linux/drivers/net/wireless/brcm80211/brcmsmac/dma.c
Arend van Spriel 3b758a6840 brcm80211: smac: remove mapped core related function from aiutils.c
In aiutils.c the selected core was maintained by its index number. This
is obsolete using BCMA functions so several functions using that index
have been removed.

Reviewed-by: Pieter-Paul Giesberts <pieterpg@broadcom.com>
Reviewed-by: Alwin Beukers <alwin@broadcom.com>
Signed-off-by: Arend van Spriel <arend@broadcom.com>
Signed-off-by: Franky Lin <frankyl@broadcom.com>
Signed-off-by: John W. Linville <linville@tuxdriver.com>
2011-12-13 15:48:26 -05:00

1444 lines
39 KiB
C

/*
* Copyright (c) 2010 Broadcom Corporation
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
* SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
* OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
* CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/slab.h>
#include <linux/delay.h>
#include <linux/pci.h>
#include <brcmu_utils.h>
#include <aiutils.h>
#include "types.h"
#include "dma.h"
#include "soc.h"
/*
* dma register field offset calculation
*/
#define DMA64REGOFFS(field) offsetof(struct dma64regs, field)
#define DMA64TXREGOFFS(di, field) (di->d64txregbase + DMA64REGOFFS(field))
#define DMA64RXREGOFFS(di, field) (di->d64rxregbase + DMA64REGOFFS(field))
/*
* DMA hardware requires each descriptor ring to be 8kB aligned, and fit within
* a contiguous 8kB physical address.
*/
#define D64RINGALIGN_BITS 13
#define D64MAXRINGSZ (1 << D64RINGALIGN_BITS)
#define D64RINGALIGN (1 << D64RINGALIGN_BITS)
#define D64MAXDD (D64MAXRINGSZ / sizeof(struct dma64desc))
/* transmit channel control */
#define D64_XC_XE 0x00000001 /* transmit enable */
#define D64_XC_SE 0x00000002 /* transmit suspend request */
#define D64_XC_LE 0x00000004 /* loopback enable */
#define D64_XC_FL 0x00000010 /* flush request */
#define D64_XC_PD 0x00000800 /* parity check disable */
#define D64_XC_AE 0x00030000 /* address extension bits */
#define D64_XC_AE_SHIFT 16
/* transmit descriptor table pointer */
#define D64_XP_LD_MASK 0x00000fff /* last valid descriptor */
/* transmit channel status */
#define D64_XS0_CD_MASK 0x00001fff /* current descriptor pointer */
#define D64_XS0_XS_MASK 0xf0000000 /* transmit state */
#define D64_XS0_XS_SHIFT 28
#define D64_XS0_XS_DISABLED 0x00000000 /* disabled */
#define D64_XS0_XS_ACTIVE 0x10000000 /* active */
#define D64_XS0_XS_IDLE 0x20000000 /* idle wait */
#define D64_XS0_XS_STOPPED 0x30000000 /* stopped */
#define D64_XS0_XS_SUSP 0x40000000 /* suspend pending */
#define D64_XS1_AD_MASK 0x00001fff /* active descriptor */
#define D64_XS1_XE_MASK 0xf0000000 /* transmit errors */
#define D64_XS1_XE_SHIFT 28
#define D64_XS1_XE_NOERR 0x00000000 /* no error */
#define D64_XS1_XE_DPE 0x10000000 /* descriptor protocol error */
#define D64_XS1_XE_DFU 0x20000000 /* data fifo underrun */
#define D64_XS1_XE_DTE 0x30000000 /* data transfer error */
#define D64_XS1_XE_DESRE 0x40000000 /* descriptor read error */
#define D64_XS1_XE_COREE 0x50000000 /* core error */
/* receive channel control */
/* receive enable */
#define D64_RC_RE 0x00000001
/* receive frame offset */
#define D64_RC_RO_MASK 0x000000fe
#define D64_RC_RO_SHIFT 1
/* direct fifo receive (pio) mode */
#define D64_RC_FM 0x00000100
/* separate rx header descriptor enable */
#define D64_RC_SH 0x00000200
/* overflow continue */
#define D64_RC_OC 0x00000400
/* parity check disable */
#define D64_RC_PD 0x00000800
/* address extension bits */
#define D64_RC_AE 0x00030000
#define D64_RC_AE_SHIFT 16
/* flags for dma controller */
/* partity enable */
#define DMA_CTRL_PEN (1 << 0)
/* rx overflow continue */
#define DMA_CTRL_ROC (1 << 1)
/* allow rx scatter to multiple descriptors */
#define DMA_CTRL_RXMULTI (1 << 2)
/* Unframed Rx/Tx data */
#define DMA_CTRL_UNFRAMED (1 << 3)
/* receive descriptor table pointer */
#define D64_RP_LD_MASK 0x00000fff /* last valid descriptor */
/* receive channel status */
#define D64_RS0_CD_MASK 0x00001fff /* current descriptor pointer */
#define D64_RS0_RS_MASK 0xf0000000 /* receive state */
#define D64_RS0_RS_SHIFT 28
#define D64_RS0_RS_DISABLED 0x00000000 /* disabled */
#define D64_RS0_RS_ACTIVE 0x10000000 /* active */
#define D64_RS0_RS_IDLE 0x20000000 /* idle wait */
#define D64_RS0_RS_STOPPED 0x30000000 /* stopped */
#define D64_RS0_RS_SUSP 0x40000000 /* suspend pending */
#define D64_RS1_AD_MASK 0x0001ffff /* active descriptor */
#define D64_RS1_RE_MASK 0xf0000000 /* receive errors */
#define D64_RS1_RE_SHIFT 28
#define D64_RS1_RE_NOERR 0x00000000 /* no error */
#define D64_RS1_RE_DPO 0x10000000 /* descriptor protocol error */
#define D64_RS1_RE_DFU 0x20000000 /* data fifo overflow */
#define D64_RS1_RE_DTE 0x30000000 /* data transfer error */
#define D64_RS1_RE_DESRE 0x40000000 /* descriptor read error */
#define D64_RS1_RE_COREE 0x50000000 /* core error */
/* fifoaddr */
#define D64_FA_OFF_MASK 0xffff /* offset */
#define D64_FA_SEL_MASK 0xf0000 /* select */
#define D64_FA_SEL_SHIFT 16
#define D64_FA_SEL_XDD 0x00000 /* transmit dma data */
#define D64_FA_SEL_XDP 0x10000 /* transmit dma pointers */
#define D64_FA_SEL_RDD 0x40000 /* receive dma data */
#define D64_FA_SEL_RDP 0x50000 /* receive dma pointers */
#define D64_FA_SEL_XFD 0x80000 /* transmit fifo data */
#define D64_FA_SEL_XFP 0x90000 /* transmit fifo pointers */
#define D64_FA_SEL_RFD 0xc0000 /* receive fifo data */
#define D64_FA_SEL_RFP 0xd0000 /* receive fifo pointers */
#define D64_FA_SEL_RSD 0xe0000 /* receive frame status data */
#define D64_FA_SEL_RSP 0xf0000 /* receive frame status pointers */
/* descriptor control flags 1 */
#define D64_CTRL_COREFLAGS 0x0ff00000 /* core specific flags */
#define D64_CTRL1_EOT ((u32)1 << 28) /* end of descriptor table */
#define D64_CTRL1_IOC ((u32)1 << 29) /* interrupt on completion */
#define D64_CTRL1_EOF ((u32)1 << 30) /* end of frame */
#define D64_CTRL1_SOF ((u32)1 << 31) /* start of frame */
/* descriptor control flags 2 */
/* buffer byte count. real data len must <= 16KB */
#define D64_CTRL2_BC_MASK 0x00007fff
/* address extension bits */
#define D64_CTRL2_AE 0x00030000
#define D64_CTRL2_AE_SHIFT 16
/* parity bit */
#define D64_CTRL2_PARITY 0x00040000
/* control flags in the range [27:20] are core-specific and not defined here */
#define D64_CTRL_CORE_MASK 0x0ff00000
#define D64_RX_FRM_STS_LEN 0x0000ffff /* frame length mask */
#define D64_RX_FRM_STS_OVFL 0x00800000 /* RxOverFlow */
#define D64_RX_FRM_STS_DSCRCNT 0x0f000000 /* no. of descriptors used - 1 */
#define D64_RX_FRM_STS_DATATYPE 0xf0000000 /* core-dependent data type */
/*
* packet headroom necessary to accommodate the largest header
* in the system, (i.e TXOFF). By doing, we avoid the need to
* allocate an extra buffer for the header when bridging to WL.
* There is a compile time check in wlc.c which ensure that this
* value is at least as big as TXOFF. This value is used in
* dma_rxfill().
*/
#define BCMEXTRAHDROOM 172
/* debug/trace */
#ifdef BCMDBG
#define DMA_ERROR(fmt, ...) \
do { \
if (*di->msg_level & 1) \
pr_debug("%s: " fmt, __func__, ##__VA_ARGS__); \
} while (0)
#define DMA_TRACE(fmt, ...) \
do { \
if (*di->msg_level & 2) \
pr_debug("%s: " fmt, __func__, ##__VA_ARGS__); \
} while (0)
#else
#define DMA_ERROR(fmt, ...) \
no_printk(fmt, ##__VA_ARGS__)
#define DMA_TRACE(fmt, ...) \
no_printk(fmt, ##__VA_ARGS__)
#endif /* BCMDBG */
#define DMA_NONE(fmt, ...) \
no_printk(fmt, ##__VA_ARGS__)
#define MAXNAMEL 8 /* 8 char names */
/* macros to convert between byte offsets and indexes */
#define B2I(bytes, type) ((bytes) / sizeof(type))
#define I2B(index, type) ((index) * sizeof(type))
#define PCI32ADDR_HIGH 0xc0000000 /* address[31:30] */
#define PCI32ADDR_HIGH_SHIFT 30 /* address[31:30] */
#define PCI64ADDR_HIGH 0x80000000 /* address[63] */
#define PCI64ADDR_HIGH_SHIFT 31 /* address[63] */
/*
* DMA Descriptor
* Descriptors are only read by the hardware, never written back.
*/
struct dma64desc {
__le32 ctrl1; /* misc control bits & bufcount */
__le32 ctrl2; /* buffer count and address extension */
__le32 addrlow; /* memory address of the date buffer, bits 31:0 */
__le32 addrhigh; /* memory address of the date buffer, bits 63:32 */
};
/* dma engine software state */
struct dma_info {
struct dma_pub dma; /* exported structure */
uint *msg_level; /* message level pointer */
char name[MAXNAMEL]; /* callers name for diag msgs */
struct bcma_device *core;
struct device *dmadev;
bool dma64; /* this dma engine is operating in 64-bit mode */
bool addrext; /* this dma engine supports DmaExtendedAddrChanges */
/* 64-bit dma tx engine registers */
uint d64txregbase;
/* 64-bit dma rx engine registers */
uint d64rxregbase;
/* pointer to dma64 tx descriptor ring */
struct dma64desc *txd64;
/* pointer to dma64 rx descriptor ring */
struct dma64desc *rxd64;
u16 dmadesc_align; /* alignment requirement for dma descriptors */
u16 ntxd; /* # tx descriptors tunable */
u16 txin; /* index of next descriptor to reclaim */
u16 txout; /* index of next descriptor to post */
/* pointer to parallel array of pointers to packets */
struct sk_buff **txp;
/* Aligned physical address of descriptor ring */
dma_addr_t txdpa;
/* Original physical address of descriptor ring */
dma_addr_t txdpaorig;
u16 txdalign; /* #bytes added to alloc'd mem to align txd */
u32 txdalloc; /* #bytes allocated for the ring */
u32 xmtptrbase; /* When using unaligned descriptors, the ptr register
* is not just an index, it needs all 13 bits to be
* an offset from the addr register.
*/
u16 nrxd; /* # rx descriptors tunable */
u16 rxin; /* index of next descriptor to reclaim */
u16 rxout; /* index of next descriptor to post */
/* pointer to parallel array of pointers to packets */
struct sk_buff **rxp;
/* Aligned physical address of descriptor ring */
dma_addr_t rxdpa;
/* Original physical address of descriptor ring */
dma_addr_t rxdpaorig;
u16 rxdalign; /* #bytes added to alloc'd mem to align rxd */
u32 rxdalloc; /* #bytes allocated for the ring */
u32 rcvptrbase; /* Base for ptr reg when using unaligned descriptors */
/* tunables */
unsigned int rxbufsize; /* rx buffer size in bytes, not including
* the extra headroom
*/
uint rxextrahdrroom; /* extra rx headroom, reverseved to assist upper
* stack, e.g. some rx pkt buffers will be
* bridged to tx side without byte copying.
* The extra headroom needs to be large enough
* to fit txheader needs. Some dongle driver may
* not need it.
*/
uint nrxpost; /* # rx buffers to keep posted */
unsigned int rxoffset; /* rxcontrol offset */
/* add to get dma address of descriptor ring, low 32 bits */
uint ddoffsetlow;
/* high 32 bits */
uint ddoffsethigh;
/* add to get dma address of data buffer, low 32 bits */
uint dataoffsetlow;
/* high 32 bits */
uint dataoffsethigh;
/* descriptor base need to be aligned or not */
bool aligndesc_4k;
};
/*
* default dma message level (if input msg_level
* pointer is null in dma_attach())
*/
static uint dma_msg_level;
/* Check for odd number of 1's */
static u32 parity32(__le32 data)
{
/* no swap needed for counting 1's */
u32 par_data = *(u32 *)&data;
par_data ^= par_data >> 16;
par_data ^= par_data >> 8;
par_data ^= par_data >> 4;
par_data ^= par_data >> 2;
par_data ^= par_data >> 1;
return par_data & 1;
}
static bool dma64_dd_parity(struct dma64desc *dd)
{
return parity32(dd->addrlow ^ dd->addrhigh ^ dd->ctrl1 ^ dd->ctrl2);
}
/* descriptor bumping functions */
static uint xxd(uint x, uint n)
{
return x & (n - 1); /* faster than %, but n must be power of 2 */
}
static uint txd(struct dma_info *di, uint x)
{
return xxd(x, di->ntxd);
}
static uint rxd(struct dma_info *di, uint x)
{
return xxd(x, di->nrxd);
}
static uint nexttxd(struct dma_info *di, uint i)
{
return txd(di, i + 1);
}
static uint prevtxd(struct dma_info *di, uint i)
{
return txd(di, i - 1);
}
static uint nextrxd(struct dma_info *di, uint i)
{
return txd(di, i + 1);
}
static uint ntxdactive(struct dma_info *di, uint h, uint t)
{
return txd(di, t-h);
}
static uint nrxdactive(struct dma_info *di, uint h, uint t)
{
return rxd(di, t-h);
}
static uint _dma_ctrlflags(struct dma_info *di, uint mask, uint flags)
{
uint dmactrlflags;
if (di == NULL) {
DMA_ERROR("NULL dma handle\n");
return 0;
}
dmactrlflags = di->dma.dmactrlflags;
dmactrlflags &= ~mask;
dmactrlflags |= flags;
/* If trying to enable parity, check if parity is actually supported */
if (dmactrlflags & DMA_CTRL_PEN) {
u32 control;
control = bcma_read32(di->core, DMA64TXREGOFFS(di, control));
bcma_write32(di->core, DMA64TXREGOFFS(di, control),
control | D64_XC_PD);
if (bcma_read32(di->core, DMA64TXREGOFFS(di, control)) &
D64_XC_PD)
/* We *can* disable it so it is supported,
* restore control register
*/
bcma_write32(di->core, DMA64TXREGOFFS(di, control),
control);
else
/* Not supported, don't allow it to be enabled */
dmactrlflags &= ~DMA_CTRL_PEN;
}
di->dma.dmactrlflags = dmactrlflags;
return dmactrlflags;
}
static bool _dma64_addrext(struct dma_info *di, uint ctrl_offset)
{
u32 w;
bcma_set32(di->core, ctrl_offset, D64_XC_AE);
w = bcma_read32(di->core, ctrl_offset);
bcma_mask32(di->core, ctrl_offset, ~D64_XC_AE);
return (w & D64_XC_AE) == D64_XC_AE;
}
/*
* return true if this dma engine supports DmaExtendedAddrChanges,
* otherwise false
*/
static bool _dma_isaddrext(struct dma_info *di)
{
/* DMA64 supports full 32- or 64-bit operation. AE is always valid */
/* not all tx or rx channel are available */
if (di->d64txregbase != 0) {
if (!_dma64_addrext(di, DMA64TXREGOFFS(di, control)))
DMA_ERROR("%s: DMA64 tx doesn't have AE set\n",
di->name);
return true;
} else if (di->d64rxregbase != 0) {
if (!_dma64_addrext(di, DMA64RXREGOFFS(di, control)))
DMA_ERROR("%s: DMA64 rx doesn't have AE set\n",
di->name);
return true;
}
return false;
}
static bool _dma_descriptor_align(struct dma_info *di)
{
u32 addrl;
/* Check to see if the descriptors need to be aligned on 4K/8K or not */
if (di->d64txregbase != 0) {
bcma_write32(di->core, DMA64TXREGOFFS(di, addrlow), 0xff0);
addrl = bcma_read32(di->core, DMA64TXREGOFFS(di, addrlow));
if (addrl != 0)
return false;
} else if (di->d64rxregbase != 0) {
bcma_write32(di->core, DMA64RXREGOFFS(di, addrlow), 0xff0);
addrl = bcma_read32(di->core, DMA64RXREGOFFS(di, addrlow));
if (addrl != 0)
return false;
}
return true;
}
/*
* Descriptor table must start at the DMA hardware dictated alignment, so
* allocated memory must be large enough to support this requirement.
*/
static void *dma_alloc_consistent(struct dma_info *di, uint size,
u16 align_bits, uint *alloced,
dma_addr_t *pap)
{
if (align_bits) {
u16 align = (1 << align_bits);
if (!IS_ALIGNED(PAGE_SIZE, align))
size += align;
*alloced = size;
}
return dma_alloc_coherent(di->dmadev, size, pap, GFP_ATOMIC);
}
static
u8 dma_align_sizetobits(uint size)
{
u8 bitpos = 0;
while (size >>= 1)
bitpos++;
return bitpos;
}
/* This function ensures that the DMA descriptor ring will not get allocated
* across Page boundary. If the allocation is done across the page boundary
* at the first time, then it is freed and the allocation is done at
* descriptor ring size aligned location. This will ensure that the ring will
* not cross page boundary
*/
static void *dma_ringalloc(struct dma_info *di, u32 boundary, uint size,
u16 *alignbits, uint *alloced,
dma_addr_t *descpa)
{
void *va;
u32 desc_strtaddr;
u32 alignbytes = 1 << *alignbits;
va = dma_alloc_consistent(di, size, *alignbits, alloced, descpa);
if (NULL == va)
return NULL;
desc_strtaddr = (u32) roundup((unsigned long)va, alignbytes);
if (((desc_strtaddr + size - 1) & boundary) != (desc_strtaddr
& boundary)) {
*alignbits = dma_align_sizetobits(size);
dma_free_coherent(di->dmadev, size, va, *descpa);
va = dma_alloc_consistent(di, size, *alignbits,
alloced, descpa);
}
return va;
}
static bool dma64_alloc(struct dma_info *di, uint direction)
{
u16 size;
uint ddlen;
void *va;
uint alloced = 0;
u16 align;
u16 align_bits;
ddlen = sizeof(struct dma64desc);
size = (direction == DMA_TX) ? (di->ntxd * ddlen) : (di->nrxd * ddlen);
align_bits = di->dmadesc_align;
align = (1 << align_bits);
if (direction == DMA_TX) {
va = dma_ringalloc(di, D64RINGALIGN, size, &align_bits,
&alloced, &di->txdpaorig);
if (va == NULL) {
DMA_ERROR("%s: DMA_ALLOC_CONSISTENT(ntxd) failed\n",
di->name);
return false;
}
align = (1 << align_bits);
di->txd64 = (struct dma64desc *)
roundup((unsigned long)va, align);
di->txdalign = (uint) ((s8 *)di->txd64 - (s8 *) va);
di->txdpa = di->txdpaorig + di->txdalign;
di->txdalloc = alloced;
} else {
va = dma_ringalloc(di, D64RINGALIGN, size, &align_bits,
&alloced, &di->rxdpaorig);
if (va == NULL) {
DMA_ERROR("%s: DMA_ALLOC_CONSISTENT(nrxd) failed\n",
di->name);
return false;
}
align = (1 << align_bits);
di->rxd64 = (struct dma64desc *)
roundup((unsigned long)va, align);
di->rxdalign = (uint) ((s8 *)di->rxd64 - (s8 *) va);
di->rxdpa = di->rxdpaorig + di->rxdalign;
di->rxdalloc = alloced;
}
return true;
}
static bool _dma_alloc(struct dma_info *di, uint direction)
{
return dma64_alloc(di, direction);
}
struct dma_pub *dma_attach(char *name, struct si_pub *sih,
struct bcma_device *core,
uint txregbase, uint rxregbase, uint ntxd, uint nrxd,
uint rxbufsize, int rxextheadroom,
uint nrxpost, uint rxoffset, uint *msg_level)
{
struct dma_info *di;
u8 rev = core->id.rev;
uint size;
/* allocate private info structure */
di = kzalloc(sizeof(struct dma_info), GFP_ATOMIC);
if (di == NULL)
return NULL;
di->msg_level = msg_level ? msg_level : &dma_msg_level;
di->dma64 =
((bcma_aread32(core, BCMA_IOST) & SISF_DMA64) == SISF_DMA64);
/* init dma reg info */
di->core = core;
di->d64txregbase = txregbase;
di->d64rxregbase = rxregbase;
/*
* Default flags (which can be changed by the driver calling
* dma_ctrlflags before enable): For backwards compatibility
* both Rx Overflow Continue and Parity are DISABLED.
*/
_dma_ctrlflags(di, DMA_CTRL_ROC | DMA_CTRL_PEN, 0);
DMA_TRACE("%s: %s flags 0x%x ntxd %d nrxd %d "
"rxbufsize %d rxextheadroom %d nrxpost %d rxoffset %d "
"txregbase %u rxregbase %u\n", name, "DMA64",
di->dma.dmactrlflags, ntxd, nrxd, rxbufsize,
rxextheadroom, nrxpost, rxoffset, txregbase, rxregbase);
/* make a private copy of our callers name */
strncpy(di->name, name, MAXNAMEL);
di->name[MAXNAMEL - 1] = '\0';
di->dmadev = core->dma_dev;
/* save tunables */
di->ntxd = (u16) ntxd;
di->nrxd = (u16) nrxd;
/* the actual dma size doesn't include the extra headroom */
di->rxextrahdrroom =
(rxextheadroom == -1) ? BCMEXTRAHDROOM : rxextheadroom;
if (rxbufsize > BCMEXTRAHDROOM)
di->rxbufsize = (u16) (rxbufsize - di->rxextrahdrroom);
else
di->rxbufsize = (u16) rxbufsize;
di->nrxpost = (u16) nrxpost;
di->rxoffset = (u8) rxoffset;
/*
* figure out the DMA physical address offset for dd and data
* PCI/PCIE: they map silicon backplace address to zero
* based memory, need offset
* Other bus: use zero SI_BUS BIGENDIAN kludge: use sdram
* swapped region for data buffer, not descriptor
*/
di->ddoffsetlow = 0;
di->dataoffsetlow = 0;
/* add offset for pcie with DMA64 bus */
di->ddoffsetlow = 0;
di->ddoffsethigh = SI_PCIE_DMA_H32;
di->dataoffsetlow = di->ddoffsetlow;
di->dataoffsethigh = di->ddoffsethigh;
/* WAR64450 : DMACtl.Addr ext fields are not supported in SDIOD core. */
if ((core->id.id == SDIOD_CORE_ID)
&& ((rev > 0) && (rev <= 2)))
di->addrext = 0;
else if ((core->id.id == I2S_CORE_ID) &&
((rev == 0) || (rev == 1)))
di->addrext = 0;
else
di->addrext = _dma_isaddrext(di);
/* does the descriptor need to be aligned and if yes, on 4K/8K or not */
di->aligndesc_4k = _dma_descriptor_align(di);
if (di->aligndesc_4k) {
di->dmadesc_align = D64RINGALIGN_BITS;
if ((ntxd < D64MAXDD / 2) && (nrxd < D64MAXDD / 2))
/* for smaller dd table, HW relax alignment reqmnt */
di->dmadesc_align = D64RINGALIGN_BITS - 1;
} else {
di->dmadesc_align = 4; /* 16 byte alignment */
}
DMA_NONE("DMA descriptor align_needed %d, align %d\n",
di->aligndesc_4k, di->dmadesc_align);
/* allocate tx packet pointer vector */
if (ntxd) {
size = ntxd * sizeof(void *);
di->txp = kzalloc(size, GFP_ATOMIC);
if (di->txp == NULL)
goto fail;
}
/* allocate rx packet pointer vector */
if (nrxd) {
size = nrxd * sizeof(void *);
di->rxp = kzalloc(size, GFP_ATOMIC);
if (di->rxp == NULL)
goto fail;
}
/*
* allocate transmit descriptor ring, only need ntxd descriptors
* but it must be aligned
*/
if (ntxd) {
if (!_dma_alloc(di, DMA_TX))
goto fail;
}
/*
* allocate receive descriptor ring, only need nrxd descriptors
* but it must be aligned
*/
if (nrxd) {
if (!_dma_alloc(di, DMA_RX))
goto fail;
}
if ((di->ddoffsetlow != 0) && !di->addrext) {
if (di->txdpa > SI_PCI_DMA_SZ) {
DMA_ERROR("%s: txdpa 0x%x: addrext not supported\n",
di->name, (u32)di->txdpa);
goto fail;
}
if (di->rxdpa > SI_PCI_DMA_SZ) {
DMA_ERROR("%s: rxdpa 0x%x: addrext not supported\n",
di->name, (u32)di->rxdpa);
goto fail;
}
}
DMA_TRACE("ddoffsetlow 0x%x ddoffsethigh 0x%x dataoffsetlow 0x%x dataoffsethigh 0x%x addrext %d\n",
di->ddoffsetlow, di->ddoffsethigh,
di->dataoffsetlow, di->dataoffsethigh,
di->addrext);
return (struct dma_pub *) di;
fail:
dma_detach((struct dma_pub *)di);
return NULL;
}
static inline void
dma64_dd_upd(struct dma_info *di, struct dma64desc *ddring,
dma_addr_t pa, uint outidx, u32 *flags, u32 bufcount)
{
u32 ctrl2 = bufcount & D64_CTRL2_BC_MASK;
/* PCI bus with big(>1G) physical address, use address extension */
if ((di->dataoffsetlow == 0) || !(pa & PCI32ADDR_HIGH)) {
ddring[outidx].addrlow = cpu_to_le32(pa + di->dataoffsetlow);
ddring[outidx].addrhigh = cpu_to_le32(di->dataoffsethigh);
ddring[outidx].ctrl1 = cpu_to_le32(*flags);
ddring[outidx].ctrl2 = cpu_to_le32(ctrl2);
} else {
/* address extension for 32-bit PCI */
u32 ae;
ae = (pa & PCI32ADDR_HIGH) >> PCI32ADDR_HIGH_SHIFT;
pa &= ~PCI32ADDR_HIGH;
ctrl2 |= (ae << D64_CTRL2_AE_SHIFT) & D64_CTRL2_AE;
ddring[outidx].addrlow = cpu_to_le32(pa + di->dataoffsetlow);
ddring[outidx].addrhigh = cpu_to_le32(di->dataoffsethigh);
ddring[outidx].ctrl1 = cpu_to_le32(*flags);
ddring[outidx].ctrl2 = cpu_to_le32(ctrl2);
}
if (di->dma.dmactrlflags & DMA_CTRL_PEN) {
if (dma64_dd_parity(&ddring[outidx]))
ddring[outidx].ctrl2 =
cpu_to_le32(ctrl2 | D64_CTRL2_PARITY);
}
}
/* !! may be called with core in reset */
void dma_detach(struct dma_pub *pub)
{
struct dma_info *di = (struct dma_info *)pub;
DMA_TRACE("%s:\n", di->name);
/* free dma descriptor rings */
if (di->txd64)
dma_free_coherent(di->dmadev, di->txdalloc,
((s8 *)di->txd64 - di->txdalign),
(di->txdpaorig));
if (di->rxd64)
dma_free_coherent(di->dmadev, di->rxdalloc,
((s8 *)di->rxd64 - di->rxdalign),
(di->rxdpaorig));
/* free packet pointer vectors */
kfree(di->txp);
kfree(di->rxp);
/* free our private info structure */
kfree(di);
}
/* initialize descriptor table base address */
static void
_dma_ddtable_init(struct dma_info *di, uint direction, dma_addr_t pa)
{
if (!di->aligndesc_4k) {
if (direction == DMA_TX)
di->xmtptrbase = pa;
else
di->rcvptrbase = pa;
}
if ((di->ddoffsetlow == 0)
|| !(pa & PCI32ADDR_HIGH)) {
if (direction == DMA_TX) {
bcma_write32(di->core, DMA64TXREGOFFS(di, addrlow),
pa + di->ddoffsetlow);
bcma_write32(di->core, DMA64TXREGOFFS(di, addrhigh),
di->ddoffsethigh);
} else {
bcma_write32(di->core, DMA64RXREGOFFS(di, addrlow),
pa + di->ddoffsetlow);
bcma_write32(di->core, DMA64RXREGOFFS(di, addrhigh),
di->ddoffsethigh);
}
} else {
/* DMA64 32bits address extension */
u32 ae;
/* shift the high bit(s) from pa to ae */
ae = (pa & PCI32ADDR_HIGH) >> PCI32ADDR_HIGH_SHIFT;
pa &= ~PCI32ADDR_HIGH;
if (direction == DMA_TX) {
bcma_write32(di->core, DMA64TXREGOFFS(di, addrlow),
pa + di->ddoffsetlow);
bcma_write32(di->core, DMA64TXREGOFFS(di, addrhigh),
di->ddoffsethigh);
bcma_maskset32(di->core, DMA64TXREGOFFS(di, control),
D64_XC_AE, (ae << D64_XC_AE_SHIFT));
} else {
bcma_write32(di->core, DMA64RXREGOFFS(di, addrlow),
pa + di->ddoffsetlow);
bcma_write32(di->core, DMA64RXREGOFFS(di, addrhigh),
di->ddoffsethigh);
bcma_maskset32(di->core, DMA64RXREGOFFS(di, control),
D64_RC_AE, (ae << D64_RC_AE_SHIFT));
}
}
}
static void _dma_rxenable(struct dma_info *di)
{
uint dmactrlflags = di->dma.dmactrlflags;
u32 control;
DMA_TRACE("%s:\n", di->name);
control = D64_RC_RE | (bcma_read32(di->core,
DMA64RXREGOFFS(di, control)) &
D64_RC_AE);
if ((dmactrlflags & DMA_CTRL_PEN) == 0)
control |= D64_RC_PD;
if (dmactrlflags & DMA_CTRL_ROC)
control |= D64_RC_OC;
bcma_write32(di->core, DMA64RXREGOFFS(di, control),
((di->rxoffset << D64_RC_RO_SHIFT) | control));
}
void dma_rxinit(struct dma_pub *pub)
{
struct dma_info *di = (struct dma_info *)pub;
DMA_TRACE("%s:\n", di->name);
if (di->nrxd == 0)
return;
di->rxin = di->rxout = 0;
/* clear rx descriptor ring */
memset(di->rxd64, '\0', di->nrxd * sizeof(struct dma64desc));
/* DMA engine with out alignment requirement requires table to be inited
* before enabling the engine
*/
if (!di->aligndesc_4k)
_dma_ddtable_init(di, DMA_RX, di->rxdpa);
_dma_rxenable(di);
if (di->aligndesc_4k)
_dma_ddtable_init(di, DMA_RX, di->rxdpa);
}
static struct sk_buff *dma64_getnextrxp(struct dma_info *di, bool forceall)
{
uint i, curr;
struct sk_buff *rxp;
dma_addr_t pa;
i = di->rxin;
/* return if no packets posted */
if (i == di->rxout)
return NULL;
curr =
B2I(((bcma_read32(di->core,
DMA64RXREGOFFS(di, status0)) & D64_RS0_CD_MASK) -
di->rcvptrbase) & D64_RS0_CD_MASK, struct dma64desc);
/* ignore curr if forceall */
if (!forceall && (i == curr))
return NULL;
/* get the packet pointer that corresponds to the rx descriptor */
rxp = di->rxp[i];
di->rxp[i] = NULL;
pa = le32_to_cpu(di->rxd64[i].addrlow) - di->dataoffsetlow;
/* clear this packet from the descriptor ring */
dma_unmap_single(di->dmadev, pa, di->rxbufsize, DMA_FROM_DEVICE);
di->rxd64[i].addrlow = cpu_to_le32(0xdeadbeef);
di->rxd64[i].addrhigh = cpu_to_le32(0xdeadbeef);
di->rxin = nextrxd(di, i);
return rxp;
}
static struct sk_buff *_dma_getnextrxp(struct dma_info *di, bool forceall)
{
if (di->nrxd == 0)
return NULL;
return dma64_getnextrxp(di, forceall);
}
/*
* !! rx entry routine
* returns the number packages in the next frame, or 0 if there are no more
* if DMA_CTRL_RXMULTI is defined, DMA scattering(multiple buffers) is
* supported with pkts chain
* otherwise, it's treated as giant pkt and will be tossed.
* The DMA scattering starts with normal DMA header, followed by first
* buffer data. After it reaches the max size of buffer, the data continues
* in next DMA descriptor buffer WITHOUT DMA header
*/
int dma_rx(struct dma_pub *pub, struct sk_buff_head *skb_list)
{
struct dma_info *di = (struct dma_info *)pub;
struct sk_buff_head dma_frames;
struct sk_buff *p, *next;
uint len;
uint pkt_len;
int resid = 0;
int pktcnt = 1;
skb_queue_head_init(&dma_frames);
next_frame:
p = _dma_getnextrxp(di, false);
if (p == NULL)
return 0;
len = le16_to_cpu(*(__le16 *) (p->data));
DMA_TRACE("%s: dma_rx len %d\n", di->name, len);
dma_spin_for_len(len, p);
/* set actual length */
pkt_len = min((di->rxoffset + len), di->rxbufsize);
__skb_trim(p, pkt_len);
skb_queue_tail(&dma_frames, p);
resid = len - (di->rxbufsize - di->rxoffset);
/* check for single or multi-buffer rx */
if (resid > 0) {
while ((resid > 0) && (p = _dma_getnextrxp(di, false))) {
pkt_len = min_t(uint, resid, di->rxbufsize);
__skb_trim(p, pkt_len);
skb_queue_tail(&dma_frames, p);
resid -= di->rxbufsize;
pktcnt++;
}
#ifdef BCMDBG
if (resid > 0) {
uint cur;
cur =
B2I(((bcma_read32(di->core,
DMA64RXREGOFFS(di, status0)) &
D64_RS0_CD_MASK) - di->rcvptrbase) &
D64_RS0_CD_MASK, struct dma64desc);
DMA_ERROR("rxin %d rxout %d, hw_curr %d\n",
di->rxin, di->rxout, cur);
}
#endif /* BCMDBG */
if ((di->dma.dmactrlflags & DMA_CTRL_RXMULTI) == 0) {
DMA_ERROR("%s: bad frame length (%d)\n",
di->name, len);
skb_queue_walk_safe(&dma_frames, p, next) {
skb_unlink(p, &dma_frames);
brcmu_pkt_buf_free_skb(p);
}
di->dma.rxgiants++;
pktcnt = 1;
goto next_frame;
}
}
skb_queue_splice_tail(&dma_frames, skb_list);
return pktcnt;
}
static bool dma64_rxidle(struct dma_info *di)
{
DMA_TRACE("%s:\n", di->name);
if (di->nrxd == 0)
return true;
return ((bcma_read32(di->core,
DMA64RXREGOFFS(di, status0)) & D64_RS0_CD_MASK) ==
(bcma_read32(di->core, DMA64RXREGOFFS(di, ptr)) &
D64_RS0_CD_MASK));
}
/*
* post receive buffers
* return false is refill failed completely and ring is empty this will stall
* the rx dma and user might want to call rxfill again asap. This unlikely
* happens on memory-rich NIC, but often on memory-constrained dongle
*/
bool dma_rxfill(struct dma_pub *pub)
{
struct dma_info *di = (struct dma_info *)pub;
struct sk_buff *p;
u16 rxin, rxout;
u32 flags = 0;
uint n;
uint i;
dma_addr_t pa;
uint extra_offset = 0;
bool ring_empty;
ring_empty = false;
/*
* Determine how many receive buffers we're lacking
* from the full complement, allocate, initialize,
* and post them, then update the chip rx lastdscr.
*/
rxin = di->rxin;
rxout = di->rxout;
n = di->nrxpost - nrxdactive(di, rxin, rxout);
DMA_TRACE("%s: post %d\n", di->name, n);
if (di->rxbufsize > BCMEXTRAHDROOM)
extra_offset = di->rxextrahdrroom;
for (i = 0; i < n; i++) {
/*
* the di->rxbufsize doesn't include the extra headroom,
* we need to add it to the size to be allocated
*/
p = brcmu_pkt_buf_get_skb(di->rxbufsize + extra_offset);
if (p == NULL) {
DMA_ERROR("%s: out of rxbufs\n", di->name);
if (i == 0 && dma64_rxidle(di)) {
DMA_ERROR("%s: ring is empty !\n", di->name);
ring_empty = true;
}
di->dma.rxnobuf++;
break;
}
/* reserve an extra headroom, if applicable */
if (extra_offset)
skb_pull(p, extra_offset);
/* Do a cached write instead of uncached write since DMA_MAP
* will flush the cache.
*/
*(u32 *) (p->data) = 0;
pa = dma_map_single(di->dmadev, p->data, di->rxbufsize,
DMA_FROM_DEVICE);
/* save the free packet pointer */
di->rxp[rxout] = p;
/* reset flags for each descriptor */
flags = 0;
if (rxout == (di->nrxd - 1))
flags = D64_CTRL1_EOT;
dma64_dd_upd(di, di->rxd64, pa, rxout, &flags,
di->rxbufsize);
rxout = nextrxd(di, rxout);
}
di->rxout = rxout;
/* update the chip lastdscr pointer */
bcma_write32(di->core, DMA64RXREGOFFS(di, ptr),
di->rcvptrbase + I2B(rxout, struct dma64desc));
return ring_empty;
}
void dma_rxreclaim(struct dma_pub *pub)
{
struct dma_info *di = (struct dma_info *)pub;
struct sk_buff *p;
DMA_TRACE("%s:\n", di->name);
while ((p = _dma_getnextrxp(di, true)))
brcmu_pkt_buf_free_skb(p);
}
void dma_counterreset(struct dma_pub *pub)
{
/* reset all software counters */
pub->rxgiants = 0;
pub->rxnobuf = 0;
pub->txnobuf = 0;
}
/* get the address of the var in order to change later */
unsigned long dma_getvar(struct dma_pub *pub, const char *name)
{
struct dma_info *di = (struct dma_info *)pub;
if (!strcmp(name, "&txavail"))
return (unsigned long)&(di->dma.txavail);
return 0;
}
/* 64-bit DMA functions */
void dma_txinit(struct dma_pub *pub)
{
struct dma_info *di = (struct dma_info *)pub;
u32 control = D64_XC_XE;
DMA_TRACE("%s:\n", di->name);
if (di->ntxd == 0)
return;
di->txin = di->txout = 0;
di->dma.txavail = di->ntxd - 1;
/* clear tx descriptor ring */
memset(di->txd64, '\0', (di->ntxd * sizeof(struct dma64desc)));
/* DMA engine with out alignment requirement requires table to be inited
* before enabling the engine
*/
if (!di->aligndesc_4k)
_dma_ddtable_init(di, DMA_TX, di->txdpa);
if ((di->dma.dmactrlflags & DMA_CTRL_PEN) == 0)
control |= D64_XC_PD;
bcma_set32(di->core, DMA64TXREGOFFS(di, control), control);
/* DMA engine with alignment requirement requires table to be inited
* before enabling the engine
*/
if (di->aligndesc_4k)
_dma_ddtable_init(di, DMA_TX, di->txdpa);
}
void dma_txsuspend(struct dma_pub *pub)
{
struct dma_info *di = (struct dma_info *)pub;
DMA_TRACE("%s:\n", di->name);
if (di->ntxd == 0)
return;
bcma_set32(di->core, DMA64TXREGOFFS(di, control), D64_XC_SE);
}
void dma_txresume(struct dma_pub *pub)
{
struct dma_info *di = (struct dma_info *)pub;
DMA_TRACE("%s:\n", di->name);
if (di->ntxd == 0)
return;
bcma_mask32(di->core, DMA64TXREGOFFS(di, control), ~D64_XC_SE);
}
bool dma_txsuspended(struct dma_pub *pub)
{
struct dma_info *di = (struct dma_info *)pub;
return (di->ntxd == 0) ||
((bcma_read32(di->core,
DMA64TXREGOFFS(di, control)) & D64_XC_SE) ==
D64_XC_SE);
}
void dma_txreclaim(struct dma_pub *pub, enum txd_range range)
{
struct dma_info *di = (struct dma_info *)pub;
struct sk_buff *p;
DMA_TRACE("%s: %s\n",
di->name,
range == DMA_RANGE_ALL ? "all" :
range == DMA_RANGE_TRANSMITTED ? "transmitted" :
"transferred");
if (di->txin == di->txout)
return;
while ((p = dma_getnexttxp(pub, range))) {
/* For unframed data, we don't have any packets to free */
if (!(di->dma.dmactrlflags & DMA_CTRL_UNFRAMED))
brcmu_pkt_buf_free_skb(p);
}
}
bool dma_txreset(struct dma_pub *pub)
{
struct dma_info *di = (struct dma_info *)pub;
u32 status;
if (di->ntxd == 0)
return true;
/* suspend tx DMA first */
bcma_write32(di->core, DMA64TXREGOFFS(di, control), D64_XC_SE);
SPINWAIT(((status =
(bcma_read32(di->core, DMA64TXREGOFFS(di, status0)) &
D64_XS0_XS_MASK)) != D64_XS0_XS_DISABLED) &&
(status != D64_XS0_XS_IDLE) && (status != D64_XS0_XS_STOPPED),
10000);
bcma_write32(di->core, DMA64TXREGOFFS(di, control), 0);
SPINWAIT(((status =
(bcma_read32(di->core, DMA64TXREGOFFS(di, status0)) &
D64_XS0_XS_MASK)) != D64_XS0_XS_DISABLED), 10000);
/* wait for the last transaction to complete */
udelay(300);
return status == D64_XS0_XS_DISABLED;
}
bool dma_rxreset(struct dma_pub *pub)
{
struct dma_info *di = (struct dma_info *)pub;
u32 status;
if (di->nrxd == 0)
return true;
bcma_write32(di->core, DMA64RXREGOFFS(di, control), 0);
SPINWAIT(((status =
(bcma_read32(di->core, DMA64RXREGOFFS(di, status0)) &
D64_RS0_RS_MASK)) != D64_RS0_RS_DISABLED), 10000);
return status == D64_RS0_RS_DISABLED;
}
/*
* !! tx entry routine
* WARNING: call must check the return value for error.
* the error(toss frames) could be fatal and cause many subsequent hard
* to debug problems
*/
int dma_txfast(struct dma_pub *pub, struct sk_buff *p, bool commit)
{
struct dma_info *di = (struct dma_info *)pub;
unsigned char *data;
uint len;
u16 txout;
u32 flags = 0;
dma_addr_t pa;
DMA_TRACE("%s:\n", di->name);
txout = di->txout;
/*
* obtain and initialize transmit descriptor entry.
*/
data = p->data;
len = p->len;
/* no use to transmit a zero length packet */
if (len == 0)
return 0;
/* return nonzero if out of tx descriptors */
if (nexttxd(di, txout) == di->txin)
goto outoftxd;
/* get physical address of buffer start */
pa = dma_map_single(di->dmadev, data, len, DMA_TO_DEVICE);
/* With a DMA segment list, Descriptor table is filled
* using the segment list instead of looping over
* buffers in multi-chain DMA. Therefore, EOF for SGLIST
* is when end of segment list is reached.
*/
flags = D64_CTRL1_SOF | D64_CTRL1_IOC | D64_CTRL1_EOF;
if (txout == (di->ntxd - 1))
flags |= D64_CTRL1_EOT;
dma64_dd_upd(di, di->txd64, pa, txout, &flags, len);
txout = nexttxd(di, txout);
/* save the packet */
di->txp[prevtxd(di, txout)] = p;
/* bump the tx descriptor index */
di->txout = txout;
/* kick the chip */
if (commit)
bcma_write32(di->core, DMA64TXREGOFFS(di, ptr),
di->xmtptrbase + I2B(txout, struct dma64desc));
/* tx flow control */
di->dma.txavail = di->ntxd - ntxdactive(di, di->txin, di->txout) - 1;
return 0;
outoftxd:
DMA_ERROR("%s: out of txds !!!\n", di->name);
brcmu_pkt_buf_free_skb(p);
di->dma.txavail = 0;
di->dma.txnobuf++;
return -1;
}
/*
* Reclaim next completed txd (txds if using chained buffers) in the range
* specified and return associated packet.
* If range is DMA_RANGE_TRANSMITTED, reclaim descriptors that have be
* transmitted as noted by the hardware "CurrDescr" pointer.
* If range is DMA_RANGE_TRANSFERED, reclaim descriptors that have be
* transferred by the DMA as noted by the hardware "ActiveDescr" pointer.
* If range is DMA_RANGE_ALL, reclaim all txd(s) posted to the ring and
* return associated packet regardless of the value of hardware pointers.
*/
struct sk_buff *dma_getnexttxp(struct dma_pub *pub, enum txd_range range)
{
struct dma_info *di = (struct dma_info *)pub;
u16 start, end, i;
u16 active_desc;
struct sk_buff *txp;
DMA_TRACE("%s: %s\n",
di->name,
range == DMA_RANGE_ALL ? "all" :
range == DMA_RANGE_TRANSMITTED ? "transmitted" :
"transferred");
if (di->ntxd == 0)
return NULL;
txp = NULL;
start = di->txin;
if (range == DMA_RANGE_ALL)
end = di->txout;
else {
end = (u16) (B2I(((bcma_read32(di->core,
DMA64TXREGOFFS(di, status0)) &
D64_XS0_CD_MASK) - di->xmtptrbase) &
D64_XS0_CD_MASK, struct dma64desc));
if (range == DMA_RANGE_TRANSFERED) {
active_desc =
(u16)(bcma_read32(di->core,
DMA64TXREGOFFS(di, status1)) &
D64_XS1_AD_MASK);
active_desc =
(active_desc - di->xmtptrbase) & D64_XS0_CD_MASK;
active_desc = B2I(active_desc, struct dma64desc);
if (end != active_desc)
end = prevtxd(di, active_desc);
}
}
if ((start == 0) && (end > di->txout))
goto bogus;
for (i = start; i != end && !txp; i = nexttxd(di, i)) {
dma_addr_t pa;
uint size;
pa = le32_to_cpu(di->txd64[i].addrlow) - di->dataoffsetlow;
size =
(le32_to_cpu(di->txd64[i].ctrl2) &
D64_CTRL2_BC_MASK);
di->txd64[i].addrlow = cpu_to_le32(0xdeadbeef);
di->txd64[i].addrhigh = cpu_to_le32(0xdeadbeef);
txp = di->txp[i];
di->txp[i] = NULL;
dma_unmap_single(di->dmadev, pa, size, DMA_TO_DEVICE);
}
di->txin = i;
/* tx flow control */
di->dma.txavail = di->ntxd - ntxdactive(di, di->txin, di->txout) - 1;
return txp;
bogus:
DMA_NONE("bogus curr: start %d end %d txout %d\n",
start, end, di->txout);
return NULL;
}
/*
* Mac80211 initiated actions sometimes require packets in the DMA queue to be
* modified. The modified portion of the packet is not under control of the DMA
* engine. This function calls a caller-supplied function for each packet in
* the caller specified dma chain.
*/
void dma_walk_packets(struct dma_pub *dmah, void (*callback_fnc)
(void *pkt, void *arg_a), void *arg_a)
{
struct dma_info *di = (struct dma_info *) dmah;
uint i = di->txin;
uint end = di->txout;
struct sk_buff *skb;
struct ieee80211_tx_info *tx_info;
while (i != end) {
skb = (struct sk_buff *)di->txp[i];
if (skb != NULL) {
tx_info = (struct ieee80211_tx_info *)skb->cb;
(callback_fnc)(tx_info, arg_a);
}
i = nexttxd(di, i);
}
}