linux/arch/powerpc/platforms/ps3/spu.c
Stephen Rothwell b17b3df161 powerpc/ps3: The lv1_ routines have u64 parameters
We just fix up the reference parameters as the others are dealt with by
arithmetic promotion rules and don't cause warnings.

This removes warnings like this:

arch/powerpc/platforms/ps3/interrupt.c:327: warning: passing argument 1 of 'lv1_construct_event_receive_port' from incompatible pointer type

Also, these:

drivers/ps3/ps3-vuart.c:462: warning: passing argument 4 of 'ps3_vuart_raw_read' from incompatible pointer type
drivers/ps3/ps3-vuart.c:592: warning: passing argument 4 of 'ps3_vuart_raw_read' from incompatible pointer type

Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au>
Acked-by: Geoff Levand <geoffrey.levand@am.sony.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2009-01-16 16:15:12 +11:00

635 lines
15 KiB
C

/*
* PS3 Platform spu routines.
*
* Copyright (C) 2006 Sony Computer Entertainment Inc.
* Copyright 2006 Sony Corp.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/mmzone.h>
#include <linux/io.h>
#include <linux/mm.h>
#include <asm/spu.h>
#include <asm/spu_priv1.h>
#include <asm/lv1call.h>
#include <asm/ps3.h>
#include "../cell/spufs/spufs.h"
#include "platform.h"
/* spu_management_ops */
/**
* enum spe_type - Type of spe to create.
* @spe_type_logical: Standard logical spe.
*
* For use with lv1_construct_logical_spe(). The current HV does not support
* any types other than those listed.
*/
enum spe_type {
SPE_TYPE_LOGICAL = 0,
};
/**
* struct spe_shadow - logical spe shadow register area.
*
* Read-only shadow of spe registers.
*/
struct spe_shadow {
u8 padding_0140[0x0140];
u64 int_status_class0_RW; /* 0x0140 */
u64 int_status_class1_RW; /* 0x0148 */
u64 int_status_class2_RW; /* 0x0150 */
u8 padding_0158[0x0610-0x0158];
u64 mfc_dsisr_RW; /* 0x0610 */
u8 padding_0618[0x0620-0x0618];
u64 mfc_dar_RW; /* 0x0620 */
u8 padding_0628[0x0800-0x0628];
u64 mfc_dsipr_R; /* 0x0800 */
u8 padding_0808[0x0810-0x0808];
u64 mfc_lscrr_R; /* 0x0810 */
u8 padding_0818[0x0c00-0x0818];
u64 mfc_cer_R; /* 0x0c00 */
u8 padding_0c08[0x0f00-0x0c08];
u64 spe_execution_status; /* 0x0f00 */
u8 padding_0f08[0x1000-0x0f08];
};
/**
* enum spe_ex_state - Logical spe execution state.
* @spe_ex_state_unexecutable: Uninitialized.
* @spe_ex_state_executable: Enabled, not ready.
* @spe_ex_state_executed: Ready for use.
*
* The execution state (status) of the logical spe as reported in
* struct spe_shadow:spe_execution_status.
*/
enum spe_ex_state {
SPE_EX_STATE_UNEXECUTABLE = 0,
SPE_EX_STATE_EXECUTABLE = 2,
SPE_EX_STATE_EXECUTED = 3,
};
/**
* struct priv1_cache - Cached values of priv1 registers.
* @masks[]: Array of cached spe interrupt masks, indexed by class.
* @sr1: Cached mfc_sr1 register.
* @tclass_id: Cached mfc_tclass_id register.
*/
struct priv1_cache {
u64 masks[3];
u64 sr1;
u64 tclass_id;
};
/**
* struct spu_pdata - Platform state variables.
* @spe_id: HV spe id returned by lv1_construct_logical_spe().
* @resource_id: HV spe resource id returned by
* ps3_repository_read_spe_resource_id().
* @priv2_addr: lpar address of spe priv2 area returned by
* lv1_construct_logical_spe().
* @shadow_addr: lpar address of spe register shadow area returned by
* lv1_construct_logical_spe().
* @shadow: Virtual (ioremap) address of spe register shadow area.
* @cache: Cached values of priv1 registers.
*/
struct spu_pdata {
u64 spe_id;
u64 resource_id;
u64 priv2_addr;
u64 shadow_addr;
struct spe_shadow __iomem *shadow;
struct priv1_cache cache;
};
static struct spu_pdata *spu_pdata(struct spu *spu)
{
return spu->pdata;
}
#define dump_areas(_a, _b, _c, _d, _e) \
_dump_areas(_a, _b, _c, _d, _e, __func__, __LINE__)
static void _dump_areas(unsigned int spe_id, unsigned long priv2,
unsigned long problem, unsigned long ls, unsigned long shadow,
const char* func, int line)
{
pr_debug("%s:%d: spe_id: %xh (%u)\n", func, line, spe_id, spe_id);
pr_debug("%s:%d: priv2: %lxh\n", func, line, priv2);
pr_debug("%s:%d: problem: %lxh\n", func, line, problem);
pr_debug("%s:%d: ls: %lxh\n", func, line, ls);
pr_debug("%s:%d: shadow: %lxh\n", func, line, shadow);
}
inline u64 ps3_get_spe_id(void *arg)
{
return spu_pdata(arg)->spe_id;
}
EXPORT_SYMBOL_GPL(ps3_get_spe_id);
static unsigned long get_vas_id(void)
{
u64 id;
lv1_get_logical_ppe_id(&id);
lv1_get_virtual_address_space_id_of_ppe(id, &id);
return id;
}
static int __init construct_spu(struct spu *spu)
{
int result;
u64 unused;
u64 problem_phys;
u64 local_store_phys;
result = lv1_construct_logical_spe(PAGE_SHIFT, PAGE_SHIFT, PAGE_SHIFT,
PAGE_SHIFT, PAGE_SHIFT, get_vas_id(), SPE_TYPE_LOGICAL,
&spu_pdata(spu)->priv2_addr, &problem_phys,
&local_store_phys, &unused,
&spu_pdata(spu)->shadow_addr,
&spu_pdata(spu)->spe_id);
spu->problem_phys = problem_phys;
spu->local_store_phys = local_store_phys;
if (result) {
pr_debug("%s:%d: lv1_construct_logical_spe failed: %s\n",
__func__, __LINE__, ps3_result(result));
return result;
}
return result;
}
static void spu_unmap(struct spu *spu)
{
iounmap(spu->priv2);
iounmap(spu->problem);
iounmap((__force u8 __iomem *)spu->local_store);
iounmap(spu_pdata(spu)->shadow);
}
/**
* setup_areas - Map the spu regions into the address space.
*
* The current HV requires the spu shadow regs to be mapped with the
* PTE page protection bits set as read-only (PP=3). This implementation
* uses the low level __ioremap() to bypass the page protection settings
* inforced by ioremap_flags() to get the needed PTE bits set for the
* shadow regs.
*/
static int __init setup_areas(struct spu *spu)
{
struct table {char* name; unsigned long addr; unsigned long size;};
static const unsigned long shadow_flags = _PAGE_NO_CACHE | 3;
spu_pdata(spu)->shadow = __ioremap(spu_pdata(spu)->shadow_addr,
sizeof(struct spe_shadow),
shadow_flags);
if (!spu_pdata(spu)->shadow) {
pr_debug("%s:%d: ioremap shadow failed\n", __func__, __LINE__);
goto fail_ioremap;
}
spu->local_store = (__force void *)ioremap_flags(spu->local_store_phys,
LS_SIZE, _PAGE_NO_CACHE);
if (!spu->local_store) {
pr_debug("%s:%d: ioremap local_store failed\n",
__func__, __LINE__);
goto fail_ioremap;
}
spu->problem = ioremap(spu->problem_phys,
sizeof(struct spu_problem));
if (!spu->problem) {
pr_debug("%s:%d: ioremap problem failed\n", __func__, __LINE__);
goto fail_ioremap;
}
spu->priv2 = ioremap(spu_pdata(spu)->priv2_addr,
sizeof(struct spu_priv2));
if (!spu->priv2) {
pr_debug("%s:%d: ioremap priv2 failed\n", __func__, __LINE__);
goto fail_ioremap;
}
dump_areas(spu_pdata(spu)->spe_id, spu_pdata(spu)->priv2_addr,
spu->problem_phys, spu->local_store_phys,
spu_pdata(spu)->shadow_addr);
dump_areas(spu_pdata(spu)->spe_id, (unsigned long)spu->priv2,
(unsigned long)spu->problem, (unsigned long)spu->local_store,
(unsigned long)spu_pdata(spu)->shadow);
return 0;
fail_ioremap:
spu_unmap(spu);
return -ENOMEM;
}
static int __init setup_interrupts(struct spu *spu)
{
int result;
result = ps3_spe_irq_setup(PS3_BINDING_CPU_ANY, spu_pdata(spu)->spe_id,
0, &spu->irqs[0]);
if (result)
goto fail_alloc_0;
result = ps3_spe_irq_setup(PS3_BINDING_CPU_ANY, spu_pdata(spu)->spe_id,
1, &spu->irqs[1]);
if (result)
goto fail_alloc_1;
result = ps3_spe_irq_setup(PS3_BINDING_CPU_ANY, spu_pdata(spu)->spe_id,
2, &spu->irqs[2]);
if (result)
goto fail_alloc_2;
return result;
fail_alloc_2:
ps3_spe_irq_destroy(spu->irqs[1]);
fail_alloc_1:
ps3_spe_irq_destroy(spu->irqs[0]);
fail_alloc_0:
spu->irqs[0] = spu->irqs[1] = spu->irqs[2] = NO_IRQ;
return result;
}
static int __init enable_spu(struct spu *spu)
{
int result;
result = lv1_enable_logical_spe(spu_pdata(spu)->spe_id,
spu_pdata(spu)->resource_id);
if (result) {
pr_debug("%s:%d: lv1_enable_logical_spe failed: %s\n",
__func__, __LINE__, ps3_result(result));
goto fail_enable;
}
result = setup_areas(spu);
if (result)
goto fail_areas;
result = setup_interrupts(spu);
if (result)
goto fail_interrupts;
return 0;
fail_interrupts:
spu_unmap(spu);
fail_areas:
lv1_disable_logical_spe(spu_pdata(spu)->spe_id, 0);
fail_enable:
return result;
}
static int ps3_destroy_spu(struct spu *spu)
{
int result;
pr_debug("%s:%d spu_%d\n", __func__, __LINE__, spu->number);
result = lv1_disable_logical_spe(spu_pdata(spu)->spe_id, 0);
BUG_ON(result);
ps3_spe_irq_destroy(spu->irqs[2]);
ps3_spe_irq_destroy(spu->irqs[1]);
ps3_spe_irq_destroy(spu->irqs[0]);
spu->irqs[0] = spu->irqs[1] = spu->irqs[2] = NO_IRQ;
spu_unmap(spu);
result = lv1_destruct_logical_spe(spu_pdata(spu)->spe_id);
BUG_ON(result);
kfree(spu->pdata);
spu->pdata = NULL;
return 0;
}
static int __init ps3_create_spu(struct spu *spu, void *data)
{
int result;
pr_debug("%s:%d spu_%d\n", __func__, __LINE__, spu->number);
spu->pdata = kzalloc(sizeof(struct spu_pdata),
GFP_KERNEL);
if (!spu->pdata) {
result = -ENOMEM;
goto fail_malloc;
}
spu_pdata(spu)->resource_id = (unsigned long)data;
/* Init cached reg values to HV defaults. */
spu_pdata(spu)->cache.sr1 = 0x33;
result = construct_spu(spu);
if (result)
goto fail_construct;
/* For now, just go ahead and enable it. */
result = enable_spu(spu);
if (result)
goto fail_enable;
/* Make sure the spu is in SPE_EX_STATE_EXECUTED. */
/* need something better here!!! */
while (in_be64(&spu_pdata(spu)->shadow->spe_execution_status)
!= SPE_EX_STATE_EXECUTED)
(void)0;
return result;
fail_enable:
fail_construct:
ps3_destroy_spu(spu);
fail_malloc:
return result;
}
static int __init ps3_enumerate_spus(int (*fn)(void *data))
{
int result;
unsigned int num_resource_id;
unsigned int i;
result = ps3_repository_read_num_spu_resource_id(&num_resource_id);
pr_debug("%s:%d: num_resource_id %u\n", __func__, __LINE__,
num_resource_id);
/*
* For now, just create logical spus equal to the number
* of physical spus reserved for the partition.
*/
for (i = 0; i < num_resource_id; i++) {
enum ps3_spu_resource_type resource_type;
unsigned int resource_id;
result = ps3_repository_read_spu_resource_id(i,
&resource_type, &resource_id);
if (result)
break;
if (resource_type == PS3_SPU_RESOURCE_TYPE_EXCLUSIVE) {
result = fn((void*)(unsigned long)resource_id);
if (result)
break;
}
}
if (result) {
printk(KERN_WARNING "%s:%d: Error initializing spus\n",
__func__, __LINE__);
return result;
}
return num_resource_id;
}
static int ps3_init_affinity(void)
{
return 0;
}
/**
* ps3_enable_spu - Enable SPU run control.
*
* An outstanding enhancement for the PS3 would be to add a guard to check
* for incorrect access to the spu problem state when the spu context is
* disabled. This check could be implemented with a flag added to the spu
* context that would inhibit mapping problem state pages, and a routine
* to unmap spu problem state pages. When the spu is enabled with
* ps3_enable_spu() the flag would be set allowing pages to be mapped,
* and when the spu is disabled with ps3_disable_spu() the flag would be
* cleared and the mapped problem state pages would be unmapped.
*/
static void ps3_enable_spu(struct spu_context *ctx)
{
}
static void ps3_disable_spu(struct spu_context *ctx)
{
ctx->ops->runcntl_stop(ctx);
}
const struct spu_management_ops spu_management_ps3_ops = {
.enumerate_spus = ps3_enumerate_spus,
.create_spu = ps3_create_spu,
.destroy_spu = ps3_destroy_spu,
.enable_spu = ps3_enable_spu,
.disable_spu = ps3_disable_spu,
.init_affinity = ps3_init_affinity,
};
/* spu_priv1_ops */
static void int_mask_and(struct spu *spu, int class, u64 mask)
{
u64 old_mask;
/* are these serialized by caller??? */
old_mask = spu_int_mask_get(spu, class);
spu_int_mask_set(spu, class, old_mask & mask);
}
static void int_mask_or(struct spu *spu, int class, u64 mask)
{
u64 old_mask;
old_mask = spu_int_mask_get(spu, class);
spu_int_mask_set(spu, class, old_mask | mask);
}
static void int_mask_set(struct spu *spu, int class, u64 mask)
{
spu_pdata(spu)->cache.masks[class] = mask;
lv1_set_spe_interrupt_mask(spu_pdata(spu)->spe_id, class,
spu_pdata(spu)->cache.masks[class]);
}
static u64 int_mask_get(struct spu *spu, int class)
{
return spu_pdata(spu)->cache.masks[class];
}
static void int_stat_clear(struct spu *spu, int class, u64 stat)
{
/* Note that MFC_DSISR will be cleared when class1[MF] is set. */
lv1_clear_spe_interrupt_status(spu_pdata(spu)->spe_id, class,
stat, 0);
}
static u64 int_stat_get(struct spu *spu, int class)
{
u64 stat;
lv1_get_spe_interrupt_status(spu_pdata(spu)->spe_id, class, &stat);
return stat;
}
static void cpu_affinity_set(struct spu *spu, int cpu)
{
/* No support. */
}
static u64 mfc_dar_get(struct spu *spu)
{
return in_be64(&spu_pdata(spu)->shadow->mfc_dar_RW);
}
static void mfc_dsisr_set(struct spu *spu, u64 dsisr)
{
/* Nothing to do, cleared in int_stat_clear(). */
}
static u64 mfc_dsisr_get(struct spu *spu)
{
return in_be64(&spu_pdata(spu)->shadow->mfc_dsisr_RW);
}
static void mfc_sdr_setup(struct spu *spu)
{
/* Nothing to do. */
}
static void mfc_sr1_set(struct spu *spu, u64 sr1)
{
/* Check bits allowed by HV. */
static const u64 allowed = ~(MFC_STATE1_LOCAL_STORAGE_DECODE_MASK
| MFC_STATE1_PROBLEM_STATE_MASK);
BUG_ON((sr1 & allowed) != (spu_pdata(spu)->cache.sr1 & allowed));
spu_pdata(spu)->cache.sr1 = sr1;
lv1_set_spe_privilege_state_area_1_register(
spu_pdata(spu)->spe_id,
offsetof(struct spu_priv1, mfc_sr1_RW),
spu_pdata(spu)->cache.sr1);
}
static u64 mfc_sr1_get(struct spu *spu)
{
return spu_pdata(spu)->cache.sr1;
}
static void mfc_tclass_id_set(struct spu *spu, u64 tclass_id)
{
spu_pdata(spu)->cache.tclass_id = tclass_id;
lv1_set_spe_privilege_state_area_1_register(
spu_pdata(spu)->spe_id,
offsetof(struct spu_priv1, mfc_tclass_id_RW),
spu_pdata(spu)->cache.tclass_id);
}
static u64 mfc_tclass_id_get(struct spu *spu)
{
return spu_pdata(spu)->cache.tclass_id;
}
static void tlb_invalidate(struct spu *spu)
{
/* Nothing to do. */
}
static void resource_allocation_groupID_set(struct spu *spu, u64 id)
{
/* No support. */
}
static u64 resource_allocation_groupID_get(struct spu *spu)
{
return 0; /* No support. */
}
static void resource_allocation_enable_set(struct spu *spu, u64 enable)
{
/* No support. */
}
static u64 resource_allocation_enable_get(struct spu *spu)
{
return 0; /* No support. */
}
const struct spu_priv1_ops spu_priv1_ps3_ops = {
.int_mask_and = int_mask_and,
.int_mask_or = int_mask_or,
.int_mask_set = int_mask_set,
.int_mask_get = int_mask_get,
.int_stat_clear = int_stat_clear,
.int_stat_get = int_stat_get,
.cpu_affinity_set = cpu_affinity_set,
.mfc_dar_get = mfc_dar_get,
.mfc_dsisr_set = mfc_dsisr_set,
.mfc_dsisr_get = mfc_dsisr_get,
.mfc_sdr_setup = mfc_sdr_setup,
.mfc_sr1_set = mfc_sr1_set,
.mfc_sr1_get = mfc_sr1_get,
.mfc_tclass_id_set = mfc_tclass_id_set,
.mfc_tclass_id_get = mfc_tclass_id_get,
.tlb_invalidate = tlb_invalidate,
.resource_allocation_groupID_set = resource_allocation_groupID_set,
.resource_allocation_groupID_get = resource_allocation_groupID_get,
.resource_allocation_enable_set = resource_allocation_enable_set,
.resource_allocation_enable_get = resource_allocation_enable_get,
};
void ps3_spu_set_platform(void)
{
spu_priv1_ops = &spu_priv1_ps3_ops;
spu_management_ops = &spu_management_ps3_ops;
}