f48ad614c1
The TODO list for the hfi1 driver was completed during 4.6. In addition other objections raised (which are far beyond what was in the TODO list) have been addressed as well. It is now time to remove the driver from staging and into the drivers/infiniband sub-tree. Reviewed-by: Jubin John <jubin.john@intel.com> Signed-off-by: Dennis Dalessandro <dennis.dalessandro@intel.com> Signed-off-by: Doug Ledford <dledford@redhat.com>
912 lines
25 KiB
C
912 lines
25 KiB
C
/*
|
|
* Copyright(c) 2015, 2016 Intel Corporation.
|
|
*
|
|
* This file is provided under a dual BSD/GPLv2 license. When using or
|
|
* redistributing this file, you may do so under either license.
|
|
*
|
|
* GPL LICENSE SUMMARY
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of version 2 of the GNU General Public License as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope that it will be useful, but
|
|
* WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* General Public License for more details.
|
|
*
|
|
* BSD LICENSE
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* - Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* - Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in
|
|
* the documentation and/or other materials provided with the
|
|
* distribution.
|
|
* - Neither the name of Intel Corporation nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
*/
|
|
|
|
#include <linux/net.h>
|
|
#include <rdma/ib_smi.h>
|
|
|
|
#include "hfi.h"
|
|
#include "mad.h"
|
|
#include "verbs_txreq.h"
|
|
#include "qp.h"
|
|
|
|
/**
|
|
* ud_loopback - handle send on loopback QPs
|
|
* @sqp: the sending QP
|
|
* @swqe: the send work request
|
|
*
|
|
* This is called from hfi1_make_ud_req() to forward a WQE addressed
|
|
* to the same HFI.
|
|
* Note that the receive interrupt handler may be calling hfi1_ud_rcv()
|
|
* while this is being called.
|
|
*/
|
|
static void ud_loopback(struct rvt_qp *sqp, struct rvt_swqe *swqe)
|
|
{
|
|
struct hfi1_ibport *ibp = to_iport(sqp->ibqp.device, sqp->port_num);
|
|
struct hfi1_pportdata *ppd;
|
|
struct rvt_qp *qp;
|
|
struct ib_ah_attr *ah_attr;
|
|
unsigned long flags;
|
|
struct rvt_sge_state ssge;
|
|
struct rvt_sge *sge;
|
|
struct ib_wc wc;
|
|
u32 length;
|
|
enum ib_qp_type sqptype, dqptype;
|
|
|
|
rcu_read_lock();
|
|
|
|
qp = rvt_lookup_qpn(ib_to_rvt(sqp->ibqp.device), &ibp->rvp,
|
|
swqe->ud_wr.remote_qpn);
|
|
if (!qp) {
|
|
ibp->rvp.n_pkt_drops++;
|
|
rcu_read_unlock();
|
|
return;
|
|
}
|
|
|
|
sqptype = sqp->ibqp.qp_type == IB_QPT_GSI ?
|
|
IB_QPT_UD : sqp->ibqp.qp_type;
|
|
dqptype = qp->ibqp.qp_type == IB_QPT_GSI ?
|
|
IB_QPT_UD : qp->ibqp.qp_type;
|
|
|
|
if (dqptype != sqptype ||
|
|
!(ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK)) {
|
|
ibp->rvp.n_pkt_drops++;
|
|
goto drop;
|
|
}
|
|
|
|
ah_attr = &ibah_to_rvtah(swqe->ud_wr.ah)->attr;
|
|
ppd = ppd_from_ibp(ibp);
|
|
|
|
if (qp->ibqp.qp_num > 1) {
|
|
u16 pkey;
|
|
u16 slid;
|
|
u8 sc5 = ibp->sl_to_sc[ah_attr->sl];
|
|
|
|
pkey = hfi1_get_pkey(ibp, sqp->s_pkey_index);
|
|
slid = ppd->lid | (ah_attr->src_path_bits &
|
|
((1 << ppd->lmc) - 1));
|
|
if (unlikely(ingress_pkey_check(ppd, pkey, sc5,
|
|
qp->s_pkey_index, slid))) {
|
|
hfi1_bad_pqkey(ibp, OPA_TRAP_BAD_P_KEY, pkey,
|
|
ah_attr->sl,
|
|
sqp->ibqp.qp_num, qp->ibqp.qp_num,
|
|
slid, ah_attr->dlid);
|
|
goto drop;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Check that the qkey matches (except for QP0, see 9.6.1.4.1).
|
|
* Qkeys with the high order bit set mean use the
|
|
* qkey from the QP context instead of the WR (see 10.2.5).
|
|
*/
|
|
if (qp->ibqp.qp_num) {
|
|
u32 qkey;
|
|
|
|
qkey = (int)swqe->ud_wr.remote_qkey < 0 ?
|
|
sqp->qkey : swqe->ud_wr.remote_qkey;
|
|
if (unlikely(qkey != qp->qkey)) {
|
|
u16 lid;
|
|
|
|
lid = ppd->lid | (ah_attr->src_path_bits &
|
|
((1 << ppd->lmc) - 1));
|
|
hfi1_bad_pqkey(ibp, OPA_TRAP_BAD_Q_KEY, qkey,
|
|
ah_attr->sl,
|
|
sqp->ibqp.qp_num, qp->ibqp.qp_num,
|
|
lid,
|
|
ah_attr->dlid);
|
|
goto drop;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* A GRH is expected to precede the data even if not
|
|
* present on the wire.
|
|
*/
|
|
length = swqe->length;
|
|
memset(&wc, 0, sizeof(wc));
|
|
wc.byte_len = length + sizeof(struct ib_grh);
|
|
|
|
if (swqe->wr.opcode == IB_WR_SEND_WITH_IMM) {
|
|
wc.wc_flags = IB_WC_WITH_IMM;
|
|
wc.ex.imm_data = swqe->wr.ex.imm_data;
|
|
}
|
|
|
|
spin_lock_irqsave(&qp->r_lock, flags);
|
|
|
|
/*
|
|
* Get the next work request entry to find where to put the data.
|
|
*/
|
|
if (qp->r_flags & RVT_R_REUSE_SGE) {
|
|
qp->r_flags &= ~RVT_R_REUSE_SGE;
|
|
} else {
|
|
int ret;
|
|
|
|
ret = hfi1_rvt_get_rwqe(qp, 0);
|
|
if (ret < 0) {
|
|
hfi1_rc_error(qp, IB_WC_LOC_QP_OP_ERR);
|
|
goto bail_unlock;
|
|
}
|
|
if (!ret) {
|
|
if (qp->ibqp.qp_num == 0)
|
|
ibp->rvp.n_vl15_dropped++;
|
|
goto bail_unlock;
|
|
}
|
|
}
|
|
/* Silently drop packets which are too big. */
|
|
if (unlikely(wc.byte_len > qp->r_len)) {
|
|
qp->r_flags |= RVT_R_REUSE_SGE;
|
|
ibp->rvp.n_pkt_drops++;
|
|
goto bail_unlock;
|
|
}
|
|
|
|
if (ah_attr->ah_flags & IB_AH_GRH) {
|
|
hfi1_copy_sge(&qp->r_sge, &ah_attr->grh,
|
|
sizeof(struct ib_grh), 1, 0);
|
|
wc.wc_flags |= IB_WC_GRH;
|
|
} else {
|
|
hfi1_skip_sge(&qp->r_sge, sizeof(struct ib_grh), 1);
|
|
}
|
|
ssge.sg_list = swqe->sg_list + 1;
|
|
ssge.sge = *swqe->sg_list;
|
|
ssge.num_sge = swqe->wr.num_sge;
|
|
sge = &ssge.sge;
|
|
while (length) {
|
|
u32 len = sge->length;
|
|
|
|
if (len > length)
|
|
len = length;
|
|
if (len > sge->sge_length)
|
|
len = sge->sge_length;
|
|
WARN_ON_ONCE(len == 0);
|
|
hfi1_copy_sge(&qp->r_sge, sge->vaddr, len, 1, 0);
|
|
sge->vaddr += len;
|
|
sge->length -= len;
|
|
sge->sge_length -= len;
|
|
if (sge->sge_length == 0) {
|
|
if (--ssge.num_sge)
|
|
*sge = *ssge.sg_list++;
|
|
} else if (sge->length == 0 && sge->mr->lkey) {
|
|
if (++sge->n >= RVT_SEGSZ) {
|
|
if (++sge->m >= sge->mr->mapsz)
|
|
break;
|
|
sge->n = 0;
|
|
}
|
|
sge->vaddr =
|
|
sge->mr->map[sge->m]->segs[sge->n].vaddr;
|
|
sge->length =
|
|
sge->mr->map[sge->m]->segs[sge->n].length;
|
|
}
|
|
length -= len;
|
|
}
|
|
rvt_put_ss(&qp->r_sge);
|
|
if (!test_and_clear_bit(RVT_R_WRID_VALID, &qp->r_aflags))
|
|
goto bail_unlock;
|
|
wc.wr_id = qp->r_wr_id;
|
|
wc.status = IB_WC_SUCCESS;
|
|
wc.opcode = IB_WC_RECV;
|
|
wc.qp = &qp->ibqp;
|
|
wc.src_qp = sqp->ibqp.qp_num;
|
|
if (qp->ibqp.qp_type == IB_QPT_GSI || qp->ibqp.qp_type == IB_QPT_SMI) {
|
|
if (sqp->ibqp.qp_type == IB_QPT_GSI ||
|
|
sqp->ibqp.qp_type == IB_QPT_SMI)
|
|
wc.pkey_index = swqe->ud_wr.pkey_index;
|
|
else
|
|
wc.pkey_index = sqp->s_pkey_index;
|
|
} else {
|
|
wc.pkey_index = 0;
|
|
}
|
|
wc.slid = ppd->lid | (ah_attr->src_path_bits & ((1 << ppd->lmc) - 1));
|
|
/* Check for loopback when the port lid is not set */
|
|
if (wc.slid == 0 && sqp->ibqp.qp_type == IB_QPT_GSI)
|
|
wc.slid = be16_to_cpu(IB_LID_PERMISSIVE);
|
|
wc.sl = ah_attr->sl;
|
|
wc.dlid_path_bits = ah_attr->dlid & ((1 << ppd->lmc) - 1);
|
|
wc.port_num = qp->port_num;
|
|
/* Signal completion event if the solicited bit is set. */
|
|
rvt_cq_enter(ibcq_to_rvtcq(qp->ibqp.recv_cq), &wc,
|
|
swqe->wr.send_flags & IB_SEND_SOLICITED);
|
|
ibp->rvp.n_loop_pkts++;
|
|
bail_unlock:
|
|
spin_unlock_irqrestore(&qp->r_lock, flags);
|
|
drop:
|
|
rcu_read_unlock();
|
|
}
|
|
|
|
/**
|
|
* hfi1_make_ud_req - construct a UD request packet
|
|
* @qp: the QP
|
|
*
|
|
* Assume s_lock is held.
|
|
*
|
|
* Return 1 if constructed; otherwise, return 0.
|
|
*/
|
|
int hfi1_make_ud_req(struct rvt_qp *qp, struct hfi1_pkt_state *ps)
|
|
{
|
|
struct hfi1_qp_priv *priv = qp->priv;
|
|
struct hfi1_other_headers *ohdr;
|
|
struct ib_ah_attr *ah_attr;
|
|
struct hfi1_pportdata *ppd;
|
|
struct hfi1_ibport *ibp;
|
|
struct rvt_swqe *wqe;
|
|
u32 nwords;
|
|
u32 extra_bytes;
|
|
u32 bth0;
|
|
u16 lrh0;
|
|
u16 lid;
|
|
int next_cur;
|
|
u8 sc5;
|
|
|
|
ps->s_txreq = get_txreq(ps->dev, qp);
|
|
if (IS_ERR(ps->s_txreq))
|
|
goto bail_no_tx;
|
|
|
|
if (!(ib_rvt_state_ops[qp->state] & RVT_PROCESS_NEXT_SEND_OK)) {
|
|
if (!(ib_rvt_state_ops[qp->state] & RVT_FLUSH_SEND))
|
|
goto bail;
|
|
/* We are in the error state, flush the work request. */
|
|
smp_read_barrier_depends(); /* see post_one_send */
|
|
if (qp->s_last == ACCESS_ONCE(qp->s_head))
|
|
goto bail;
|
|
/* If DMAs are in progress, we can't flush immediately. */
|
|
if (iowait_sdma_pending(&priv->s_iowait)) {
|
|
qp->s_flags |= RVT_S_WAIT_DMA;
|
|
goto bail;
|
|
}
|
|
wqe = rvt_get_swqe_ptr(qp, qp->s_last);
|
|
hfi1_send_complete(qp, wqe, IB_WC_WR_FLUSH_ERR);
|
|
goto done_free_tx;
|
|
}
|
|
|
|
/* see post_one_send() */
|
|
smp_read_barrier_depends();
|
|
if (qp->s_cur == ACCESS_ONCE(qp->s_head))
|
|
goto bail;
|
|
|
|
wqe = rvt_get_swqe_ptr(qp, qp->s_cur);
|
|
next_cur = qp->s_cur + 1;
|
|
if (next_cur >= qp->s_size)
|
|
next_cur = 0;
|
|
|
|
/* Construct the header. */
|
|
ibp = to_iport(qp->ibqp.device, qp->port_num);
|
|
ppd = ppd_from_ibp(ibp);
|
|
ah_attr = &ibah_to_rvtah(wqe->ud_wr.ah)->attr;
|
|
if (ah_attr->dlid < be16_to_cpu(IB_MULTICAST_LID_BASE) ||
|
|
ah_attr->dlid == be16_to_cpu(IB_LID_PERMISSIVE)) {
|
|
lid = ah_attr->dlid & ~((1 << ppd->lmc) - 1);
|
|
if (unlikely(!loopback &&
|
|
(lid == ppd->lid ||
|
|
(lid == be16_to_cpu(IB_LID_PERMISSIVE) &&
|
|
qp->ibqp.qp_type == IB_QPT_GSI)))) {
|
|
unsigned long tflags = ps->flags;
|
|
/*
|
|
* If DMAs are in progress, we can't generate
|
|
* a completion for the loopback packet since
|
|
* it would be out of order.
|
|
* Instead of waiting, we could queue a
|
|
* zero length descriptor so we get a callback.
|
|
*/
|
|
if (iowait_sdma_pending(&priv->s_iowait)) {
|
|
qp->s_flags |= RVT_S_WAIT_DMA;
|
|
goto bail;
|
|
}
|
|
qp->s_cur = next_cur;
|
|
spin_unlock_irqrestore(&qp->s_lock, tflags);
|
|
ud_loopback(qp, wqe);
|
|
spin_lock_irqsave(&qp->s_lock, tflags);
|
|
ps->flags = tflags;
|
|
hfi1_send_complete(qp, wqe, IB_WC_SUCCESS);
|
|
goto done_free_tx;
|
|
}
|
|
}
|
|
|
|
qp->s_cur = next_cur;
|
|
extra_bytes = -wqe->length & 3;
|
|
nwords = (wqe->length + extra_bytes) >> 2;
|
|
|
|
/* header size in 32-bit words LRH+BTH+DETH = (8+12+8)/4. */
|
|
qp->s_hdrwords = 7;
|
|
qp->s_cur_size = wqe->length;
|
|
qp->s_cur_sge = &qp->s_sge;
|
|
qp->s_srate = ah_attr->static_rate;
|
|
qp->srate_mbps = ib_rate_to_mbps(qp->s_srate);
|
|
qp->s_wqe = wqe;
|
|
qp->s_sge.sge = wqe->sg_list[0];
|
|
qp->s_sge.sg_list = wqe->sg_list + 1;
|
|
qp->s_sge.num_sge = wqe->wr.num_sge;
|
|
qp->s_sge.total_len = wqe->length;
|
|
|
|
if (ah_attr->ah_flags & IB_AH_GRH) {
|
|
/* Header size in 32-bit words. */
|
|
qp->s_hdrwords += hfi1_make_grh(ibp,
|
|
&ps->s_txreq->phdr.hdr.u.l.grh,
|
|
&ah_attr->grh,
|
|
qp->s_hdrwords, nwords);
|
|
lrh0 = HFI1_LRH_GRH;
|
|
ohdr = &ps->s_txreq->phdr.hdr.u.l.oth;
|
|
/*
|
|
* Don't worry about sending to locally attached multicast
|
|
* QPs. It is unspecified by the spec. what happens.
|
|
*/
|
|
} else {
|
|
/* Header size in 32-bit words. */
|
|
lrh0 = HFI1_LRH_BTH;
|
|
ohdr = &ps->s_txreq->phdr.hdr.u.oth;
|
|
}
|
|
if (wqe->wr.opcode == IB_WR_SEND_WITH_IMM) {
|
|
qp->s_hdrwords++;
|
|
ohdr->u.ud.imm_data = wqe->wr.ex.imm_data;
|
|
bth0 = IB_OPCODE_UD_SEND_ONLY_WITH_IMMEDIATE << 24;
|
|
} else {
|
|
bth0 = IB_OPCODE_UD_SEND_ONLY << 24;
|
|
}
|
|
sc5 = ibp->sl_to_sc[ah_attr->sl];
|
|
lrh0 |= (ah_attr->sl & 0xf) << 4;
|
|
if (qp->ibqp.qp_type == IB_QPT_SMI) {
|
|
lrh0 |= 0xF000; /* Set VL (see ch. 13.5.3.1) */
|
|
priv->s_sc = 0xf;
|
|
} else {
|
|
lrh0 |= (sc5 & 0xf) << 12;
|
|
priv->s_sc = sc5;
|
|
}
|
|
priv->s_sde = qp_to_sdma_engine(qp, priv->s_sc);
|
|
ps->s_txreq->sde = priv->s_sde;
|
|
priv->s_sendcontext = qp_to_send_context(qp, priv->s_sc);
|
|
ps->s_txreq->psc = priv->s_sendcontext;
|
|
ps->s_txreq->phdr.hdr.lrh[0] = cpu_to_be16(lrh0);
|
|
ps->s_txreq->phdr.hdr.lrh[1] = cpu_to_be16(ah_attr->dlid);
|
|
ps->s_txreq->phdr.hdr.lrh[2] =
|
|
cpu_to_be16(qp->s_hdrwords + nwords + SIZE_OF_CRC);
|
|
if (ah_attr->dlid == be16_to_cpu(IB_LID_PERMISSIVE)) {
|
|
ps->s_txreq->phdr.hdr.lrh[3] = IB_LID_PERMISSIVE;
|
|
} else {
|
|
lid = ppd->lid;
|
|
if (lid) {
|
|
lid |= ah_attr->src_path_bits & ((1 << ppd->lmc) - 1);
|
|
ps->s_txreq->phdr.hdr.lrh[3] = cpu_to_be16(lid);
|
|
} else {
|
|
ps->s_txreq->phdr.hdr.lrh[3] = IB_LID_PERMISSIVE;
|
|
}
|
|
}
|
|
if (wqe->wr.send_flags & IB_SEND_SOLICITED)
|
|
bth0 |= IB_BTH_SOLICITED;
|
|
bth0 |= extra_bytes << 20;
|
|
if (qp->ibqp.qp_type == IB_QPT_GSI || qp->ibqp.qp_type == IB_QPT_SMI)
|
|
bth0 |= hfi1_get_pkey(ibp, wqe->ud_wr.pkey_index);
|
|
else
|
|
bth0 |= hfi1_get_pkey(ibp, qp->s_pkey_index);
|
|
ohdr->bth[0] = cpu_to_be32(bth0);
|
|
ohdr->bth[1] = cpu_to_be32(wqe->ud_wr.remote_qpn);
|
|
ohdr->bth[2] = cpu_to_be32(mask_psn(wqe->psn));
|
|
/*
|
|
* Qkeys with the high order bit set mean use the
|
|
* qkey from the QP context instead of the WR (see 10.2.5).
|
|
*/
|
|
ohdr->u.ud.deth[0] = cpu_to_be32((int)wqe->ud_wr.remote_qkey < 0 ?
|
|
qp->qkey : wqe->ud_wr.remote_qkey);
|
|
ohdr->u.ud.deth[1] = cpu_to_be32(qp->ibqp.qp_num);
|
|
/* disarm any ahg */
|
|
priv->s_hdr->ahgcount = 0;
|
|
priv->s_hdr->ahgidx = 0;
|
|
priv->s_hdr->tx_flags = 0;
|
|
priv->s_hdr->sde = NULL;
|
|
/* pbc */
|
|
ps->s_txreq->hdr_dwords = qp->s_hdrwords + 2;
|
|
|
|
return 1;
|
|
|
|
done_free_tx:
|
|
hfi1_put_txreq(ps->s_txreq);
|
|
ps->s_txreq = NULL;
|
|
return 1;
|
|
|
|
bail:
|
|
hfi1_put_txreq(ps->s_txreq);
|
|
|
|
bail_no_tx:
|
|
ps->s_txreq = NULL;
|
|
qp->s_flags &= ~RVT_S_BUSY;
|
|
qp->s_hdrwords = 0;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Hardware can't check this so we do it here.
|
|
*
|
|
* This is a slightly different algorithm than the standard pkey check. It
|
|
* special cases the management keys and allows for 0x7fff and 0xffff to be in
|
|
* the table at the same time.
|
|
*
|
|
* @returns the index found or -1 if not found
|
|
*/
|
|
int hfi1_lookup_pkey_idx(struct hfi1_ibport *ibp, u16 pkey)
|
|
{
|
|
struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
|
|
unsigned i;
|
|
|
|
if (pkey == FULL_MGMT_P_KEY || pkey == LIM_MGMT_P_KEY) {
|
|
unsigned lim_idx = -1;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(ppd->pkeys); ++i) {
|
|
/* here we look for an exact match */
|
|
if (ppd->pkeys[i] == pkey)
|
|
return i;
|
|
if (ppd->pkeys[i] == LIM_MGMT_P_KEY)
|
|
lim_idx = i;
|
|
}
|
|
|
|
/* did not find 0xffff return 0x7fff idx if found */
|
|
if (pkey == FULL_MGMT_P_KEY)
|
|
return lim_idx;
|
|
|
|
/* no match... */
|
|
return -1;
|
|
}
|
|
|
|
pkey &= 0x7fff; /* remove limited/full membership bit */
|
|
|
|
for (i = 0; i < ARRAY_SIZE(ppd->pkeys); ++i)
|
|
if ((ppd->pkeys[i] & 0x7fff) == pkey)
|
|
return i;
|
|
|
|
/*
|
|
* Should not get here, this means hardware failed to validate pkeys.
|
|
*/
|
|
return -1;
|
|
}
|
|
|
|
void return_cnp(struct hfi1_ibport *ibp, struct rvt_qp *qp, u32 remote_qpn,
|
|
u32 pkey, u32 slid, u32 dlid, u8 sc5,
|
|
const struct ib_grh *old_grh)
|
|
{
|
|
u64 pbc, pbc_flags = 0;
|
|
u32 bth0, plen, vl, hwords = 5;
|
|
u16 lrh0;
|
|
u8 sl = ibp->sc_to_sl[sc5];
|
|
struct hfi1_ib_header hdr;
|
|
struct hfi1_other_headers *ohdr;
|
|
struct pio_buf *pbuf;
|
|
struct send_context *ctxt = qp_to_send_context(qp, sc5);
|
|
struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
|
|
|
|
if (old_grh) {
|
|
struct ib_grh *grh = &hdr.u.l.grh;
|
|
|
|
grh->version_tclass_flow = old_grh->version_tclass_flow;
|
|
grh->paylen = cpu_to_be16((hwords - 2 + SIZE_OF_CRC) << 2);
|
|
grh->hop_limit = 0xff;
|
|
grh->sgid = old_grh->dgid;
|
|
grh->dgid = old_grh->sgid;
|
|
ohdr = &hdr.u.l.oth;
|
|
lrh0 = HFI1_LRH_GRH;
|
|
hwords += sizeof(struct ib_grh) / sizeof(u32);
|
|
} else {
|
|
ohdr = &hdr.u.oth;
|
|
lrh0 = HFI1_LRH_BTH;
|
|
}
|
|
|
|
lrh0 |= (sc5 & 0xf) << 12 | sl << 4;
|
|
|
|
bth0 = pkey | (IB_OPCODE_CNP << 24);
|
|
ohdr->bth[0] = cpu_to_be32(bth0);
|
|
|
|
ohdr->bth[1] = cpu_to_be32(remote_qpn | (1 << HFI1_BECN_SHIFT));
|
|
ohdr->bth[2] = 0; /* PSN 0 */
|
|
|
|
hdr.lrh[0] = cpu_to_be16(lrh0);
|
|
hdr.lrh[1] = cpu_to_be16(dlid);
|
|
hdr.lrh[2] = cpu_to_be16(hwords + SIZE_OF_CRC);
|
|
hdr.lrh[3] = cpu_to_be16(slid);
|
|
|
|
plen = 2 /* PBC */ + hwords;
|
|
pbc_flags |= (!!(sc5 & 0x10)) << PBC_DC_INFO_SHIFT;
|
|
vl = sc_to_vlt(ppd->dd, sc5);
|
|
pbc = create_pbc(ppd, pbc_flags, qp->srate_mbps, vl, plen);
|
|
if (ctxt) {
|
|
pbuf = sc_buffer_alloc(ctxt, plen, NULL, NULL);
|
|
if (pbuf)
|
|
ppd->dd->pio_inline_send(ppd->dd, pbuf, pbc,
|
|
&hdr, hwords);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* opa_smp_check() - Do the regular pkey checking, and the additional
|
|
* checks for SMPs specified in OPAv1 rev 0.90, section 9.10.26
|
|
* ("SMA Packet Checks").
|
|
*
|
|
* Note that:
|
|
* - Checks are done using the pkey directly from the packet's BTH,
|
|
* and specifically _not_ the pkey that we attach to the completion,
|
|
* which may be different.
|
|
* - These checks are specifically for "non-local" SMPs (i.e., SMPs
|
|
* which originated on another node). SMPs which are sent from, and
|
|
* destined to this node are checked in opa_local_smp_check().
|
|
*
|
|
* At the point where opa_smp_check() is called, we know:
|
|
* - destination QP is QP0
|
|
*
|
|
* opa_smp_check() returns 0 if all checks succeed, 1 otherwise.
|
|
*/
|
|
static int opa_smp_check(struct hfi1_ibport *ibp, u16 pkey, u8 sc5,
|
|
struct rvt_qp *qp, u16 slid, struct opa_smp *smp)
|
|
{
|
|
struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
|
|
|
|
/*
|
|
* I don't think it's possible for us to get here with sc != 0xf,
|
|
* but check it to be certain.
|
|
*/
|
|
if (sc5 != 0xf)
|
|
return 1;
|
|
|
|
if (rcv_pkey_check(ppd, pkey, sc5, slid))
|
|
return 1;
|
|
|
|
/*
|
|
* At this point we know (and so don't need to check again) that
|
|
* the pkey is either LIM_MGMT_P_KEY, or FULL_MGMT_P_KEY
|
|
* (see ingress_pkey_check).
|
|
*/
|
|
if (smp->mgmt_class != IB_MGMT_CLASS_SUBN_DIRECTED_ROUTE &&
|
|
smp->mgmt_class != IB_MGMT_CLASS_SUBN_LID_ROUTED) {
|
|
ingress_pkey_table_fail(ppd, pkey, slid);
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* SMPs fall into one of four (disjoint) categories:
|
|
* SMA request, SMA response, trap, or trap repress.
|
|
* Our response depends, in part, on which type of
|
|
* SMP we're processing.
|
|
*
|
|
* If this is not an SMA request, or trap repress:
|
|
* - accept MAD if the port is running an SM
|
|
* - pkey == FULL_MGMT_P_KEY =>
|
|
* reply with unsupported method (i.e., just mark
|
|
* the smp's status field here, and let it be
|
|
* processed normally)
|
|
* - pkey != LIM_MGMT_P_KEY =>
|
|
* increment port recv constraint errors, drop MAD
|
|
* If this is an SMA request or trap repress:
|
|
* - pkey != FULL_MGMT_P_KEY =>
|
|
* increment port recv constraint errors, drop MAD
|
|
*/
|
|
switch (smp->method) {
|
|
case IB_MGMT_METHOD_GET:
|
|
case IB_MGMT_METHOD_SET:
|
|
case IB_MGMT_METHOD_REPORT:
|
|
case IB_MGMT_METHOD_TRAP_REPRESS:
|
|
if (pkey != FULL_MGMT_P_KEY) {
|
|
ingress_pkey_table_fail(ppd, pkey, slid);
|
|
return 1;
|
|
}
|
|
break;
|
|
case IB_MGMT_METHOD_SEND:
|
|
case IB_MGMT_METHOD_TRAP:
|
|
case IB_MGMT_METHOD_GET_RESP:
|
|
case IB_MGMT_METHOD_REPORT_RESP:
|
|
if (ibp->rvp.port_cap_flags & IB_PORT_SM)
|
|
return 0;
|
|
if (pkey == FULL_MGMT_P_KEY) {
|
|
smp->status |= IB_SMP_UNSUP_METHOD;
|
|
return 0;
|
|
}
|
|
if (pkey != LIM_MGMT_P_KEY) {
|
|
ingress_pkey_table_fail(ppd, pkey, slid);
|
|
return 1;
|
|
}
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* hfi1_ud_rcv - receive an incoming UD packet
|
|
* @ibp: the port the packet came in on
|
|
* @hdr: the packet header
|
|
* @rcv_flags: flags relevant to rcv processing
|
|
* @data: the packet data
|
|
* @tlen: the packet length
|
|
* @qp: the QP the packet came on
|
|
*
|
|
* This is called from qp_rcv() to process an incoming UD packet
|
|
* for the given QP.
|
|
* Called at interrupt level.
|
|
*/
|
|
void hfi1_ud_rcv(struct hfi1_packet *packet)
|
|
{
|
|
struct hfi1_other_headers *ohdr = packet->ohdr;
|
|
int opcode;
|
|
u32 hdrsize = packet->hlen;
|
|
u32 pad;
|
|
struct ib_wc wc;
|
|
u32 qkey;
|
|
u32 src_qp;
|
|
u16 dlid, pkey;
|
|
int mgmt_pkey_idx = -1;
|
|
struct hfi1_ibport *ibp = &packet->rcd->ppd->ibport_data;
|
|
struct hfi1_ib_header *hdr = packet->hdr;
|
|
u32 rcv_flags = packet->rcv_flags;
|
|
void *data = packet->ebuf;
|
|
u32 tlen = packet->tlen;
|
|
struct rvt_qp *qp = packet->qp;
|
|
bool has_grh = rcv_flags & HFI1_HAS_GRH;
|
|
bool sc4_bit = has_sc4_bit(packet);
|
|
u8 sc;
|
|
u32 bth1;
|
|
int is_mcast;
|
|
struct ib_grh *grh = NULL;
|
|
|
|
qkey = be32_to_cpu(ohdr->u.ud.deth[0]);
|
|
src_qp = be32_to_cpu(ohdr->u.ud.deth[1]) & RVT_QPN_MASK;
|
|
dlid = be16_to_cpu(hdr->lrh[1]);
|
|
is_mcast = (dlid > be16_to_cpu(IB_MULTICAST_LID_BASE)) &&
|
|
(dlid != be16_to_cpu(IB_LID_PERMISSIVE));
|
|
bth1 = be32_to_cpu(ohdr->bth[1]);
|
|
if (unlikely(bth1 & HFI1_BECN_SMASK)) {
|
|
/*
|
|
* In pre-B0 h/w the CNP_OPCODE is handled via an
|
|
* error path.
|
|
*/
|
|
struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
|
|
u32 lqpn = be32_to_cpu(ohdr->bth[1]) & RVT_QPN_MASK;
|
|
u8 sl, sc5;
|
|
|
|
sc5 = (be16_to_cpu(hdr->lrh[0]) >> 12) & 0xf;
|
|
sc5 |= sc4_bit;
|
|
sl = ibp->sc_to_sl[sc5];
|
|
|
|
process_becn(ppd, sl, 0, lqpn, 0, IB_CC_SVCTYPE_UD);
|
|
}
|
|
|
|
/*
|
|
* The opcode is in the low byte when its in network order
|
|
* (top byte when in host order).
|
|
*/
|
|
opcode = be32_to_cpu(ohdr->bth[0]) >> 24;
|
|
opcode &= 0xff;
|
|
|
|
pkey = (u16)be32_to_cpu(ohdr->bth[0]);
|
|
|
|
if (!is_mcast && (opcode != IB_OPCODE_CNP) && bth1 & HFI1_FECN_SMASK) {
|
|
u16 slid = be16_to_cpu(hdr->lrh[3]);
|
|
u8 sc5;
|
|
|
|
sc5 = (be16_to_cpu(hdr->lrh[0]) >> 12) & 0xf;
|
|
sc5 |= sc4_bit;
|
|
|
|
return_cnp(ibp, qp, src_qp, pkey, dlid, slid, sc5, grh);
|
|
}
|
|
/*
|
|
* Get the number of bytes the message was padded by
|
|
* and drop incomplete packets.
|
|
*/
|
|
pad = (be32_to_cpu(ohdr->bth[0]) >> 20) & 3;
|
|
if (unlikely(tlen < (hdrsize + pad + 4)))
|
|
goto drop;
|
|
|
|
tlen -= hdrsize + pad + 4;
|
|
|
|
/*
|
|
* Check that the permissive LID is only used on QP0
|
|
* and the QKEY matches (see 9.6.1.4.1 and 9.6.1.5.1).
|
|
*/
|
|
if (qp->ibqp.qp_num) {
|
|
if (unlikely(hdr->lrh[1] == IB_LID_PERMISSIVE ||
|
|
hdr->lrh[3] == IB_LID_PERMISSIVE))
|
|
goto drop;
|
|
if (qp->ibqp.qp_num > 1) {
|
|
struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
|
|
u16 slid;
|
|
u8 sc5;
|
|
|
|
sc5 = (be16_to_cpu(hdr->lrh[0]) >> 12) & 0xf;
|
|
sc5 |= sc4_bit;
|
|
|
|
slid = be16_to_cpu(hdr->lrh[3]);
|
|
if (unlikely(rcv_pkey_check(ppd, pkey, sc5, slid))) {
|
|
/*
|
|
* Traps will not be sent for packets dropped
|
|
* by the HW. This is fine, as sending trap
|
|
* for invalid pkeys is optional according to
|
|
* IB spec (release 1.3, section 10.9.4)
|
|
*/
|
|
hfi1_bad_pqkey(ibp, OPA_TRAP_BAD_P_KEY,
|
|
pkey,
|
|
(be16_to_cpu(hdr->lrh[0]) >> 4) &
|
|
0xF,
|
|
src_qp, qp->ibqp.qp_num,
|
|
be16_to_cpu(hdr->lrh[3]),
|
|
be16_to_cpu(hdr->lrh[1]));
|
|
return;
|
|
}
|
|
} else {
|
|
/* GSI packet */
|
|
mgmt_pkey_idx = hfi1_lookup_pkey_idx(ibp, pkey);
|
|
if (mgmt_pkey_idx < 0)
|
|
goto drop;
|
|
}
|
|
if (unlikely(qkey != qp->qkey)) {
|
|
hfi1_bad_pqkey(ibp, OPA_TRAP_BAD_Q_KEY, qkey,
|
|
(be16_to_cpu(hdr->lrh[0]) >> 4) & 0xF,
|
|
src_qp, qp->ibqp.qp_num,
|
|
be16_to_cpu(hdr->lrh[3]),
|
|
be16_to_cpu(hdr->lrh[1]));
|
|
return;
|
|
}
|
|
/* Drop invalid MAD packets (see 13.5.3.1). */
|
|
if (unlikely(qp->ibqp.qp_num == 1 &&
|
|
(tlen > 2048 ||
|
|
(be16_to_cpu(hdr->lrh[0]) >> 12) == 15)))
|
|
goto drop;
|
|
} else {
|
|
/* Received on QP0, and so by definition, this is an SMP */
|
|
struct opa_smp *smp = (struct opa_smp *)data;
|
|
u16 slid = be16_to_cpu(hdr->lrh[3]);
|
|
u8 sc5;
|
|
|
|
sc5 = (be16_to_cpu(hdr->lrh[0]) >> 12) & 0xf;
|
|
sc5 |= sc4_bit;
|
|
|
|
if (opa_smp_check(ibp, pkey, sc5, qp, slid, smp))
|
|
goto drop;
|
|
|
|
if (tlen > 2048)
|
|
goto drop;
|
|
if ((hdr->lrh[1] == IB_LID_PERMISSIVE ||
|
|
hdr->lrh[3] == IB_LID_PERMISSIVE) &&
|
|
smp->mgmt_class != IB_MGMT_CLASS_SUBN_DIRECTED_ROUTE)
|
|
goto drop;
|
|
|
|
/* look up SMI pkey */
|
|
mgmt_pkey_idx = hfi1_lookup_pkey_idx(ibp, pkey);
|
|
if (mgmt_pkey_idx < 0)
|
|
goto drop;
|
|
}
|
|
|
|
if (qp->ibqp.qp_num > 1 &&
|
|
opcode == IB_OPCODE_UD_SEND_ONLY_WITH_IMMEDIATE) {
|
|
wc.ex.imm_data = ohdr->u.ud.imm_data;
|
|
wc.wc_flags = IB_WC_WITH_IMM;
|
|
tlen -= sizeof(u32);
|
|
} else if (opcode == IB_OPCODE_UD_SEND_ONLY) {
|
|
wc.ex.imm_data = 0;
|
|
wc.wc_flags = 0;
|
|
} else {
|
|
goto drop;
|
|
}
|
|
|
|
/*
|
|
* A GRH is expected to precede the data even if not
|
|
* present on the wire.
|
|
*/
|
|
wc.byte_len = tlen + sizeof(struct ib_grh);
|
|
|
|
/*
|
|
* Get the next work request entry to find where to put the data.
|
|
*/
|
|
if (qp->r_flags & RVT_R_REUSE_SGE) {
|
|
qp->r_flags &= ~RVT_R_REUSE_SGE;
|
|
} else {
|
|
int ret;
|
|
|
|
ret = hfi1_rvt_get_rwqe(qp, 0);
|
|
if (ret < 0) {
|
|
hfi1_rc_error(qp, IB_WC_LOC_QP_OP_ERR);
|
|
return;
|
|
}
|
|
if (!ret) {
|
|
if (qp->ibqp.qp_num == 0)
|
|
ibp->rvp.n_vl15_dropped++;
|
|
return;
|
|
}
|
|
}
|
|
/* Silently drop packets which are too big. */
|
|
if (unlikely(wc.byte_len > qp->r_len)) {
|
|
qp->r_flags |= RVT_R_REUSE_SGE;
|
|
goto drop;
|
|
}
|
|
if (has_grh) {
|
|
hfi1_copy_sge(&qp->r_sge, &hdr->u.l.grh,
|
|
sizeof(struct ib_grh), 1, 0);
|
|
wc.wc_flags |= IB_WC_GRH;
|
|
} else {
|
|
hfi1_skip_sge(&qp->r_sge, sizeof(struct ib_grh), 1);
|
|
}
|
|
hfi1_copy_sge(&qp->r_sge, data, wc.byte_len - sizeof(struct ib_grh),
|
|
1, 0);
|
|
rvt_put_ss(&qp->r_sge);
|
|
if (!test_and_clear_bit(RVT_R_WRID_VALID, &qp->r_aflags))
|
|
return;
|
|
wc.wr_id = qp->r_wr_id;
|
|
wc.status = IB_WC_SUCCESS;
|
|
wc.opcode = IB_WC_RECV;
|
|
wc.vendor_err = 0;
|
|
wc.qp = &qp->ibqp;
|
|
wc.src_qp = src_qp;
|
|
|
|
if (qp->ibqp.qp_type == IB_QPT_GSI ||
|
|
qp->ibqp.qp_type == IB_QPT_SMI) {
|
|
if (mgmt_pkey_idx < 0) {
|
|
if (net_ratelimit()) {
|
|
struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
|
|
struct hfi1_devdata *dd = ppd->dd;
|
|
|
|
dd_dev_err(dd, "QP type %d mgmt_pkey_idx < 0 and packet not dropped???\n",
|
|
qp->ibqp.qp_type);
|
|
mgmt_pkey_idx = 0;
|
|
}
|
|
}
|
|
wc.pkey_index = (unsigned)mgmt_pkey_idx;
|
|
} else {
|
|
wc.pkey_index = 0;
|
|
}
|
|
|
|
wc.slid = be16_to_cpu(hdr->lrh[3]);
|
|
sc = (be16_to_cpu(hdr->lrh[0]) >> 12) & 0xf;
|
|
sc |= sc4_bit;
|
|
wc.sl = ibp->sc_to_sl[sc];
|
|
|
|
/*
|
|
* Save the LMC lower bits if the destination LID is a unicast LID.
|
|
*/
|
|
wc.dlid_path_bits = dlid >= be16_to_cpu(IB_MULTICAST_LID_BASE) ? 0 :
|
|
dlid & ((1 << ppd_from_ibp(ibp)->lmc) - 1);
|
|
wc.port_num = qp->port_num;
|
|
/* Signal completion event if the solicited bit is set. */
|
|
rvt_cq_enter(ibcq_to_rvtcq(qp->ibqp.recv_cq), &wc,
|
|
(ohdr->bth[0] &
|
|
cpu_to_be32(IB_BTH_SOLICITED)) != 0);
|
|
return;
|
|
|
|
drop:
|
|
ibp->rvp.n_pkt_drops++;
|
|
}
|