linux/arch/x86/boot/compressed/head_32.S
Matt Fleming 9ca8f72a92 x86, efi: Handover Protocol
As things currently stand, traditional EFI boot loaders and the EFI
boot stub are carrying essentially the same initialisation code
required to setup an EFI machine for booting a kernel. There's really
no need to have this code in two places and the hope is that, with
this new protocol, initialisation and booting of the kernel can be
left solely to the kernel's EFI boot stub. The responsibilities of the
boot loader then become,

   o Loading the kernel image from boot media

File system code still needs to be carried by boot loaders for the
scenario where the kernel and initrd files reside on a file system
that the EFI firmware doesn't natively understand, such as ext4, etc.

   o Providing a user interface

Boot loaders still need to display any menus/interfaces, for example
to allow the user to select from a list of kernels.

Bump the boot protocol number because we added the 'handover_offset'
field to indicate the location of the handover protocol entry point.

Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Peter Jones <pjones@redhat.com>
Cc: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
Acked-and-Tested-by: Matthew Garrett <mjg@redhat.com>
Link: http://lkml.kernel.org/r/1342689828-16815-1-git-send-email-matt@console-pimps.org
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
2012-07-20 16:18:58 -07:00

236 lines
4.5 KiB
ArmAsm

/*
* linux/boot/head.S
*
* Copyright (C) 1991, 1992, 1993 Linus Torvalds
*/
/*
* head.S contains the 32-bit startup code.
*
* NOTE!!! Startup happens at absolute address 0x00001000, which is also where
* the page directory will exist. The startup code will be overwritten by
* the page directory. [According to comments etc elsewhere on a compressed
* kernel it will end up at 0x1000 + 1Mb I hope so as I assume this. - AC]
*
* Page 0 is deliberately kept safe, since System Management Mode code in
* laptops may need to access the BIOS data stored there. This is also
* useful for future device drivers that either access the BIOS via VM86
* mode.
*/
/*
* High loaded stuff by Hans Lermen & Werner Almesberger, Feb. 1996
*/
.text
#include <linux/init.h>
#include <linux/linkage.h>
#include <asm/segment.h>
#include <asm/page_types.h>
#include <asm/boot.h>
#include <asm/asm-offsets.h>
__HEAD
ENTRY(startup_32)
#ifdef CONFIG_EFI_STUB
jmp preferred_addr
.balign 0x10
/*
* We don't need the return address, so set up the stack so
* efi_main() can find its arugments.
*/
add $0x4, %esp
call make_boot_params
cmpl $0, %eax
je 1f
movl 0x4(%esp), %esi
movl (%esp), %ecx
pushl %eax
pushl %esi
pushl %ecx
.org 0x30,0x90
call efi_main
cmpl $0, %eax
movl %eax, %esi
jne 2f
1:
/* EFI init failed, so hang. */
hlt
jmp 1b
2:
call 3f
3:
popl %eax
subl $3b, %eax
subl BP_pref_address(%esi), %eax
add BP_code32_start(%esi), %eax
leal preferred_addr(%eax), %eax
jmp *%eax
preferred_addr:
#endif
cld
/*
* Test KEEP_SEGMENTS flag to see if the bootloader is asking
* us to not reload segments
*/
testb $(1<<6), BP_loadflags(%esi)
jnz 1f
cli
movl $__BOOT_DS, %eax
movl %eax, %ds
movl %eax, %es
movl %eax, %fs
movl %eax, %gs
movl %eax, %ss
1:
/*
* Calculate the delta between where we were compiled to run
* at and where we were actually loaded at. This can only be done
* with a short local call on x86. Nothing else will tell us what
* address we are running at. The reserved chunk of the real-mode
* data at 0x1e4 (defined as a scratch field) are used as the stack
* for this calculation. Only 4 bytes are needed.
*/
leal (BP_scratch+4)(%esi), %esp
call 1f
1: popl %ebp
subl $1b, %ebp
/*
* %ebp contains the address we are loaded at by the boot loader and %ebx
* contains the address where we should move the kernel image temporarily
* for safe in-place decompression.
*/
#ifdef CONFIG_RELOCATABLE
movl %ebp, %ebx
movl BP_kernel_alignment(%esi), %eax
decl %eax
addl %eax, %ebx
notl %eax
andl %eax, %ebx
#else
movl $LOAD_PHYSICAL_ADDR, %ebx
#endif
/* Target address to relocate to for decompression */
addl $z_extract_offset, %ebx
/* Set up the stack */
leal boot_stack_end(%ebx), %esp
/* Zero EFLAGS */
pushl $0
popfl
/*
* Copy the compressed kernel to the end of our buffer
* where decompression in place becomes safe.
*/
pushl %esi
leal (_bss-4)(%ebp), %esi
leal (_bss-4)(%ebx), %edi
movl $(_bss - startup_32), %ecx
shrl $2, %ecx
std
rep movsl
cld
popl %esi
/*
* Jump to the relocated address.
*/
leal relocated(%ebx), %eax
jmp *%eax
ENDPROC(startup_32)
.text
relocated:
/*
* Clear BSS (stack is currently empty)
*/
xorl %eax, %eax
leal _bss(%ebx), %edi
leal _ebss(%ebx), %ecx
subl %edi, %ecx
shrl $2, %ecx
rep stosl
/*
* Adjust our own GOT
*/
leal _got(%ebx), %edx
leal _egot(%ebx), %ecx
1:
cmpl %ecx, %edx
jae 2f
addl %ebx, (%edx)
addl $4, %edx
jmp 1b
2:
/*
* Do the decompression, and jump to the new kernel..
*/
leal z_extract_offset_negative(%ebx), %ebp
/* push arguments for decompress_kernel: */
pushl %ebp /* output address */
pushl $z_input_len /* input_len */
leal input_data(%ebx), %eax
pushl %eax /* input_data */
leal boot_heap(%ebx), %eax
pushl %eax /* heap area */
pushl %esi /* real mode pointer */
call decompress_kernel
addl $20, %esp
#if CONFIG_RELOCATABLE
/*
* Find the address of the relocations.
*/
leal z_output_len(%ebp), %edi
/*
* Calculate the delta between where vmlinux was compiled to run
* and where it was actually loaded.
*/
movl %ebp, %ebx
subl $LOAD_PHYSICAL_ADDR, %ebx
jz 2f /* Nothing to be done if loaded at compiled addr. */
/*
* Process relocations.
*/
1: subl $4, %edi
movl (%edi), %ecx
testl %ecx, %ecx
jz 2f
addl %ebx, -__PAGE_OFFSET(%ebx, %ecx)
jmp 1b
2:
#endif
/*
* Jump to the decompressed kernel.
*/
xorl %ebx, %ebx
jmp *%ebp
/*
* Stack and heap for uncompression
*/
.bss
.balign 4
boot_heap:
.fill BOOT_HEAP_SIZE, 1, 0
boot_stack:
.fill BOOT_STACK_SIZE, 1, 0
boot_stack_end: