linux/drivers/gpu/drm/amd/amdkfd/kfd_topology.c
Oded Gabbay 42e08c7836 drm/amdkfd: Don't report local memory size
This patch sets the local memory size that is reported to userspace to 0.
This is done to make sure that userspace won't try to allocate local memory
for HSA.

As long as amdkfd doesn't support allocating local memory for HSA,
we need this patch.

Signed-off-by: Oded Gabbay <oded.gabbay@gmail.com>
Cc: stable@vger.kernel.org
Reviewed-by: Alex Deucher <alexander.deucher@amd.com>
2015-05-07 17:37:52 +03:00

1255 lines
32 KiB
C

/*
* Copyright 2014 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*/
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/pci.h>
#include <linux/errno.h>
#include <linux/acpi.h>
#include <linux/hash.h>
#include <linux/cpufreq.h>
#include <linux/log2.h>
#include "kfd_priv.h"
#include "kfd_crat.h"
#include "kfd_topology.h"
static struct list_head topology_device_list;
static int topology_crat_parsed;
static struct kfd_system_properties sys_props;
static DECLARE_RWSEM(topology_lock);
struct kfd_dev *kfd_device_by_id(uint32_t gpu_id)
{
struct kfd_topology_device *top_dev;
struct kfd_dev *device = NULL;
down_read(&topology_lock);
list_for_each_entry(top_dev, &topology_device_list, list)
if (top_dev->gpu_id == gpu_id) {
device = top_dev->gpu;
break;
}
up_read(&topology_lock);
return device;
}
struct kfd_dev *kfd_device_by_pci_dev(const struct pci_dev *pdev)
{
struct kfd_topology_device *top_dev;
struct kfd_dev *device = NULL;
down_read(&topology_lock);
list_for_each_entry(top_dev, &topology_device_list, list)
if (top_dev->gpu->pdev == pdev) {
device = top_dev->gpu;
break;
}
up_read(&topology_lock);
return device;
}
static int kfd_topology_get_crat_acpi(void *crat_image, size_t *size)
{
struct acpi_table_header *crat_table;
acpi_status status;
if (!size)
return -EINVAL;
/*
* Fetch the CRAT table from ACPI
*/
status = acpi_get_table(CRAT_SIGNATURE, 0, &crat_table);
if (status == AE_NOT_FOUND) {
pr_warn("CRAT table not found\n");
return -ENODATA;
} else if (ACPI_FAILURE(status)) {
const char *err = acpi_format_exception(status);
pr_err("CRAT table error: %s\n", err);
return -EINVAL;
}
if (*size >= crat_table->length && crat_image != NULL)
memcpy(crat_image, crat_table, crat_table->length);
*size = crat_table->length;
return 0;
}
static void kfd_populated_cu_info_cpu(struct kfd_topology_device *dev,
struct crat_subtype_computeunit *cu)
{
BUG_ON(!dev);
BUG_ON(!cu);
dev->node_props.cpu_cores_count = cu->num_cpu_cores;
dev->node_props.cpu_core_id_base = cu->processor_id_low;
if (cu->hsa_capability & CRAT_CU_FLAGS_IOMMU_PRESENT)
dev->node_props.capability |= HSA_CAP_ATS_PRESENT;
pr_info("CU CPU: cores=%d id_base=%d\n", cu->num_cpu_cores,
cu->processor_id_low);
}
static void kfd_populated_cu_info_gpu(struct kfd_topology_device *dev,
struct crat_subtype_computeunit *cu)
{
BUG_ON(!dev);
BUG_ON(!cu);
dev->node_props.simd_id_base = cu->processor_id_low;
dev->node_props.simd_count = cu->num_simd_cores;
dev->node_props.lds_size_in_kb = cu->lds_size_in_kb;
dev->node_props.max_waves_per_simd = cu->max_waves_simd;
dev->node_props.wave_front_size = cu->wave_front_size;
dev->node_props.mem_banks_count = cu->num_banks;
dev->node_props.array_count = cu->num_arrays;
dev->node_props.cu_per_simd_array = cu->num_cu_per_array;
dev->node_props.simd_per_cu = cu->num_simd_per_cu;
dev->node_props.max_slots_scratch_cu = cu->max_slots_scatch_cu;
if (cu->hsa_capability & CRAT_CU_FLAGS_HOT_PLUGGABLE)
dev->node_props.capability |= HSA_CAP_HOT_PLUGGABLE;
pr_info("CU GPU: simds=%d id_base=%d\n", cu->num_simd_cores,
cu->processor_id_low);
}
/* kfd_parse_subtype_cu is called when the topology mutex is already acquired */
static int kfd_parse_subtype_cu(struct crat_subtype_computeunit *cu)
{
struct kfd_topology_device *dev;
int i = 0;
BUG_ON(!cu);
pr_info("Found CU entry in CRAT table with proximity_domain=%d caps=%x\n",
cu->proximity_domain, cu->hsa_capability);
list_for_each_entry(dev, &topology_device_list, list) {
if (cu->proximity_domain == i) {
if (cu->flags & CRAT_CU_FLAGS_CPU_PRESENT)
kfd_populated_cu_info_cpu(dev, cu);
if (cu->flags & CRAT_CU_FLAGS_GPU_PRESENT)
kfd_populated_cu_info_gpu(dev, cu);
break;
}
i++;
}
return 0;
}
/*
* kfd_parse_subtype_mem is called when the topology mutex is
* already acquired
*/
static int kfd_parse_subtype_mem(struct crat_subtype_memory *mem)
{
struct kfd_mem_properties *props;
struct kfd_topology_device *dev;
int i = 0;
BUG_ON(!mem);
pr_info("Found memory entry in CRAT table with proximity_domain=%d\n",
mem->promixity_domain);
list_for_each_entry(dev, &topology_device_list, list) {
if (mem->promixity_domain == i) {
props = kfd_alloc_struct(props);
if (props == NULL)
return -ENOMEM;
if (dev->node_props.cpu_cores_count == 0)
props->heap_type = HSA_MEM_HEAP_TYPE_FB_PRIVATE;
else
props->heap_type = HSA_MEM_HEAP_TYPE_SYSTEM;
if (mem->flags & CRAT_MEM_FLAGS_HOT_PLUGGABLE)
props->flags |= HSA_MEM_FLAGS_HOT_PLUGGABLE;
if (mem->flags & CRAT_MEM_FLAGS_NON_VOLATILE)
props->flags |= HSA_MEM_FLAGS_NON_VOLATILE;
props->size_in_bytes =
((uint64_t)mem->length_high << 32) +
mem->length_low;
props->width = mem->width;
dev->mem_bank_count++;
list_add_tail(&props->list, &dev->mem_props);
break;
}
i++;
}
return 0;
}
/*
* kfd_parse_subtype_cache is called when the topology mutex
* is already acquired
*/
static int kfd_parse_subtype_cache(struct crat_subtype_cache *cache)
{
struct kfd_cache_properties *props;
struct kfd_topology_device *dev;
uint32_t id;
BUG_ON(!cache);
id = cache->processor_id_low;
pr_info("Found cache entry in CRAT table with processor_id=%d\n", id);
list_for_each_entry(dev, &topology_device_list, list)
if (id == dev->node_props.cpu_core_id_base ||
id == dev->node_props.simd_id_base) {
props = kfd_alloc_struct(props);
if (props == NULL)
return -ENOMEM;
props->processor_id_low = id;
props->cache_level = cache->cache_level;
props->cache_size = cache->cache_size;
props->cacheline_size = cache->cache_line_size;
props->cachelines_per_tag = cache->lines_per_tag;
props->cache_assoc = cache->associativity;
props->cache_latency = cache->cache_latency;
if (cache->flags & CRAT_CACHE_FLAGS_DATA_CACHE)
props->cache_type |= HSA_CACHE_TYPE_DATA;
if (cache->flags & CRAT_CACHE_FLAGS_INST_CACHE)
props->cache_type |= HSA_CACHE_TYPE_INSTRUCTION;
if (cache->flags & CRAT_CACHE_FLAGS_CPU_CACHE)
props->cache_type |= HSA_CACHE_TYPE_CPU;
if (cache->flags & CRAT_CACHE_FLAGS_SIMD_CACHE)
props->cache_type |= HSA_CACHE_TYPE_HSACU;
dev->cache_count++;
dev->node_props.caches_count++;
list_add_tail(&props->list, &dev->cache_props);
break;
}
return 0;
}
/*
* kfd_parse_subtype_iolink is called when the topology mutex
* is already acquired
*/
static int kfd_parse_subtype_iolink(struct crat_subtype_iolink *iolink)
{
struct kfd_iolink_properties *props;
struct kfd_topology_device *dev;
uint32_t i = 0;
uint32_t id_from;
uint32_t id_to;
BUG_ON(!iolink);
id_from = iolink->proximity_domain_from;
id_to = iolink->proximity_domain_to;
pr_info("Found IO link entry in CRAT table with id_from=%d\n", id_from);
list_for_each_entry(dev, &topology_device_list, list) {
if (id_from == i) {
props = kfd_alloc_struct(props);
if (props == NULL)
return -ENOMEM;
props->node_from = id_from;
props->node_to = id_to;
props->ver_maj = iolink->version_major;
props->ver_min = iolink->version_minor;
/*
* weight factor (derived from CDIR), currently always 1
*/
props->weight = 1;
props->min_latency = iolink->minimum_latency;
props->max_latency = iolink->maximum_latency;
props->min_bandwidth = iolink->minimum_bandwidth_mbs;
props->max_bandwidth = iolink->maximum_bandwidth_mbs;
props->rec_transfer_size =
iolink->recommended_transfer_size;
dev->io_link_count++;
dev->node_props.io_links_count++;
list_add_tail(&props->list, &dev->io_link_props);
break;
}
i++;
}
return 0;
}
static int kfd_parse_subtype(struct crat_subtype_generic *sub_type_hdr)
{
struct crat_subtype_computeunit *cu;
struct crat_subtype_memory *mem;
struct crat_subtype_cache *cache;
struct crat_subtype_iolink *iolink;
int ret = 0;
BUG_ON(!sub_type_hdr);
switch (sub_type_hdr->type) {
case CRAT_SUBTYPE_COMPUTEUNIT_AFFINITY:
cu = (struct crat_subtype_computeunit *)sub_type_hdr;
ret = kfd_parse_subtype_cu(cu);
break;
case CRAT_SUBTYPE_MEMORY_AFFINITY:
mem = (struct crat_subtype_memory *)sub_type_hdr;
ret = kfd_parse_subtype_mem(mem);
break;
case CRAT_SUBTYPE_CACHE_AFFINITY:
cache = (struct crat_subtype_cache *)sub_type_hdr;
ret = kfd_parse_subtype_cache(cache);
break;
case CRAT_SUBTYPE_TLB_AFFINITY:
/*
* For now, nothing to do here
*/
pr_info("Found TLB entry in CRAT table (not processing)\n");
break;
case CRAT_SUBTYPE_CCOMPUTE_AFFINITY:
/*
* For now, nothing to do here
*/
pr_info("Found CCOMPUTE entry in CRAT table (not processing)\n");
break;
case CRAT_SUBTYPE_IOLINK_AFFINITY:
iolink = (struct crat_subtype_iolink *)sub_type_hdr;
ret = kfd_parse_subtype_iolink(iolink);
break;
default:
pr_warn("Unknown subtype (%d) in CRAT\n",
sub_type_hdr->type);
}
return ret;
}
static void kfd_release_topology_device(struct kfd_topology_device *dev)
{
struct kfd_mem_properties *mem;
struct kfd_cache_properties *cache;
struct kfd_iolink_properties *iolink;
BUG_ON(!dev);
list_del(&dev->list);
while (dev->mem_props.next != &dev->mem_props) {
mem = container_of(dev->mem_props.next,
struct kfd_mem_properties, list);
list_del(&mem->list);
kfree(mem);
}
while (dev->cache_props.next != &dev->cache_props) {
cache = container_of(dev->cache_props.next,
struct kfd_cache_properties, list);
list_del(&cache->list);
kfree(cache);
}
while (dev->io_link_props.next != &dev->io_link_props) {
iolink = container_of(dev->io_link_props.next,
struct kfd_iolink_properties, list);
list_del(&iolink->list);
kfree(iolink);
}
kfree(dev);
sys_props.num_devices--;
}
static void kfd_release_live_view(void)
{
struct kfd_topology_device *dev;
while (topology_device_list.next != &topology_device_list) {
dev = container_of(topology_device_list.next,
struct kfd_topology_device, list);
kfd_release_topology_device(dev);
}
memset(&sys_props, 0, sizeof(sys_props));
}
static struct kfd_topology_device *kfd_create_topology_device(void)
{
struct kfd_topology_device *dev;
dev = kfd_alloc_struct(dev);
if (dev == NULL) {
pr_err("No memory to allocate a topology device");
return NULL;
}
INIT_LIST_HEAD(&dev->mem_props);
INIT_LIST_HEAD(&dev->cache_props);
INIT_LIST_HEAD(&dev->io_link_props);
list_add_tail(&dev->list, &topology_device_list);
sys_props.num_devices++;
return dev;
}
static int kfd_parse_crat_table(void *crat_image)
{
struct kfd_topology_device *top_dev;
struct crat_subtype_generic *sub_type_hdr;
uint16_t node_id;
int ret;
struct crat_header *crat_table = (struct crat_header *)crat_image;
uint16_t num_nodes;
uint32_t image_len;
if (!crat_image)
return -EINVAL;
num_nodes = crat_table->num_domains;
image_len = crat_table->length;
pr_info("Parsing CRAT table with %d nodes\n", num_nodes);
for (node_id = 0; node_id < num_nodes; node_id++) {
top_dev = kfd_create_topology_device();
if (!top_dev) {
kfd_release_live_view();
return -ENOMEM;
}
}
sys_props.platform_id =
(*((uint64_t *)crat_table->oem_id)) & CRAT_OEMID_64BIT_MASK;
sys_props.platform_oem = *((uint64_t *)crat_table->oem_table_id);
sys_props.platform_rev = crat_table->revision;
sub_type_hdr = (struct crat_subtype_generic *)(crat_table+1);
while ((char *)sub_type_hdr + sizeof(struct crat_subtype_generic) <
((char *)crat_image) + image_len) {
if (sub_type_hdr->flags & CRAT_SUBTYPE_FLAGS_ENABLED) {
ret = kfd_parse_subtype(sub_type_hdr);
if (ret != 0) {
kfd_release_live_view();
return ret;
}
}
sub_type_hdr = (typeof(sub_type_hdr))((char *)sub_type_hdr +
sub_type_hdr->length);
}
sys_props.generation_count++;
topology_crat_parsed = 1;
return 0;
}
#define sysfs_show_gen_prop(buffer, fmt, ...) \
snprintf(buffer, PAGE_SIZE, "%s"fmt, buffer, __VA_ARGS__)
#define sysfs_show_32bit_prop(buffer, name, value) \
sysfs_show_gen_prop(buffer, "%s %u\n", name, value)
#define sysfs_show_64bit_prop(buffer, name, value) \
sysfs_show_gen_prop(buffer, "%s %llu\n", name, value)
#define sysfs_show_32bit_val(buffer, value) \
sysfs_show_gen_prop(buffer, "%u\n", value)
#define sysfs_show_str_val(buffer, value) \
sysfs_show_gen_prop(buffer, "%s\n", value)
static ssize_t sysprops_show(struct kobject *kobj, struct attribute *attr,
char *buffer)
{
ssize_t ret;
/* Making sure that the buffer is an empty string */
buffer[0] = 0;
if (attr == &sys_props.attr_genid) {
ret = sysfs_show_32bit_val(buffer, sys_props.generation_count);
} else if (attr == &sys_props.attr_props) {
sysfs_show_64bit_prop(buffer, "platform_oem",
sys_props.platform_oem);
sysfs_show_64bit_prop(buffer, "platform_id",
sys_props.platform_id);
ret = sysfs_show_64bit_prop(buffer, "platform_rev",
sys_props.platform_rev);
} else {
ret = -EINVAL;
}
return ret;
}
static const struct sysfs_ops sysprops_ops = {
.show = sysprops_show,
};
static struct kobj_type sysprops_type = {
.sysfs_ops = &sysprops_ops,
};
static ssize_t iolink_show(struct kobject *kobj, struct attribute *attr,
char *buffer)
{
ssize_t ret;
struct kfd_iolink_properties *iolink;
/* Making sure that the buffer is an empty string */
buffer[0] = 0;
iolink = container_of(attr, struct kfd_iolink_properties, attr);
sysfs_show_32bit_prop(buffer, "type", iolink->iolink_type);
sysfs_show_32bit_prop(buffer, "version_major", iolink->ver_maj);
sysfs_show_32bit_prop(buffer, "version_minor", iolink->ver_min);
sysfs_show_32bit_prop(buffer, "node_from", iolink->node_from);
sysfs_show_32bit_prop(buffer, "node_to", iolink->node_to);
sysfs_show_32bit_prop(buffer, "weight", iolink->weight);
sysfs_show_32bit_prop(buffer, "min_latency", iolink->min_latency);
sysfs_show_32bit_prop(buffer, "max_latency", iolink->max_latency);
sysfs_show_32bit_prop(buffer, "min_bandwidth", iolink->min_bandwidth);
sysfs_show_32bit_prop(buffer, "max_bandwidth", iolink->max_bandwidth);
sysfs_show_32bit_prop(buffer, "recommended_transfer_size",
iolink->rec_transfer_size);
ret = sysfs_show_32bit_prop(buffer, "flags", iolink->flags);
return ret;
}
static const struct sysfs_ops iolink_ops = {
.show = iolink_show,
};
static struct kobj_type iolink_type = {
.sysfs_ops = &iolink_ops,
};
static ssize_t mem_show(struct kobject *kobj, struct attribute *attr,
char *buffer)
{
ssize_t ret;
struct kfd_mem_properties *mem;
/* Making sure that the buffer is an empty string */
buffer[0] = 0;
mem = container_of(attr, struct kfd_mem_properties, attr);
sysfs_show_32bit_prop(buffer, "heap_type", mem->heap_type);
sysfs_show_64bit_prop(buffer, "size_in_bytes", mem->size_in_bytes);
sysfs_show_32bit_prop(buffer, "flags", mem->flags);
sysfs_show_32bit_prop(buffer, "width", mem->width);
ret = sysfs_show_32bit_prop(buffer, "mem_clk_max", mem->mem_clk_max);
return ret;
}
static const struct sysfs_ops mem_ops = {
.show = mem_show,
};
static struct kobj_type mem_type = {
.sysfs_ops = &mem_ops,
};
static ssize_t kfd_cache_show(struct kobject *kobj, struct attribute *attr,
char *buffer)
{
ssize_t ret;
uint32_t i;
struct kfd_cache_properties *cache;
/* Making sure that the buffer is an empty string */
buffer[0] = 0;
cache = container_of(attr, struct kfd_cache_properties, attr);
sysfs_show_32bit_prop(buffer, "processor_id_low",
cache->processor_id_low);
sysfs_show_32bit_prop(buffer, "level", cache->cache_level);
sysfs_show_32bit_prop(buffer, "size", cache->cache_size);
sysfs_show_32bit_prop(buffer, "cache_line_size", cache->cacheline_size);
sysfs_show_32bit_prop(buffer, "cache_lines_per_tag",
cache->cachelines_per_tag);
sysfs_show_32bit_prop(buffer, "association", cache->cache_assoc);
sysfs_show_32bit_prop(buffer, "latency", cache->cache_latency);
sysfs_show_32bit_prop(buffer, "type", cache->cache_type);
snprintf(buffer, PAGE_SIZE, "%ssibling_map ", buffer);
for (i = 0; i < KFD_TOPOLOGY_CPU_SIBLINGS; i++)
ret = snprintf(buffer, PAGE_SIZE, "%s%d%s",
buffer, cache->sibling_map[i],
(i == KFD_TOPOLOGY_CPU_SIBLINGS-1) ?
"\n" : ",");
return ret;
}
static const struct sysfs_ops cache_ops = {
.show = kfd_cache_show,
};
static struct kobj_type cache_type = {
.sysfs_ops = &cache_ops,
};
static ssize_t node_show(struct kobject *kobj, struct attribute *attr,
char *buffer)
{
struct kfd_topology_device *dev;
char public_name[KFD_TOPOLOGY_PUBLIC_NAME_SIZE];
uint32_t i;
uint32_t log_max_watch_addr;
/* Making sure that the buffer is an empty string */
buffer[0] = 0;
if (strcmp(attr->name, "gpu_id") == 0) {
dev = container_of(attr, struct kfd_topology_device,
attr_gpuid);
return sysfs_show_32bit_val(buffer, dev->gpu_id);
}
if (strcmp(attr->name, "name") == 0) {
dev = container_of(attr, struct kfd_topology_device,
attr_name);
for (i = 0; i < KFD_TOPOLOGY_PUBLIC_NAME_SIZE; i++) {
public_name[i] =
(char)dev->node_props.marketing_name[i];
if (dev->node_props.marketing_name[i] == 0)
break;
}
public_name[KFD_TOPOLOGY_PUBLIC_NAME_SIZE-1] = 0x0;
return sysfs_show_str_val(buffer, public_name);
}
dev = container_of(attr, struct kfd_topology_device,
attr_props);
sysfs_show_32bit_prop(buffer, "cpu_cores_count",
dev->node_props.cpu_cores_count);
sysfs_show_32bit_prop(buffer, "simd_count",
dev->node_props.simd_count);
if (dev->mem_bank_count < dev->node_props.mem_banks_count) {
pr_warn("kfd: mem_banks_count truncated from %d to %d\n",
dev->node_props.mem_banks_count,
dev->mem_bank_count);
sysfs_show_32bit_prop(buffer, "mem_banks_count",
dev->mem_bank_count);
} else {
sysfs_show_32bit_prop(buffer, "mem_banks_count",
dev->node_props.mem_banks_count);
}
sysfs_show_32bit_prop(buffer, "caches_count",
dev->node_props.caches_count);
sysfs_show_32bit_prop(buffer, "io_links_count",
dev->node_props.io_links_count);
sysfs_show_32bit_prop(buffer, "cpu_core_id_base",
dev->node_props.cpu_core_id_base);
sysfs_show_32bit_prop(buffer, "simd_id_base",
dev->node_props.simd_id_base);
sysfs_show_32bit_prop(buffer, "capability",
dev->node_props.capability);
sysfs_show_32bit_prop(buffer, "max_waves_per_simd",
dev->node_props.max_waves_per_simd);
sysfs_show_32bit_prop(buffer, "lds_size_in_kb",
dev->node_props.lds_size_in_kb);
sysfs_show_32bit_prop(buffer, "gds_size_in_kb",
dev->node_props.gds_size_in_kb);
sysfs_show_32bit_prop(buffer, "wave_front_size",
dev->node_props.wave_front_size);
sysfs_show_32bit_prop(buffer, "array_count",
dev->node_props.array_count);
sysfs_show_32bit_prop(buffer, "simd_arrays_per_engine",
dev->node_props.simd_arrays_per_engine);
sysfs_show_32bit_prop(buffer, "cu_per_simd_array",
dev->node_props.cu_per_simd_array);
sysfs_show_32bit_prop(buffer, "simd_per_cu",
dev->node_props.simd_per_cu);
sysfs_show_32bit_prop(buffer, "max_slots_scratch_cu",
dev->node_props.max_slots_scratch_cu);
sysfs_show_32bit_prop(buffer, "vendor_id",
dev->node_props.vendor_id);
sysfs_show_32bit_prop(buffer, "device_id",
dev->node_props.device_id);
sysfs_show_32bit_prop(buffer, "location_id",
dev->node_props.location_id);
if (dev->gpu) {
log_max_watch_addr =
__ilog2_u32(dev->gpu->device_info->num_of_watch_points);
if (log_max_watch_addr) {
dev->node_props.capability |=
HSA_CAP_WATCH_POINTS_SUPPORTED;
dev->node_props.capability |=
((log_max_watch_addr <<
HSA_CAP_WATCH_POINTS_TOTALBITS_SHIFT) &
HSA_CAP_WATCH_POINTS_TOTALBITS_MASK);
}
sysfs_show_32bit_prop(buffer, "max_engine_clk_fcompute",
dev->gpu->kfd2kgd->get_max_engine_clock_in_mhz(
dev->gpu->kgd));
sysfs_show_64bit_prop(buffer, "local_mem_size",
(unsigned long long int) 0);
sysfs_show_32bit_prop(buffer, "fw_version",
dev->gpu->kfd2kgd->get_fw_version(
dev->gpu->kgd,
KGD_ENGINE_MEC1));
}
return sysfs_show_32bit_prop(buffer, "max_engine_clk_ccompute",
cpufreq_quick_get_max(0)/1000);
}
static const struct sysfs_ops node_ops = {
.show = node_show,
};
static struct kobj_type node_type = {
.sysfs_ops = &node_ops,
};
static void kfd_remove_sysfs_file(struct kobject *kobj, struct attribute *attr)
{
sysfs_remove_file(kobj, attr);
kobject_del(kobj);
kobject_put(kobj);
}
static void kfd_remove_sysfs_node_entry(struct kfd_topology_device *dev)
{
struct kfd_iolink_properties *iolink;
struct kfd_cache_properties *cache;
struct kfd_mem_properties *mem;
BUG_ON(!dev);
if (dev->kobj_iolink) {
list_for_each_entry(iolink, &dev->io_link_props, list)
if (iolink->kobj) {
kfd_remove_sysfs_file(iolink->kobj,
&iolink->attr);
iolink->kobj = NULL;
}
kobject_del(dev->kobj_iolink);
kobject_put(dev->kobj_iolink);
dev->kobj_iolink = NULL;
}
if (dev->kobj_cache) {
list_for_each_entry(cache, &dev->cache_props, list)
if (cache->kobj) {
kfd_remove_sysfs_file(cache->kobj,
&cache->attr);
cache->kobj = NULL;
}
kobject_del(dev->kobj_cache);
kobject_put(dev->kobj_cache);
dev->kobj_cache = NULL;
}
if (dev->kobj_mem) {
list_for_each_entry(mem, &dev->mem_props, list)
if (mem->kobj) {
kfd_remove_sysfs_file(mem->kobj, &mem->attr);
mem->kobj = NULL;
}
kobject_del(dev->kobj_mem);
kobject_put(dev->kobj_mem);
dev->kobj_mem = NULL;
}
if (dev->kobj_node) {
sysfs_remove_file(dev->kobj_node, &dev->attr_gpuid);
sysfs_remove_file(dev->kobj_node, &dev->attr_name);
sysfs_remove_file(dev->kobj_node, &dev->attr_props);
kobject_del(dev->kobj_node);
kobject_put(dev->kobj_node);
dev->kobj_node = NULL;
}
}
static int kfd_build_sysfs_node_entry(struct kfd_topology_device *dev,
uint32_t id)
{
struct kfd_iolink_properties *iolink;
struct kfd_cache_properties *cache;
struct kfd_mem_properties *mem;
int ret;
uint32_t i;
BUG_ON(!dev);
/*
* Creating the sysfs folders
*/
BUG_ON(dev->kobj_node);
dev->kobj_node = kfd_alloc_struct(dev->kobj_node);
if (!dev->kobj_node)
return -ENOMEM;
ret = kobject_init_and_add(dev->kobj_node, &node_type,
sys_props.kobj_nodes, "%d", id);
if (ret < 0)
return ret;
dev->kobj_mem = kobject_create_and_add("mem_banks", dev->kobj_node);
if (!dev->kobj_mem)
return -ENOMEM;
dev->kobj_cache = kobject_create_and_add("caches", dev->kobj_node);
if (!dev->kobj_cache)
return -ENOMEM;
dev->kobj_iolink = kobject_create_and_add("io_links", dev->kobj_node);
if (!dev->kobj_iolink)
return -ENOMEM;
/*
* Creating sysfs files for node properties
*/
dev->attr_gpuid.name = "gpu_id";
dev->attr_gpuid.mode = KFD_SYSFS_FILE_MODE;
sysfs_attr_init(&dev->attr_gpuid);
dev->attr_name.name = "name";
dev->attr_name.mode = KFD_SYSFS_FILE_MODE;
sysfs_attr_init(&dev->attr_name);
dev->attr_props.name = "properties";
dev->attr_props.mode = KFD_SYSFS_FILE_MODE;
sysfs_attr_init(&dev->attr_props);
ret = sysfs_create_file(dev->kobj_node, &dev->attr_gpuid);
if (ret < 0)
return ret;
ret = sysfs_create_file(dev->kobj_node, &dev->attr_name);
if (ret < 0)
return ret;
ret = sysfs_create_file(dev->kobj_node, &dev->attr_props);
if (ret < 0)
return ret;
i = 0;
list_for_each_entry(mem, &dev->mem_props, list) {
mem->kobj = kzalloc(sizeof(struct kobject), GFP_KERNEL);
if (!mem->kobj)
return -ENOMEM;
ret = kobject_init_and_add(mem->kobj, &mem_type,
dev->kobj_mem, "%d", i);
if (ret < 0)
return ret;
mem->attr.name = "properties";
mem->attr.mode = KFD_SYSFS_FILE_MODE;
sysfs_attr_init(&mem->attr);
ret = sysfs_create_file(mem->kobj, &mem->attr);
if (ret < 0)
return ret;
i++;
}
i = 0;
list_for_each_entry(cache, &dev->cache_props, list) {
cache->kobj = kzalloc(sizeof(struct kobject), GFP_KERNEL);
if (!cache->kobj)
return -ENOMEM;
ret = kobject_init_and_add(cache->kobj, &cache_type,
dev->kobj_cache, "%d", i);
if (ret < 0)
return ret;
cache->attr.name = "properties";
cache->attr.mode = KFD_SYSFS_FILE_MODE;
sysfs_attr_init(&cache->attr);
ret = sysfs_create_file(cache->kobj, &cache->attr);
if (ret < 0)
return ret;
i++;
}
i = 0;
list_for_each_entry(iolink, &dev->io_link_props, list) {
iolink->kobj = kzalloc(sizeof(struct kobject), GFP_KERNEL);
if (!iolink->kobj)
return -ENOMEM;
ret = kobject_init_and_add(iolink->kobj, &iolink_type,
dev->kobj_iolink, "%d", i);
if (ret < 0)
return ret;
iolink->attr.name = "properties";
iolink->attr.mode = KFD_SYSFS_FILE_MODE;
sysfs_attr_init(&iolink->attr);
ret = sysfs_create_file(iolink->kobj, &iolink->attr);
if (ret < 0)
return ret;
i++;
}
return 0;
}
static int kfd_build_sysfs_node_tree(void)
{
struct kfd_topology_device *dev;
int ret;
uint32_t i = 0;
list_for_each_entry(dev, &topology_device_list, list) {
ret = kfd_build_sysfs_node_entry(dev, i);
if (ret < 0)
return ret;
i++;
}
return 0;
}
static void kfd_remove_sysfs_node_tree(void)
{
struct kfd_topology_device *dev;
list_for_each_entry(dev, &topology_device_list, list)
kfd_remove_sysfs_node_entry(dev);
}
static int kfd_topology_update_sysfs(void)
{
int ret;
pr_info("Creating topology SYSFS entries\n");
if (sys_props.kobj_topology == NULL) {
sys_props.kobj_topology =
kfd_alloc_struct(sys_props.kobj_topology);
if (!sys_props.kobj_topology)
return -ENOMEM;
ret = kobject_init_and_add(sys_props.kobj_topology,
&sysprops_type, &kfd_device->kobj,
"topology");
if (ret < 0)
return ret;
sys_props.kobj_nodes = kobject_create_and_add("nodes",
sys_props.kobj_topology);
if (!sys_props.kobj_nodes)
return -ENOMEM;
sys_props.attr_genid.name = "generation_id";
sys_props.attr_genid.mode = KFD_SYSFS_FILE_MODE;
sysfs_attr_init(&sys_props.attr_genid);
ret = sysfs_create_file(sys_props.kobj_topology,
&sys_props.attr_genid);
if (ret < 0)
return ret;
sys_props.attr_props.name = "system_properties";
sys_props.attr_props.mode = KFD_SYSFS_FILE_MODE;
sysfs_attr_init(&sys_props.attr_props);
ret = sysfs_create_file(sys_props.kobj_topology,
&sys_props.attr_props);
if (ret < 0)
return ret;
}
kfd_remove_sysfs_node_tree();
return kfd_build_sysfs_node_tree();
}
static void kfd_topology_release_sysfs(void)
{
kfd_remove_sysfs_node_tree();
if (sys_props.kobj_topology) {
sysfs_remove_file(sys_props.kobj_topology,
&sys_props.attr_genid);
sysfs_remove_file(sys_props.kobj_topology,
&sys_props.attr_props);
if (sys_props.kobj_nodes) {
kobject_del(sys_props.kobj_nodes);
kobject_put(sys_props.kobj_nodes);
sys_props.kobj_nodes = NULL;
}
kobject_del(sys_props.kobj_topology);
kobject_put(sys_props.kobj_topology);
sys_props.kobj_topology = NULL;
}
}
int kfd_topology_init(void)
{
void *crat_image = NULL;
size_t image_size = 0;
int ret;
/*
* Initialize the head for the topology device list
*/
INIT_LIST_HEAD(&topology_device_list);
init_rwsem(&topology_lock);
topology_crat_parsed = 0;
memset(&sys_props, 0, sizeof(sys_props));
/*
* Get the CRAT image from the ACPI
*/
ret = kfd_topology_get_crat_acpi(crat_image, &image_size);
if (ret == 0 && image_size > 0) {
pr_info("Found CRAT image with size=%zd\n", image_size);
crat_image = kmalloc(image_size, GFP_KERNEL);
if (!crat_image) {
ret = -ENOMEM;
pr_err("No memory for allocating CRAT image\n");
goto err;
}
ret = kfd_topology_get_crat_acpi(crat_image, &image_size);
if (ret == 0) {
down_write(&topology_lock);
ret = kfd_parse_crat_table(crat_image);
if (ret == 0)
ret = kfd_topology_update_sysfs();
up_write(&topology_lock);
} else {
pr_err("Couldn't get CRAT table size from ACPI\n");
}
kfree(crat_image);
} else if (ret == -ENODATA) {
ret = 0;
} else {
pr_err("Couldn't get CRAT table size from ACPI\n");
}
err:
pr_info("Finished initializing topology ret=%d\n", ret);
return ret;
}
void kfd_topology_shutdown(void)
{
kfd_topology_release_sysfs();
kfd_release_live_view();
}
static void kfd_debug_print_topology(void)
{
struct kfd_topology_device *dev;
uint32_t i = 0;
pr_info("DEBUG PRINT OF TOPOLOGY:");
list_for_each_entry(dev, &topology_device_list, list) {
pr_info("Node: %d\n", i);
pr_info("\tGPU assigned: %s\n", (dev->gpu ? "yes" : "no"));
pr_info("\tCPU count: %d\n", dev->node_props.cpu_cores_count);
pr_info("\tSIMD count: %d", dev->node_props.simd_count);
i++;
}
}
static uint32_t kfd_generate_gpu_id(struct kfd_dev *gpu)
{
uint32_t hashout;
uint32_t buf[7];
int i;
if (!gpu)
return 0;
buf[0] = gpu->pdev->devfn;
buf[1] = gpu->pdev->subsystem_vendor;
buf[2] = gpu->pdev->subsystem_device;
buf[3] = gpu->pdev->device;
buf[4] = gpu->pdev->bus->number;
buf[5] = (uint32_t)(gpu->kfd2kgd->get_vmem_size(gpu->kgd)
& 0xffffffff);
buf[6] = (uint32_t)(gpu->kfd2kgd->get_vmem_size(gpu->kgd) >> 32);
for (i = 0, hashout = 0; i < 7; i++)
hashout ^= hash_32(buf[i], KFD_GPU_ID_HASH_WIDTH);
return hashout;
}
static struct kfd_topology_device *kfd_assign_gpu(struct kfd_dev *gpu)
{
struct kfd_topology_device *dev;
struct kfd_topology_device *out_dev = NULL;
BUG_ON(!gpu);
list_for_each_entry(dev, &topology_device_list, list)
if (dev->gpu == NULL && dev->node_props.simd_count > 0) {
dev->gpu = gpu;
out_dev = dev;
break;
}
return out_dev;
}
static void kfd_notify_gpu_change(uint32_t gpu_id, int arrival)
{
/*
* TODO: Generate an event for thunk about the arrival/removal
* of the GPU
*/
}
int kfd_topology_add_device(struct kfd_dev *gpu)
{
uint32_t gpu_id;
struct kfd_topology_device *dev;
int res;
BUG_ON(!gpu);
gpu_id = kfd_generate_gpu_id(gpu);
pr_debug("kfd: Adding new GPU (ID: 0x%x) to topology\n", gpu_id);
down_write(&topology_lock);
/*
* Try to assign the GPU to existing topology device (generated from
* CRAT table
*/
dev = kfd_assign_gpu(gpu);
if (!dev) {
pr_info("GPU was not found in the current topology. Extending.\n");
kfd_debug_print_topology();
dev = kfd_create_topology_device();
if (!dev) {
res = -ENOMEM;
goto err;
}
dev->gpu = gpu;
/*
* TODO: Make a call to retrieve topology information from the
* GPU vBIOS
*/
/*
* Update the SYSFS tree, since we added another topology device
*/
if (kfd_topology_update_sysfs() < 0)
kfd_topology_release_sysfs();
}
dev->gpu_id = gpu_id;
gpu->id = gpu_id;
dev->node_props.vendor_id = gpu->pdev->vendor;
dev->node_props.device_id = gpu->pdev->device;
dev->node_props.location_id = (gpu->pdev->bus->number << 24) +
(gpu->pdev->devfn & 0xffffff);
/*
* TODO: Retrieve max engine clock values from KGD
*/
res = 0;
err:
up_write(&topology_lock);
if (res == 0)
kfd_notify_gpu_change(gpu_id, 1);
return res;
}
int kfd_topology_remove_device(struct kfd_dev *gpu)
{
struct kfd_topology_device *dev;
uint32_t gpu_id;
int res = -ENODEV;
BUG_ON(!gpu);
down_write(&topology_lock);
list_for_each_entry(dev, &topology_device_list, list)
if (dev->gpu == gpu) {
gpu_id = dev->gpu_id;
kfd_remove_sysfs_node_entry(dev);
kfd_release_topology_device(dev);
res = 0;
if (kfd_topology_update_sysfs() < 0)
kfd_topology_release_sysfs();
break;
}
up_write(&topology_lock);
if (res == 0)
kfd_notify_gpu_change(gpu_id, 0);
return res;
}
/*
* When idx is out of bounds, the function will return NULL
*/
struct kfd_dev *kfd_topology_enum_kfd_devices(uint8_t idx)
{
struct kfd_topology_device *top_dev;
struct kfd_dev *device = NULL;
uint8_t device_idx = 0;
down_read(&topology_lock);
list_for_each_entry(top_dev, &topology_device_list, list) {
if (device_idx == idx) {
device = top_dev->gpu;
break;
}
device_idx++;
}
up_read(&topology_lock);
return device;
}