *arg)
{
long sz;
sz = intel_context_get_ring_size(ce);
GEM_BUG_ON(sz > INT_MAX);
return sz; /* stop on first engine */
}
static int get_ringsize(struct i915_gem_context *ctx,
struct drm_i915_gem_context_param *args)
{
int sz;
if (!HAS_LOGICAL_RING_CONTEXTS(ctx->i915))
return -ENODEV;
if (args->size)
return -EINVAL;
sz = context_apply_all(ctx, __get_ringsize, NULL);
if (sz < 0)
return sz;
args->value = sz;
return 0;
}
static int
user_to_context_sseu(struct drm_i915_private *i915,
const struct drm_i915_gem_context_param_sseu *user,
struct intel_sseu *context)
{
const struct sseu_dev_info *device = &RUNTIME_INFO(i915)->sseu;
/* No zeros in any field. */
if (!user->slice_mask || !user->subslice_mask ||
!user->min_eus_per_subslice || !user->max_eus_per_subslice)
return -EINVAL;
/* Max > min. */
if (user->max_eus_per_subslice < user->min_eus_per_subslice)
return -EINVAL;
/*
* Some future proofing on the types since the uAPI is wider than the
* current internal implementation.
*/
if (overflows_type(user->slice_mask, context->slice_mask) ||
overflows_type(user->subslice_mask, context->subslice_mask) ||
overflows_type(user->min_eus_per_subslice,
context->min_eus_per_subslice) ||
overflows_type(user->max_eus_per_subslice,
context->max_eus_per_subslice))
return -EINVAL;
/* Check validity against hardware. */
if (user->slice_mask & ~device->slice_mask)
return -EINVAL;
if (user->subslice_mask & ~device->subslice_mask[0])
return -EINVAL;
if (user->max_eus_per_subslice > device->max_eus_per_subslice)
return -EINVAL;
context->slice_mask = user->slice_mask;
context->subslice_mask = user->subslice_mask;
context->min_eus_per_subslice = user->min_eus_per_subslice;
context->max_eus_per_subslice = user->max_eus_per_subslice;
/* Part specific restrictions. */
if (IS_GEN(i915, 11)) {
unsigned int hw_s = hweight8(device->slice_mask);
unsigned int hw_ss_per_s = hweight8(device->subslice_mask[0]);
unsigned int req_s = hweight8(context->slice_mask);
unsigned int req_ss = hweight8(context->subslice_mask);
/*
* Only full subslice enablement is possible if more than one
* slice is turned on.
*/
if (req_s > 1 && req_ss != hw_ss_per_s)
return -EINVAL;
/*
* If more than four (SScount bitfield limit) subslices are
* requested then the number has to be even.
*/
if (req_ss > 4 && (req_ss & 1))
return -EINVAL;
/*
* If only one slice is enabled and subslice count is below the
* device full enablement, it must be at most half of the all
* available subslices.
*/
if (req_s == 1 && req_ss < hw_ss_per_s &&
req_ss > (hw_ss_per_s / 2))
return -EINVAL;
/* ABI restriction - VME use case only. */
/* All slices or one slice only. */
if (req_s != 1 && req_s != hw_s)
return -EINVAL;
/*
* Half subslices or full enablement only when one slice is
* enabled.
*/
if (req_s == 1 &&
(req_ss != hw_ss_per_s && req_ss != (hw_ss_per_s / 2)))
return -EINVAL;
/* No EU configuration changes. */
if ((user->min_eus_per_subslice !=
device->max_eus_per_subslice) ||
(user->max_eus_per_subslice !=
device->max_eus_per_subslice))
return -EINVAL;
}
return 0;
}
static int set_sseu(struct i915_gem_context *ctx,
struct drm_i915_gem_context_param *args)
{
struct drm_i915_private *i915 = ctx->i915;
struct drm_i915_gem_context_param_sseu user_sseu;
struct intel_context *ce;
struct intel_sseu sseu;
unsigned long lookup;
int ret;
if (args->size < sizeof(user_sseu))
return -EINVAL;
if (!IS_GEN(i915, 11))
return -ENODEV;
if (copy_from_user(&user_sseu, u64_to_user_ptr(args->value),
sizeof(user_sseu)))
return -EFAULT;
if (user_sseu.rsvd)
return -EINVAL;
if (user_sseu.flags & ~(I915_CONTEXT_SSEU_FLAG_ENGINE_INDEX))
return -EINVAL;
lookup = 0;
if (user_sseu.flags & I915_CONTEXT_SSEU_FLAG_ENGINE_INDEX)
lookup |= LOOKUP_USER_INDEX;
ce = lookup_user_engine(ctx, lookup, &user_sseu.engine);
if (IS_ERR(ce))
return PTR_ERR(ce);
/* Only render engine supports RPCS configuration. */
if (ce->engine->class != RENDER_CLASS) {
ret = -ENODEV;
goto out_ce;
}
ret = user_to_context_sseu(i915, &user_sseu, &sseu);
if (ret)
goto out_ce;
ret = intel_context_reconfigure_sseu(ce, sseu);
if (ret)
goto out_ce;
args->size = sizeof(user_sseu);
out_ce:
intel_context_put(ce);
return ret;
}
struct set_engines {
struct i915_gem_context *ctx;
struct i915_gem_engines *engines;
};
static int
set_engines__load_balance(struct i915_user_extension __user *base, void *data)
{
struct i915_context_engines_load_balance __user *ext =
container_of_user(base, typeof(*ext), base);
const struct set_engines *set = data;
struct drm_i915_private *i915 = set->ctx->i915;
struct intel_engine_cs *stack[16];
struct intel_engine_cs **siblings;
struct intel_context *ce;
u16 num_siblings, idx;
unsigned int n;
int err;
if (!HAS_EXECLISTS(i915))
return -ENODEV;
if (intel_uc_uses_guc_submission(&i915->gt.uc))
return -ENODEV; /* not implement yet */
if (get_user(idx, &ext->engine_index))
return -EFAULT;
if (idx >= set->engines->num_engines) {
drm_dbg(&i915->drm, "Invalid placement value, %d >= %d\n",
idx, set->engines->num_engines);
return -EINVAL;
}
idx = array_index_nospec(idx, set->engines->num_engines);
if (set->engines->engines[idx]) {
drm_dbg(&i915->drm,
"Invalid placement[%d], already occupied\n", idx);
return -EEXIST;
}
if (get_user(num_siblings, &ext->num_siblings))
return -EFAULT;
err = check_user_mbz(&ext->flags);
if (err)
return err;
err = check_user_mbz(&ext->mbz64);
if (err)
return err;
siblings = stack;
if (num_siblings > ARRAY_SIZE(stack)) {
siblings = kmalloc_array(num_siblings,
sizeof(*siblings),
GFP_KERNEL);
if (!siblings)
return -ENOMEM;
}
for (n = 0; n < num_siblings; n++) {
struct i915_engine_class_instance ci;
if (copy_from_user(&ci, &ext->engines[n], sizeof(ci))) {
err = -EFAULT;
goto out_siblings;
}
siblings[n] = intel_engine_lookup_user(i915,
ci.engine_class,
ci.engine_instance);
if (!siblings[n]) {
drm_dbg(&i915->drm,
"Invalid sibling[%d]: { class:%d, inst:%d }\n",
n, ci.engine_class, ci.engine_instance);
err = -EINVAL;
goto out_siblings;
}
}
ce = intel_execlists_create_virtual(siblings, n);
if (IS_ERR(ce)) {
err = PTR_ERR(ce);
goto out_siblings;
}
intel_context_set_gem(ce, set->ctx);
if (cmpxchg(&set->engines->engines[idx], NULL, ce)) {
intel_context_put(ce);
err = -EEXIST;
goto out_siblings;
}
out_siblings:
if (siblings != stack)
kfree(siblings);
return err;
}
static int
set_engines__bond(struct i915_user_extension __user *base, void *data)
{
struct i915_context_engines_bond __user *ext =
container_of_user(base, typeof(*ext), base);
const struct set_engines *set = data;
struct drm_i915_private *i915 = set->ctx->i915;
struct i915_engine_class_instance ci;
struct intel_engine_cs *virtual;
struct intel_engine_cs *master;
u16 idx, num_bonds;
int err, n;
if (get_user(idx, &ext->virtual_index))
return -EFAULT;
if (idx >= set->engines->num_engines) {
drm_dbg(&i915->drm,
"Invalid index for virtual engine: %d >= %d\n",
idx, set->engines->num_engines);
return -EINVAL;
}
idx = array_index_nospec(idx, set->engines->num_engines);
if (!set->engines->engines[idx]) {
drm_dbg(&i915->drm, "Invalid engine at %d\n", idx);
return -EINVAL;
}
virtual = set->engines->engines[idx]->engine;
err = check_user_mbz(&ext->flags);
if (err)
return err;
for (n = 0; n < ARRAY_SIZE(ext->mbz64); n++) {
err = check_user_mbz(&ext->mbz64[n]);
if (err)
return err;
}
if (copy_from_user(&ci, &ext->master, sizeof(ci)))
return -EFAULT;
master = intel_engine_lookup_user(i915,
ci.engine_class, ci.engine_instance);
if (!master) {
drm_dbg(&i915->drm,
"Unrecognised master engine: { class:%u, instance:%u }\n",
ci.engine_class, ci.engine_instance);
return -EINVAL;
}
if (get_user(num_bonds, &ext->num_bonds))
return -EFAULT;
for (n = 0; n < num_bonds; n++) {
struct intel_engine_cs *bond;
if (copy_from_user(&ci, &ext->engines[n], sizeof(ci)))
return -EFAULT;
bond = intel_engine_lookup_user(i915,
ci.engine_class,
ci.engine_instance);
if (!bond) {
drm_dbg(&i915->drm,
"Unrecognised engine[%d] for bonding: { class:%d, instance: %d }\n",
n, ci.engine_class, ci.engine_instance);
return -EINVAL;
}
/*
* A non-virtual engine has no siblings to choose between; and
* a submit fence will always be directed to the one engine.
*/
if (intel_engine_is_virtual(virtual)) {
err = intel_virtual_engine_attach_bond(virtual,
master,
bond);
if (err)
return err;
}
}
return 0;
}
static const i915_user_extension_fn set_engines__extensions[] = {
[I915_CONTEXT_ENGINES_EXT_LOAD_BALANCE] = set_engines__load_balance,
[I915_CONTEXT_ENGINES_EXT_BOND] = set_engines__bond,
};
static int
set_engines(struct i915_gem_context *ctx,
const struct drm_i915_gem_context_param *args)
{
struct drm_i915_private *i915 = ctx->i915;
struct i915_context_param_engines __user *user =
u64_to_user_ptr(args->value);
struct set_engines set = { .ctx = ctx };
unsigned int num_engines, n;
u64 extensions;
int err;
if (!args->size) { /* switch back to legacy user_ring_map */
if (!i915_gem_context_user_engines(ctx))
return 0;
set.engines = default_engines(ctx);
if (IS_ERR(set.engines))
return PTR_ERR(set.engines);
goto replace;
}
BUILD_BUG_ON(!IS_ALIGNED(sizeof(*user), sizeof(*user->engines)));
if (args->size < sizeof(*user) ||
!IS_ALIGNED(args->size, sizeof(*user->engines))) {
drm_dbg(&i915->drm, "Invalid size for engine array: %d\n",
args->size);
return -EINVAL;
}
/*
* Note that I915_EXEC_RING_MASK limits execbuf to only using the
* first 64 engines defined here.
*/
num_engines = (args->size - sizeof(*user)) / sizeof(*user->engines);
set.engines = alloc_engines(num_engines);
if (!set.engines)
return -ENOMEM;
for (n = 0; n < num_engines; n++) {
struct i915_engine_class_instance ci;
struct intel_engine_cs *engine;
struct intel_context *ce;
if (copy_from_user(&ci, &user->engines[n], sizeof(ci))) {
__free_engines(set.engines, n);
return -EFAULT;
}
if (ci.engine_class == (u16)I915_ENGINE_CLASS_INVALID &&
ci.engine_instance == (u16)I915_ENGINE_CLASS_INVALID_NONE) {
set.engines->engines[n] = NULL;
continue;
}
engine = intel_engine_lookup_user(ctx->i915,
ci.engine_class,
ci.engine_instance);
if (!engine) {
drm_dbg(&i915->drm,
"Invalid engine[%d]: { class:%d, instance:%d }\n",
n, ci.engine_class, ci.engine_instance);
__free_engines(set.engines, n);
return -ENOENT;
}
ce = intel_context_create(engine);
if (IS_ERR(ce)) {
__free_engines(set.engines, n);
return PTR_ERR(ce);
}
intel_context_set_gem(ce, ctx);
set.engines->engines[n] = ce;
}
set.engines->num_engines = num_engines;
err = -EFAULT;
if (!get_user(extensions, &user->extensions))
err = i915_user_extensions(u64_to_user_ptr(extensions),
set_engines__extensions,
ARRAY_SIZE(set_engines__extensions),
&set);
if (err) {
free_engines(set.engines);
return err;
}
replace:
mutex_lock(&ctx->engines_mutex);
if (i915_gem_context_is_closed(ctx)) {
mutex_unlock(&ctx->engines_mutex);
free_engines(set.engines);
return -ENOENT;
}
if (args->size)
i915_gem_context_set_user_engines(ctx);
else
i915_gem_context_clear_user_engines(ctx);
set.engines = rcu_replace_pointer(ctx->engines, set.engines, 1);
mutex_unlock(&ctx->engines_mutex);
/* Keep track of old engine sets for kill_context() */
engines_idle_release(ctx, set.engines);
return 0;
}
static struct i915_gem_engines *
__copy_engines(struct i915_gem_engines *e)
{
struct i915_gem_engines *copy;
unsigned int n;
copy = alloc_engines(e->num_engines);
if (!copy)
return ERR_PTR(-ENOMEM);
for (n = 0; n < e->num_engines; n++) {
if (e->engines[n])
copy->engines[n] = intel_context_get(e->engines[n]);
else
copy->engines[n] = NULL;
}
copy->num_engines = n;
return copy;
}
static int
get_engines(struct i915_gem_context *ctx,
struct drm_i915_gem_context_param *args)
{
struct i915_context_param_engines __user *user;
struct i915_gem_engines *e;
size_t n, count, size;
int err = 0;
err = mutex_lock_interruptible(&ctx->engines_mutex);
if (err)
return err;
e = NULL;
if (i915_gem_context_user_engines(ctx))
e = __copy_engines(i915_gem_context_engines(ctx));
mutex_unlock(&ctx->engines_mutex);
if (IS_ERR_OR_NULL(e)) {
args->size = 0;
return PTR_ERR_OR_ZERO(e);
}
count = e->num_engines;
/* Be paranoid in case we have an impedance mismatch */
if (!check_struct_size(user, engines, count, &size)) {
err = -EINVAL;
goto err_free;
}
if (overflows_type(size, args->size)) {
err = -EINVAL;
goto err_free;
}
if (!args->size) {
args->size = size;
goto err_free;
}
if (args->size < size) {
err = -EINVAL;
goto err_free;
}
user = u64_to_user_ptr(args->value);
if (!access_ok(user, size)) {
err = -EFAULT;
goto err_free;
}
if (put_user(0, &user->extensions)) {
err = -EFAULT;
goto err_free;
}
for (n = 0; n < count; n++) {
struct i915_engine_class_instance ci = {
.engine_class = I915_ENGINE_CLASS_INVALID,
.engine_instance = I915_ENGINE_CLASS_INVALID_NONE,
};
if (e->engines[n]) {
ci.engine_class = e->engines[n]->engine->uabi_class;
ci.engine_instance = e->engines[n]->engine->uabi_instance;
}
if (copy_to_user(&user->engines[n], &ci, sizeof(ci))) {
err = -EFAULT;
goto err_free;
}
}
args->size = size;
err_free:
free_engines(e);
return err;
}
static int
set_persistence(struct i915_gem_context *ctx,
const struct drm_i915_gem_context_param *args)
{
if (args->size)
return -EINVAL;
return __context_set_persistence(ctx, args->value);
}
static int __apply_priority(struct intel_context *ce, void *arg)
{
struct i915_gem_context *ctx = arg;
if (!intel_engine_has_semaphores(ce->engine))
return 0;
if (ctx->sched.priority >= I915_PRIORITY_NORMAL)
intel_context_set_use_semaphores(ce);
else
intel_context_clear_use_semaphores(ce);
return 0;
}
static int set_priority(struct i915_gem_context *ctx,
const struct drm_i915_gem_context_param *args)
{
s64 priority = args->value;
if (args->size)
return -EINVAL;
if (!(ctx->i915->caps.scheduler & I915_SCHEDULER_CAP_PRIORITY))
return -ENODEV;
if (priority > I915_CONTEXT_MAX_USER_PRIORITY ||
priority < I915_CONTEXT_MIN_USER_PRIORITY)
return -EINVAL;
if (priority > I915_CONTEXT_DEFAULT_PRIORITY &&
!capable(CAP_SYS_NICE))
return -EPERM;
ctx->sched.priority = I915_USER_PRIORITY(priority);
context_apply_all(ctx, __apply_priority, ctx);
return 0;
}
static int ctx_setparam(struct drm_i915_file_private *fpriv,
struct i915_gem_context *ctx,
struct drm_i915_gem_context_param *args)
{
int ret = 0;
switch (args->param) {
case I915_CONTEXT_PARAM_NO_ZEROMAP:
if (args->size)
ret = -EINVAL;
else if (args->value)
set_bit(UCONTEXT_NO_ZEROMAP, &ctx->user_flags);
else
clear_bit(UCONTEXT_NO_ZEROMAP, &ctx->user_flags);
break;
case I915_CONTEXT_PARAM_NO_ERROR_CAPTURE:
if (args->size)
ret = -EINVAL;
else if (args->value)
i915_gem_context_set_no_error_capture(ctx);
else
i915_gem_context_clear_no_error_capture(ctx);
break;
case I915_CONTEXT_PARAM_BANNABLE:
if (args->size)
ret = -EINVAL;
else if (!capable(CAP_SYS_ADMIN) && !args->value)
ret = -EPERM;
else if (args->value)
i915_gem_context_set_bannable(ctx);
else
i915_gem_context_clear_bannable(ctx);
break;
case I915_CONTEXT_PARAM_RECOVERABLE:
if (args->size)
ret = -EINVAL;
else if (args->value)
i915_gem_context_set_recoverable(ctx);
else
i915_gem_context_clear_recoverable(ctx);
break;
case I915_CONTEXT_PARAM_PRIORITY:
ret = set_priority(ctx, args);
break;
case I915_CONTEXT_PARAM_SSEU:
ret = set_sseu(ctx, args);
break;
case I915_CONTEXT_PARAM_VM:
ret = set_ppgtt(fpriv, ctx, args);
break;
case I915_CONTEXT_PARAM_ENGINES:
ret = set_engines(ctx, args);
break;
case I915_CONTEXT_PARAM_PERSISTENCE:
ret = set_persistence(ctx, args);
break;
case I915_CONTEXT_PARAM_RINGSIZE:
ret = set_ringsize(ctx, args);
break;
case I915_CONTEXT_PARAM_BAN_PERIOD:
default:
ret = -EINVAL;
break;
}
return ret;
}
struct create_ext {
struct i915_gem_context *ctx;
struct drm_i915_file_private *fpriv;
};
static int create_setparam(struct i915_user_extension __user *ext, void *data)
{
struct drm_i915_gem_context_create_ext_setparam local;
const struct create_ext *arg = data;
if (copy_from_user(&local, ext, sizeof(local)))
return -EFAULT;
if (local.param.ctx_id)
return -EINVAL;
return ctx_setparam(arg->fpriv, arg->ctx, &local.param);
}
static int copy_ring_size(struct intel_context *dst,
struct intel_context *src)
{
long sz;
sz = intel_context_get_ring_size(src);
if (sz < 0)
return sz;
return intel_context_set_ring_size(dst, sz);
}
static int clone_engines(struct i915_gem_context *dst,
struct i915_gem_context *src)
{
struct i915_gem_engines *e = i915_gem_context_lock_engines(src);
struct i915_gem_engines *clone;
bool user_engines;
unsigned long n;
clone = alloc_engines(e->num_engines);
if (!clone)
goto err_unlock;
for (n = 0; n < e->num_engines; n++) {
struct intel_engine_cs *engine;
if (!e->engines[n]) {
clone->engines[n] = NULL;
continue;
}
engine = e->engines[n]->engine;
/*
* Virtual engines are singletons; they can only exist
* inside a single context, because they embed their
* HW context... As each virtual context implies a single
* timeline (each engine can only dequeue a single request
* at any time), it would be surprising for two contexts
* to use the same engine. So let's create a copy of
* the virtual engine instead.
*/
if (intel_engine_is_virtual(engine))
clone->engines[n] =
intel_execlists_clone_virtual(engine);
else
clone->engines[n] = intel_context_create(engine);
if (IS_ERR_OR_NULL(clone->engines[n])) {
__free_engines(clone, n);
goto err_unlock;
}
intel_context_set_gem(clone->engines[n], dst);
/* Copy across the preferred ringsize */
if (copy_ring_size(clone->engines[n], e->engines[n])) {
__free_engines(clone, n + 1);
goto err_unlock;
}
}
clone->num_engines = n;
user_engines = i915_gem_context_user_engines(src);
i915_gem_context_unlock_engines(src);
/* Serialised by constructor */
engines_idle_release(dst, rcu_replace_pointer(dst->engines, clone, 1));
if (user_engines)
i915_gem_context_set_user_engines(dst);
else
i915_gem_context_clear_user_engines(dst);
return 0;
err_unlock:
i915_gem_context_unlock_engines(src);
return -ENOMEM;
}
static int clone_flags(struct i915_gem_context *dst,
struct i915_gem_context *src)
{
dst->user_flags = src->user_flags;
return 0;
}
static int clone_schedattr(struct i915_gem_context *dst,
struct i915_gem_context *src)
{
dst->sched = src->sched;
return 0;
}
static int clone_sseu(struct i915_gem_context *dst,
struct i915_gem_context *src)
{
struct i915_gem_engines *e = i915_gem_context_lock_engines(src);
struct i915_gem_engines *clone;
unsigned long n;
int err;
/* no locking required; sole access under constructor*/
clone = __context_engines_static(dst);
if (e->num_engines != clone->num_engines) {
err = -EINVAL;
goto unlock;
}
for (n = 0; n < e->num_engines; n++) {
struct intel_context *ce = e->engines[n];
if (clone->engines[n]->engine->class != ce->engine->class) {
/* Must have compatible engine maps! */
err = -EINVAL;
goto unlock;
}
/* serialises with set_sseu */
err = intel_context_lock_pinned(ce);
if (err)
goto unlock;
clone->engines[n]->sseu = ce->sseu;
intel_context_unlock_pinned(ce);
}
err = 0;
unlock:
i915_gem_context_unlock_engines(src);
return err;
}
static int clone_timeline(struct i915_gem_context *dst,
struct i915_gem_context *src)
{
if (src->timeline)
__assign_timeline(dst, src->timeline);
return 0;
}
static int clone_vm(struct i915_gem_context *dst,
struct i915_gem_context *src)
{
struct i915_address_space *vm;
int err = 0;
if (!rcu_access_pointer(src->vm))
return 0;
rcu_read_lock();
vm = context_get_vm_rcu(src);
rcu_read_unlock();
if (!mutex_lock_interruptible(&dst->mutex)) {
__assign_ppgtt(dst, vm);
mutex_unlock(&dst->mutex);
} else {
err = -EINTR;
}
i915_vm_put(vm);
return err;
}
static int create_clone(struct i915_user_extension __user *ext, void *data)
{
static int (* const fn[])(struct i915_gem_context *dst,
struct i915_gem_context *src) = {
#define MAP(x, y) [ilog2(I915_CONTEXT_CLONE_##x)] = y
MAP(ENGINES, clone_engines),
MAP(FLAGS, clone_flags),
MAP(SCHEDATTR, clone_schedattr),
MAP(SSEU, clone_sseu),
MAP(TIMELINE, clone_timeline),
MAP(VM, clone_vm),
#undef MAP
};
struct drm_i915_gem_context_create_ext_clone local;
const struct create_ext *arg = data;
struct i915_gem_context *dst = arg->ctx;
struct i915_gem_context *src;
int err, bit;
if (copy_from_user(&local, ext, sizeof(local)))
return -EFAULT;
BUILD_BUG_ON(GENMASK(BITS_PER_TYPE(local.flags) - 1, ARRAY_SIZE(fn)) !=
I915_CONTEXT_CLONE_UNKNOWN);
if (local.flags & I915_CONTEXT_CLONE_UNKNOWN)
return -EINVAL;
if (local.rsvd)
return -EINVAL;
rcu_read_lock();
src = __i915_gem_context_lookup_rcu(arg->fpriv, local.clone_id);
rcu_read_unlock();
if (!src)
return -ENOENT;
GEM_BUG_ON(src == dst);
for (bit = 0; bit < ARRAY_SIZE(fn); bit++) {
if (!(local.flags & BIT(bit)))
continue;
err = fn[bit](dst, src);
if (err)
return err;
}
return 0;
}
static const i915_user_extension_fn create_extensions[] = {
[I915_CONTEXT_CREATE_EXT_SETPARAM] = create_setparam,
[I915_CONTEXT_CREATE_EXT_CLONE] = create_clone,
};
static bool client_is_banned(struct drm_i915_file_private *file_priv)
{
return atomic_read(&file_priv->ban_score) >= I915_CLIENT_SCORE_BANNED;
}
int i915_gem_context_create_ioctl(struct drm_device *dev, void *data,
struct drm_file *file)
{
struct drm_i915_private *i915 = to_i915(dev);
struct drm_i915_gem_context_create_ext *args = data;
struct create_ext ext_data;
int ret;
u32 id;
if (!DRIVER_CAPS(i915)->has_logical_contexts)
return -ENODEV;
if (args->flags & I915_CONTEXT_CREATE_FLAGS_UNKNOWN)
return -EINVAL;
ret = intel_gt_terminally_wedged(&i915->gt);
if (ret)
return ret;
ext_data.fpriv = file->driver_priv;
if (client_is_banned(ext_data.fpriv)) {
drm_dbg(&i915->drm,
"client %s[%d] banned from creating ctx\n",
current->comm, task_pid_nr(current));
return -EIO;
}
ext_data.ctx = i915_gem_create_context(i915, args->flags);
if (IS_ERR(ext_data.ctx))
return PTR_ERR(ext_data.ctx);
if (args->flags & I915_CONTEXT_CREATE_FLAGS_USE_EXTENSIONS) {
ret = i915_user_extensions(u64_to_user_ptr(args->extensions),
create_extensions,
ARRAY_SIZE(create_extensions),
&ext_data);
if (ret)
goto err_ctx;
}
ret = gem_context_register(ext_data.ctx, ext_data.fpriv, &id);
if (ret < 0)
goto err_ctx;
args->ctx_id = id;
drm_dbg(&i915->drm, "HW context %d created\n", args->ctx_id);
return 0;
err_ctx:
context_close(ext_data.ctx);
return ret;
}
int i915_gem_context_destroy_ioctl(struct drm_device *dev, void *data,
struct drm_file *file)
{
struct drm_i915_gem_context_destroy *args = data;
struct drm_i915_file_private *file_priv = file->driver_priv;
struct i915_gem_context *ctx;
if (args->pad != 0)
return -EINVAL;
if (!args->ctx_id)
return -ENOENT;
ctx = xa_erase(&file_priv->context_xa, args->ctx_id);
if (!ctx)
return -ENOENT;
context_close(ctx);
return 0;
}
static int get_sseu(struct i915_gem_context *ctx,
struct drm_i915_gem_context_param *args)
{
struct drm_i915_gem_context_param_sseu user_sseu;
struct intel_context *ce;
unsigned long lookup;
int err;
if (args->size == 0)
goto out;
else if (args->size < sizeof(user_sseu))
return -EINVAL;
if (copy_from_user(&user_sseu, u64_to_user_ptr(args->value),
sizeof(user_sseu)))
return -EFAULT;
if (user_sseu.rsvd)
return -EINVAL;
if (user_sseu.flags & ~(I915_CONTEXT_SSEU_FLAG_ENGINE_INDEX))
return -EINVAL;
lookup = 0;
if (user_sseu.flags & I915_CONTEXT_SSEU_FLAG_ENGINE_INDEX)
lookup |= LOOKUP_USER_INDEX;
ce = lookup_user_engine(ctx, lookup, &user_sseu.engine);
if (IS_ERR(ce))
return PTR_ERR(ce);
err = intel_context_lock_pinned(ce); /* serialises with set_sseu */
if (err) {
intel_context_put(ce);
return err;
}
user_sseu.slice_mask = ce->sseu.slice_mask;
user_sseu.subslice_mask = ce->sseu.subslice_mask;
user_sseu.min_eus_per_subslice = ce->sseu.min_eus_per_subslice;
user_sseu.max_eus_per_subslice = ce->sseu.max_eus_per_subslice;
intel_context_unlock_pinned(ce);
intel_context_put(ce);
if (copy_to_user(u64_to_user_ptr(args->value), &user_sseu,
sizeof(user_sseu)))
return -EFAULT;
out:
args->size = sizeof(user_sseu);
return 0;
}
int i915_gem_context_getparam_ioctl(struct drm_device *dev, void *data,
struct drm_file *file)
{
struct drm_i915_file_private *file_priv = file->driver_priv;
struct drm_i915_gem_context_param *args = data;
struct i915_gem_context *ctx;
int ret = 0;
ctx = i915_gem_context_lookup(file_priv, args->ctx_id);
if (!ctx)
return -ENOENT;
switch (args->param) {
case I915_CONTEXT_PARAM_NO_ZEROMAP:
args->size = 0;
args->value = test_bit(UCONTEXT_NO_ZEROMAP, &ctx->user_flags);
break;
case I915_CONTEXT_PARAM_GTT_SIZE:
args->size = 0;
rcu_read_lock();
if (rcu_access_pointer(ctx->vm))
args->value = rcu_dereference(ctx->vm)->total;
else
args->value = to_i915(dev)->ggtt.vm.total;
rcu_read_unlock();
break;
case I915_CONTEXT_PARAM_NO_ERROR_CAPTURE:
args->size = 0;
args->value = i915_gem_context_no_error_capture(ctx);
break;
case I915_CONTEXT_PARAM_BANNABLE:
args->size = 0;
args->value = i915_gem_context_is_bannable(ctx);
break;
case I915_CONTEXT_PARAM_RECOVERABLE:
args->size = 0;
args->value = i915_gem_context_is_recoverable(ctx);
break;
case I915_CONTEXT_PARAM_PRIORITY:
args->size = 0;
args->value = ctx->sched.priority >> I915_USER_PRIORITY_SHIFT;
break;
case I915_CONTEXT_PARAM_SSEU:
ret = get_sseu(ctx, args);
break;
case I915_CONTEXT_PARAM_VM:
ret = get_ppgtt(file_priv, ctx, args);
break;
case I915_CONTEXT_PARAM_ENGINES:
ret = get_engines(ctx, args);
break;
case I915_CONTEXT_PARAM_PERSISTENCE:
args->size = 0;
args->value = i915_gem_context_is_persistent(ctx);
break;
case I915_CONTEXT_PARAM_RINGSIZE:
ret = get_ringsize(ctx, args);
break;
case I915_CONTEXT_PARAM_BAN_PERIOD:
default:
ret = -EINVAL;
break;
}
i915_gem_context_put(ctx);
return ret;
}
int i915_gem_context_setparam_ioctl(struct drm_device *dev, void *data,
struct drm_file *file)
{
struct drm_i915_file_private *file_priv = file->driver_priv;
struct drm_i915_gem_context_param *args = data;
struct i915_gem_context *ctx;
int ret;
ctx = i915_gem_context_lookup(file_priv, args->ctx_id);
if (!ctx)
return -ENOENT;
ret = ctx_setparam(file_priv, ctx, args);
i915_gem_context_put(ctx);
return ret;
}
int i915_gem_context_reset_stats_ioctl(struct drm_device *dev,
void *data, struct drm_file *file)
{
struct drm_i915_private *i915 = to_i915(dev);
struct drm_i915_reset_stats *args = data;
struct i915_gem_context *ctx;
int ret;
if (args->flags || args->pad)
return -EINVAL;
ret = -ENOENT;
rcu_read_lock();
ctx = __i915_gem_context_lookup_rcu(file->driver_priv, args->ctx_id);
if (!ctx)
goto out;
/*
* We opt for unserialised reads here. This may result in tearing
* in the extremely unlikely event of a GPU hang on this context
* as we are querying them. If we need that extra layer of protection,
* we should wrap the hangstats with a seqlock.
*/
if (capable(CAP_SYS_ADMIN))
args->reset_count = i915_reset_count(&i915->gpu_error);
else
args->reset_count = 0;
args->batch_active = atomic_read(&ctx->guilty_count);
args->batch_pending = atomic_read(&ctx->active_count);
ret = 0;
out:
rcu_read_unlock();
return ret;
}
/* GEM context-engines iterator: for_each_gem_engine() */
struct intel_context *
i915_gem_engines_iter_next(struct i915_gem_engines_iter *it)
{
const struct i915_gem_engines *e = it->engines;
struct intel_context *ctx;
if (unlikely(!e))
return NULL;
do {
if (it->idx >= e->num_engines)
return NULL;
ctx = e->engines[it->idx++];
} while (!ctx);
return ctx;
}
#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
#include "selftests/mock_context.c"
#include "selftests/i915_gem_context.c"
#endif
static void i915_global_gem_context_shrink(void)
{
kmem_cache_shrink(global.slab_luts);
}
static void i915_global_gem_context_exit(void)
{
kmem_cache_destroy(global.slab_luts);
}
static struct i915_global_gem_context global = { {
.shrink = i915_global_gem_context_shrink,
.exit = i915_global_gem_context_exit,
} };
int __init i915_global_gem_context_init(void)
{
global.slab_luts = KMEM_CACHE(i915_lut_handle, 0);
if (!global.slab_luts)
return -ENOMEM;
i915_global_register(&global.base);
return 0;
}