76968ad2ea
When we set the sun4u version of the PTE execute bit, it's: or REG, _PAGE_EXEC_4U, REG _PAGE_EXEC_4U is 0x1000, unfortunately the immedate field of the 'or' instruction is a signed 13-bit value. So the above actually assembles into: or REG, -4096, REG completely corrupting the final PTE value. Set it with a: sethi %hi(_PAGE_EXEC_4U), TMP or REG, TMP, REG sequence instead. This fixes "git gc" crashes on sun4u machines. Reported-by: Meelis Roos <mroos@linux.ee> Signed-off-by: David S. Miller <davem@davemloft.net>
365 lines
12 KiB
C
365 lines
12 KiB
C
#ifndef _SPARC64_TSB_H
|
|
#define _SPARC64_TSB_H
|
|
|
|
/* The sparc64 TSB is similar to the powerpc hashtables. It's a
|
|
* power-of-2 sized table of TAG/PTE pairs. The cpu precomputes
|
|
* pointers into this table for 8K and 64K page sizes, and also a
|
|
* comparison TAG based upon the virtual address and context which
|
|
* faults.
|
|
*
|
|
* TLB miss trap handler software does the actual lookup via something
|
|
* of the form:
|
|
*
|
|
* ldxa [%g0] ASI_{D,I}MMU_TSB_8KB_PTR, %g1
|
|
* ldxa [%g0] ASI_{D,I}MMU, %g6
|
|
* sllx %g6, 22, %g6
|
|
* srlx %g6, 22, %g6
|
|
* ldda [%g1] ASI_NUCLEUS_QUAD_LDD, %g4
|
|
* cmp %g4, %g6
|
|
* bne,pn %xcc, tsb_miss_{d,i}tlb
|
|
* mov FAULT_CODE_{D,I}TLB, %g3
|
|
* stxa %g5, [%g0] ASI_{D,I}TLB_DATA_IN
|
|
* retry
|
|
*
|
|
*
|
|
* Each 16-byte slot of the TSB is the 8-byte tag and then the 8-byte
|
|
* PTE. The TAG is of the same layout as the TLB TAG TARGET mmu
|
|
* register which is:
|
|
*
|
|
* -------------------------------------------------
|
|
* | - | CONTEXT | - | VADDR bits 63:22 |
|
|
* -------------------------------------------------
|
|
* 63 61 60 48 47 42 41 0
|
|
*
|
|
* But actually, since we use per-mm TSB's, we zero out the CONTEXT
|
|
* field.
|
|
*
|
|
* Like the powerpc hashtables we need to use locking in order to
|
|
* synchronize while we update the entries. PTE updates need locking
|
|
* as well.
|
|
*
|
|
* We need to carefully choose a lock bits for the TSB entry. We
|
|
* choose to use bit 47 in the tag. Also, since we never map anything
|
|
* at page zero in context zero, we use zero as an invalid tag entry.
|
|
* When the lock bit is set, this forces a tag comparison failure.
|
|
*/
|
|
|
|
#define TSB_TAG_LOCK_BIT 47
|
|
#define TSB_TAG_LOCK_HIGH (1 << (TSB_TAG_LOCK_BIT - 32))
|
|
|
|
#define TSB_TAG_INVALID_BIT 46
|
|
#define TSB_TAG_INVALID_HIGH (1 << (TSB_TAG_INVALID_BIT - 32))
|
|
|
|
/* Some cpus support physical address quad loads. We want to use
|
|
* those if possible so we don't need to hard-lock the TSB mapping
|
|
* into the TLB. We encode some instruction patching in order to
|
|
* support this.
|
|
*
|
|
* The kernel TSB is locked into the TLB by virtue of being in the
|
|
* kernel image, so we don't play these games for swapper_tsb access.
|
|
*/
|
|
#ifndef __ASSEMBLY__
|
|
struct tsb_ldquad_phys_patch_entry {
|
|
unsigned int addr;
|
|
unsigned int sun4u_insn;
|
|
unsigned int sun4v_insn;
|
|
};
|
|
extern struct tsb_ldquad_phys_patch_entry __tsb_ldquad_phys_patch,
|
|
__tsb_ldquad_phys_patch_end;
|
|
|
|
struct tsb_phys_patch_entry {
|
|
unsigned int addr;
|
|
unsigned int insn;
|
|
};
|
|
extern struct tsb_phys_patch_entry __tsb_phys_patch, __tsb_phys_patch_end;
|
|
#endif
|
|
#define TSB_LOAD_QUAD(TSB, REG) \
|
|
661: ldda [TSB] ASI_NUCLEUS_QUAD_LDD, REG; \
|
|
.section .tsb_ldquad_phys_patch, "ax"; \
|
|
.word 661b; \
|
|
ldda [TSB] ASI_QUAD_LDD_PHYS, REG; \
|
|
ldda [TSB] ASI_QUAD_LDD_PHYS_4V, REG; \
|
|
.previous
|
|
|
|
#define TSB_LOAD_TAG_HIGH(TSB, REG) \
|
|
661: lduwa [TSB] ASI_N, REG; \
|
|
.section .tsb_phys_patch, "ax"; \
|
|
.word 661b; \
|
|
lduwa [TSB] ASI_PHYS_USE_EC, REG; \
|
|
.previous
|
|
|
|
#define TSB_LOAD_TAG(TSB, REG) \
|
|
661: ldxa [TSB] ASI_N, REG; \
|
|
.section .tsb_phys_patch, "ax"; \
|
|
.word 661b; \
|
|
ldxa [TSB] ASI_PHYS_USE_EC, REG; \
|
|
.previous
|
|
|
|
#define TSB_CAS_TAG_HIGH(TSB, REG1, REG2) \
|
|
661: casa [TSB] ASI_N, REG1, REG2; \
|
|
.section .tsb_phys_patch, "ax"; \
|
|
.word 661b; \
|
|
casa [TSB] ASI_PHYS_USE_EC, REG1, REG2; \
|
|
.previous
|
|
|
|
#define TSB_CAS_TAG(TSB, REG1, REG2) \
|
|
661: casxa [TSB] ASI_N, REG1, REG2; \
|
|
.section .tsb_phys_patch, "ax"; \
|
|
.word 661b; \
|
|
casxa [TSB] ASI_PHYS_USE_EC, REG1, REG2; \
|
|
.previous
|
|
|
|
#define TSB_STORE(ADDR, VAL) \
|
|
661: stxa VAL, [ADDR] ASI_N; \
|
|
.section .tsb_phys_patch, "ax"; \
|
|
.word 661b; \
|
|
stxa VAL, [ADDR] ASI_PHYS_USE_EC; \
|
|
.previous
|
|
|
|
#define TSB_LOCK_TAG(TSB, REG1, REG2) \
|
|
99: TSB_LOAD_TAG_HIGH(TSB, REG1); \
|
|
sethi %hi(TSB_TAG_LOCK_HIGH), REG2;\
|
|
andcc REG1, REG2, %g0; \
|
|
bne,pn %icc, 99b; \
|
|
nop; \
|
|
TSB_CAS_TAG_HIGH(TSB, REG1, REG2); \
|
|
cmp REG1, REG2; \
|
|
bne,pn %icc, 99b; \
|
|
nop; \
|
|
|
|
#define TSB_WRITE(TSB, TTE, TAG) \
|
|
add TSB, 0x8, TSB; \
|
|
TSB_STORE(TSB, TTE); \
|
|
sub TSB, 0x8, TSB; \
|
|
TSB_STORE(TSB, TAG);
|
|
|
|
/* Do a kernel page table walk. Leaves physical PTE pointer in
|
|
* REG1. Jumps to FAIL_LABEL on early page table walk termination.
|
|
* VADDR will not be clobbered, but REG2 will.
|
|
*/
|
|
#define KERN_PGTABLE_WALK(VADDR, REG1, REG2, FAIL_LABEL) \
|
|
sethi %hi(swapper_pg_dir), REG1; \
|
|
or REG1, %lo(swapper_pg_dir), REG1; \
|
|
sllx VADDR, 64 - (PGDIR_SHIFT + PGDIR_BITS), REG2; \
|
|
srlx REG2, 64 - PAGE_SHIFT, REG2; \
|
|
andn REG2, 0x3, REG2; \
|
|
lduw [REG1 + REG2], REG1; \
|
|
brz,pn REG1, FAIL_LABEL; \
|
|
sllx VADDR, 64 - (PMD_SHIFT + PMD_BITS), REG2; \
|
|
srlx REG2, 64 - PAGE_SHIFT, REG2; \
|
|
sllx REG1, PGD_PADDR_SHIFT, REG1; \
|
|
andn REG2, 0x3, REG2; \
|
|
lduwa [REG1 + REG2] ASI_PHYS_USE_EC, REG1; \
|
|
brz,pn REG1, FAIL_LABEL; \
|
|
sllx VADDR, 64 - PMD_SHIFT, REG2; \
|
|
srlx REG2, 64 - (PAGE_SHIFT - 1), REG2; \
|
|
sllx REG1, PMD_PADDR_SHIFT, REG1; \
|
|
andn REG2, 0x7, REG2; \
|
|
add REG1, REG2, REG1;
|
|
|
|
/* These macros exists only to make the PMD translator below
|
|
* easier to read. It hides the ELF section switch for the
|
|
* sun4v code patching.
|
|
*/
|
|
#define OR_PTE_BIT_1INSN(REG, NAME) \
|
|
661: or REG, _PAGE_##NAME##_4U, REG; \
|
|
.section .sun4v_1insn_patch, "ax"; \
|
|
.word 661b; \
|
|
or REG, _PAGE_##NAME##_4V, REG; \
|
|
.previous;
|
|
|
|
#define OR_PTE_BIT_2INSN(REG, TMP, NAME) \
|
|
661: sethi %hi(_PAGE_##NAME##_4U), TMP; \
|
|
or REG, TMP, REG; \
|
|
.section .sun4v_2insn_patch, "ax"; \
|
|
.word 661b; \
|
|
mov -1, TMP; \
|
|
or REG, _PAGE_##NAME##_4V, REG; \
|
|
.previous;
|
|
|
|
/* Load into REG the PTE value for VALID, CACHE, and SZHUGE. */
|
|
#define BUILD_PTE_VALID_SZHUGE_CACHE(REG) \
|
|
661: sethi %uhi(_PAGE_VALID|_PAGE_SZHUGE_4U), REG; \
|
|
.section .sun4v_1insn_patch, "ax"; \
|
|
.word 661b; \
|
|
sethi %uhi(_PAGE_VALID), REG; \
|
|
.previous; \
|
|
sllx REG, 32, REG; \
|
|
661: or REG, _PAGE_CP_4U|_PAGE_CV_4U, REG; \
|
|
.section .sun4v_1insn_patch, "ax"; \
|
|
.word 661b; \
|
|
or REG, _PAGE_CP_4V|_PAGE_CV_4V|_PAGE_SZHUGE_4V, REG; \
|
|
.previous;
|
|
|
|
/* PMD has been loaded into REG1, interpret the value, seeing
|
|
* if it is a HUGE PMD or a normal one. If it is not valid
|
|
* then jump to FAIL_LABEL. If it is a HUGE PMD, and it
|
|
* translates to a valid PTE, branch to PTE_LABEL.
|
|
*
|
|
* We translate the PMD by hand, one bit at a time,
|
|
* constructing the huge PTE.
|
|
*
|
|
* So we construct the PTE in REG2 as follows:
|
|
*
|
|
* 1) Extract the PMD PFN from REG1 and place it into REG2.
|
|
*
|
|
* 2) Translate PMD protection bits in REG1 into REG2, one bit
|
|
* at a time using andcc tests on REG1 and OR's into REG2.
|
|
*
|
|
* Only two bits to be concerned with here, EXEC and WRITE.
|
|
* Now REG1 is freed up and we can use it as a temporary.
|
|
*
|
|
* 3) Construct the VALID, CACHE, and page size PTE bits in
|
|
* REG1, OR with REG2 to form final PTE.
|
|
*/
|
|
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
|
|
#define USER_PGTABLE_CHECK_PMD_HUGE(VADDR, REG1, REG2, FAIL_LABEL, PTE_LABEL) \
|
|
brz,pn REG1, FAIL_LABEL; \
|
|
andcc REG1, PMD_ISHUGE, %g0; \
|
|
be,pt %xcc, 700f; \
|
|
and REG1, PMD_HUGE_PRESENT|PMD_HUGE_ACCESSED, REG2; \
|
|
cmp REG2, PMD_HUGE_PRESENT|PMD_HUGE_ACCESSED; \
|
|
bne,pn %xcc, FAIL_LABEL; \
|
|
andn REG1, PMD_HUGE_PROTBITS, REG2; \
|
|
sllx REG2, PMD_PADDR_SHIFT, REG2; \
|
|
/* REG2 now holds PFN << PAGE_SHIFT */ \
|
|
andcc REG1, PMD_HUGE_WRITE, %g0; \
|
|
bne,a,pt %xcc, 1f; \
|
|
OR_PTE_BIT_1INSN(REG2, W); \
|
|
1: andcc REG1, PMD_HUGE_EXEC, %g0; \
|
|
be,pt %xcc, 1f; \
|
|
nop; \
|
|
OR_PTE_BIT_2INSN(REG2, REG1, EXEC); \
|
|
/* REG1 can now be clobbered, build final PTE */ \
|
|
1: BUILD_PTE_VALID_SZHUGE_CACHE(REG1); \
|
|
ba,pt %xcc, PTE_LABEL; \
|
|
or REG1, REG2, REG1; \
|
|
700:
|
|
#else
|
|
#define USER_PGTABLE_CHECK_PMD_HUGE(VADDR, REG1, REG2, FAIL_LABEL, PTE_LABEL) \
|
|
brz,pn REG1, FAIL_LABEL; \
|
|
nop;
|
|
#endif
|
|
|
|
/* Do a user page table walk in MMU globals. Leaves final,
|
|
* valid, PTE value in REG1. Jumps to FAIL_LABEL on early
|
|
* page table walk termination or if the PTE is not valid.
|
|
*
|
|
* Physical base of page tables is in PHYS_PGD which will not
|
|
* be modified.
|
|
*
|
|
* VADDR will not be clobbered, but REG1 and REG2 will.
|
|
*/
|
|
#define USER_PGTABLE_WALK_TL1(VADDR, PHYS_PGD, REG1, REG2, FAIL_LABEL) \
|
|
sllx VADDR, 64 - (PGDIR_SHIFT + PGDIR_BITS), REG2; \
|
|
srlx REG2, 64 - PAGE_SHIFT, REG2; \
|
|
andn REG2, 0x3, REG2; \
|
|
lduwa [PHYS_PGD + REG2] ASI_PHYS_USE_EC, REG1; \
|
|
brz,pn REG1, FAIL_LABEL; \
|
|
sllx VADDR, 64 - (PMD_SHIFT + PMD_BITS), REG2; \
|
|
srlx REG2, 64 - PAGE_SHIFT, REG2; \
|
|
sllx REG1, PGD_PADDR_SHIFT, REG1; \
|
|
andn REG2, 0x3, REG2; \
|
|
lduwa [REG1 + REG2] ASI_PHYS_USE_EC, REG1; \
|
|
USER_PGTABLE_CHECK_PMD_HUGE(VADDR, REG1, REG2, FAIL_LABEL, 800f) \
|
|
sllx VADDR, 64 - PMD_SHIFT, REG2; \
|
|
srlx REG2, 64 - (PAGE_SHIFT - 1), REG2; \
|
|
sllx REG1, PMD_PADDR_SHIFT, REG1; \
|
|
andn REG2, 0x7, REG2; \
|
|
add REG1, REG2, REG1; \
|
|
ldxa [REG1] ASI_PHYS_USE_EC, REG1; \
|
|
brgez,pn REG1, FAIL_LABEL; \
|
|
nop; \
|
|
800:
|
|
|
|
/* Lookup a OBP mapping on VADDR in the prom_trans[] table at TL>0.
|
|
* If no entry is found, FAIL_LABEL will be branched to. On success
|
|
* the resulting PTE value will be left in REG1. VADDR is preserved
|
|
* by this routine.
|
|
*/
|
|
#define OBP_TRANS_LOOKUP(VADDR, REG1, REG2, REG3, FAIL_LABEL) \
|
|
sethi %hi(prom_trans), REG1; \
|
|
or REG1, %lo(prom_trans), REG1; \
|
|
97: ldx [REG1 + 0x00], REG2; \
|
|
brz,pn REG2, FAIL_LABEL; \
|
|
nop; \
|
|
ldx [REG1 + 0x08], REG3; \
|
|
add REG2, REG3, REG3; \
|
|
cmp REG2, VADDR; \
|
|
bgu,pt %xcc, 98f; \
|
|
cmp VADDR, REG3; \
|
|
bgeu,pt %xcc, 98f; \
|
|
ldx [REG1 + 0x10], REG3; \
|
|
sub VADDR, REG2, REG2; \
|
|
ba,pt %xcc, 99f; \
|
|
add REG3, REG2, REG1; \
|
|
98: ba,pt %xcc, 97b; \
|
|
add REG1, (3 * 8), REG1; \
|
|
99:
|
|
|
|
/* We use a 32K TSB for the whole kernel, this allows to
|
|
* handle about 16MB of modules and vmalloc mappings without
|
|
* incurring many hash conflicts.
|
|
*/
|
|
#define KERNEL_TSB_SIZE_BYTES (32 * 1024)
|
|
#define KERNEL_TSB_NENTRIES \
|
|
(KERNEL_TSB_SIZE_BYTES / 16)
|
|
#define KERNEL_TSB4M_NENTRIES 4096
|
|
|
|
#define KTSB_PHYS_SHIFT 15
|
|
|
|
/* Do a kernel TSB lookup at tl>0 on VADDR+TAG, branch to OK_LABEL
|
|
* on TSB hit. REG1, REG2, REG3, and REG4 are used as temporaries
|
|
* and the found TTE will be left in REG1. REG3 and REG4 must
|
|
* be an even/odd pair of registers.
|
|
*
|
|
* VADDR and TAG will be preserved and not clobbered by this macro.
|
|
*/
|
|
#define KERN_TSB_LOOKUP_TL1(VADDR, TAG, REG1, REG2, REG3, REG4, OK_LABEL) \
|
|
661: sethi %hi(swapper_tsb), REG1; \
|
|
or REG1, %lo(swapper_tsb), REG1; \
|
|
.section .swapper_tsb_phys_patch, "ax"; \
|
|
.word 661b; \
|
|
.previous; \
|
|
661: nop; \
|
|
.section .tsb_ldquad_phys_patch, "ax"; \
|
|
.word 661b; \
|
|
sllx REG1, KTSB_PHYS_SHIFT, REG1; \
|
|
sllx REG1, KTSB_PHYS_SHIFT, REG1; \
|
|
.previous; \
|
|
srlx VADDR, PAGE_SHIFT, REG2; \
|
|
and REG2, (KERNEL_TSB_NENTRIES - 1), REG2; \
|
|
sllx REG2, 4, REG2; \
|
|
add REG1, REG2, REG2; \
|
|
TSB_LOAD_QUAD(REG2, REG3); \
|
|
cmp REG3, TAG; \
|
|
be,a,pt %xcc, OK_LABEL; \
|
|
mov REG4, REG1;
|
|
|
|
#ifndef CONFIG_DEBUG_PAGEALLOC
|
|
/* This version uses a trick, the TAG is already (VADDR >> 22) so
|
|
* we can make use of that for the index computation.
|
|
*/
|
|
#define KERN_TSB4M_LOOKUP_TL1(TAG, REG1, REG2, REG3, REG4, OK_LABEL) \
|
|
661: sethi %hi(swapper_4m_tsb), REG1; \
|
|
or REG1, %lo(swapper_4m_tsb), REG1; \
|
|
.section .swapper_4m_tsb_phys_patch, "ax"; \
|
|
.word 661b; \
|
|
.previous; \
|
|
661: nop; \
|
|
.section .tsb_ldquad_phys_patch, "ax"; \
|
|
.word 661b; \
|
|
sllx REG1, KTSB_PHYS_SHIFT, REG1; \
|
|
sllx REG1, KTSB_PHYS_SHIFT, REG1; \
|
|
.previous; \
|
|
and TAG, (KERNEL_TSB4M_NENTRIES - 1), REG2; \
|
|
sllx REG2, 4, REG2; \
|
|
add REG1, REG2, REG2; \
|
|
TSB_LOAD_QUAD(REG2, REG3); \
|
|
cmp REG3, TAG; \
|
|
be,a,pt %xcc, OK_LABEL; \
|
|
mov REG4, REG1;
|
|
#endif
|
|
|
|
#endif /* !(_SPARC64_TSB_H) */
|