forked from Minki/linux
183b8ec38f
When scheduling, it is better to prefer a separate physical core rather than the SMT sibling of a high priority core. The existing formula to compute priorities takes such fact in consideration. There may exist, however, combinations of priorities (i.e., maximum frequencies) in which the priority of high-numbered SMT siblings of high-priority cores collides with the priority of low-numbered SMT siblings of low-priority cores. Consider for instance an SMT2 system with CPUs [0, 1] with priority 60 and [2, 3] with priority 30(CPUs in brackets are SMT siblings. In such a case, the resulting priorities would be [120, 60], [60, 30]. Thus, to ensure that CPU2 has higher priority than CPU1, divide the raw priority by the squared SMT iterator. The resulting priorities are [120, 30]. [60, 15]. Originally-by: Len Brown <len.brown@intel.com> Signed-off-by: Len Brown <len.brown@intel.com> Signed-off-by: Ricardo Neri <ricardo.neri-calderon@linux.intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/20210911011819.12184-2-ricardo.neri-calderon@linux.intel.com |
||
---|---|---|
.. | ||
alpha | ||
arc | ||
arm | ||
arm64 | ||
csky | ||
h8300 | ||
hexagon | ||
ia64 | ||
m68k | ||
microblaze | ||
mips | ||
nds32 | ||
nios2 | ||
openrisc | ||
parisc | ||
powerpc | ||
riscv | ||
s390 | ||
sh | ||
sparc | ||
um | ||
x86 | ||
xtensa | ||
.gitignore | ||
Kconfig |