linux/drivers/net/can/spi/mcp251xfd/mcp251xfd-core.c
Manivannan Sadhasivam ee42bedc85 can: mcp251xfd: Add support for internal loopback mode
MCP251xFD supports internal loopback mode which can be used to verify CAN
functionality in the absence of a real CAN device.

Link: https://lore.kernel.org/r/20201201054019.11012-1-manivannan.sadhasivam@linaro.org
Signed-off-by: Manivannan Sadhasivam <manivannan.sadhasivam@linaro.org>
[mkl: mcp251xfd_get_normal_mode(): move CAN_CTRLMODE_LOOPBACK check to front]
Signed-off-by: Marc Kleine-Budde <mkl@pengutronix.de>
2020-12-10 10:40:10 +01:00

3010 lines
75 KiB
C

// SPDX-License-Identifier: GPL-2.0
//
// mcp251xfd - Microchip MCP251xFD Family CAN controller driver
//
// Copyright (c) 2019, 2020 Pengutronix,
// Marc Kleine-Budde <kernel@pengutronix.de>
//
// Based on:
//
// CAN bus driver for Microchip 25XXFD CAN Controller with SPI Interface
//
// Copyright (c) 2019 Martin Sperl <kernel@martin.sperl.org>
//
#include <linux/bitfield.h>
#include <linux/clk.h>
#include <linux/device.h>
#include <linux/module.h>
#include <linux/netdevice.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/pm_runtime.h>
#include <asm/unaligned.h>
#include "mcp251xfd.h"
#define DEVICE_NAME "mcp251xfd"
static const struct mcp251xfd_devtype_data mcp251xfd_devtype_data_mcp2517fd = {
.quirks = MCP251XFD_QUIRK_MAB_NO_WARN | MCP251XFD_QUIRK_CRC_REG |
MCP251XFD_QUIRK_CRC_RX | MCP251XFD_QUIRK_CRC_TX |
MCP251XFD_QUIRK_ECC,
.model = MCP251XFD_MODEL_MCP2517FD,
};
static const struct mcp251xfd_devtype_data mcp251xfd_devtype_data_mcp2518fd = {
.quirks = MCP251XFD_QUIRK_CRC_REG | MCP251XFD_QUIRK_CRC_RX |
MCP251XFD_QUIRK_CRC_TX | MCP251XFD_QUIRK_ECC,
.model = MCP251XFD_MODEL_MCP2518FD,
};
/* Autodetect model, start with CRC enabled. */
static const struct mcp251xfd_devtype_data mcp251xfd_devtype_data_mcp251xfd = {
.quirks = MCP251XFD_QUIRK_CRC_REG | MCP251XFD_QUIRK_CRC_RX |
MCP251XFD_QUIRK_CRC_TX | MCP251XFD_QUIRK_ECC,
.model = MCP251XFD_MODEL_MCP251XFD,
};
static const struct can_bittiming_const mcp251xfd_bittiming_const = {
.name = DEVICE_NAME,
.tseg1_min = 2,
.tseg1_max = 256,
.tseg2_min = 1,
.tseg2_max = 128,
.sjw_max = 128,
.brp_min = 1,
.brp_max = 256,
.brp_inc = 1,
};
static const struct can_bittiming_const mcp251xfd_data_bittiming_const = {
.name = DEVICE_NAME,
.tseg1_min = 1,
.tseg1_max = 32,
.tseg2_min = 1,
.tseg2_max = 16,
.sjw_max = 16,
.brp_min = 1,
.brp_max = 256,
.brp_inc = 1,
};
static const char *__mcp251xfd_get_model_str(enum mcp251xfd_model model)
{
switch (model) {
case MCP251XFD_MODEL_MCP2517FD:
return "MCP2517FD";
case MCP251XFD_MODEL_MCP2518FD:
return "MCP2518FD";
case MCP251XFD_MODEL_MCP251XFD:
return "MCP251xFD";
}
return "<unknown>";
}
static inline const char *
mcp251xfd_get_model_str(const struct mcp251xfd_priv *priv)
{
return __mcp251xfd_get_model_str(priv->devtype_data.model);
}
static const char *mcp251xfd_get_mode_str(const u8 mode)
{
switch (mode) {
case MCP251XFD_REG_CON_MODE_MIXED:
return "Mixed (CAN FD/CAN 2.0)";
case MCP251XFD_REG_CON_MODE_SLEEP:
return "Sleep";
case MCP251XFD_REG_CON_MODE_INT_LOOPBACK:
return "Internal Loopback";
case MCP251XFD_REG_CON_MODE_LISTENONLY:
return "Listen Only";
case MCP251XFD_REG_CON_MODE_CONFIG:
return "Configuration";
case MCP251XFD_REG_CON_MODE_EXT_LOOPBACK:
return "External Loopback";
case MCP251XFD_REG_CON_MODE_CAN2_0:
return "CAN 2.0";
case MCP251XFD_REG_CON_MODE_RESTRICTED:
return "Restricted Operation";
}
return "<unknown>";
}
static inline int mcp251xfd_vdd_enable(const struct mcp251xfd_priv *priv)
{
if (!priv->reg_vdd)
return 0;
return regulator_enable(priv->reg_vdd);
}
static inline int mcp251xfd_vdd_disable(const struct mcp251xfd_priv *priv)
{
if (!priv->reg_vdd)
return 0;
return regulator_disable(priv->reg_vdd);
}
static inline int
mcp251xfd_transceiver_enable(const struct mcp251xfd_priv *priv)
{
if (!priv->reg_xceiver)
return 0;
return regulator_enable(priv->reg_xceiver);
}
static inline int
mcp251xfd_transceiver_disable(const struct mcp251xfd_priv *priv)
{
if (!priv->reg_xceiver)
return 0;
return regulator_disable(priv->reg_xceiver);
}
static int mcp251xfd_clks_and_vdd_enable(const struct mcp251xfd_priv *priv)
{
int err;
err = clk_prepare_enable(priv->clk);
if (err)
return err;
err = mcp251xfd_vdd_enable(priv);
if (err)
clk_disable_unprepare(priv->clk);
/* Wait for oscillator stabilisation time after power up */
usleep_range(MCP251XFD_OSC_STAB_SLEEP_US,
2 * MCP251XFD_OSC_STAB_SLEEP_US);
return err;
}
static int mcp251xfd_clks_and_vdd_disable(const struct mcp251xfd_priv *priv)
{
int err;
err = mcp251xfd_vdd_disable(priv);
if (err)
return err;
clk_disable_unprepare(priv->clk);
return 0;
}
static inline u8
mcp251xfd_cmd_prepare_write_reg(const struct mcp251xfd_priv *priv,
union mcp251xfd_write_reg_buf *write_reg_buf,
const u16 reg, const u32 mask, const u32 val)
{
u8 first_byte, last_byte, len;
u8 *data;
__le32 val_le32;
first_byte = mcp251xfd_first_byte_set(mask);
last_byte = mcp251xfd_last_byte_set(mask);
len = last_byte - first_byte + 1;
data = mcp251xfd_spi_cmd_write(priv, write_reg_buf, reg + first_byte);
val_le32 = cpu_to_le32(val >> BITS_PER_BYTE * first_byte);
memcpy(data, &val_le32, len);
if (priv->devtype_data.quirks & MCP251XFD_QUIRK_CRC_REG) {
u16 crc;
mcp251xfd_spi_cmd_crc_set_len_in_reg(&write_reg_buf->crc.cmd,
len);
/* CRC */
len += sizeof(write_reg_buf->crc.cmd);
crc = mcp251xfd_crc16_compute(&write_reg_buf->crc, len);
put_unaligned_be16(crc, (void *)write_reg_buf + len);
/* Total length */
len += sizeof(write_reg_buf->crc.crc);
} else {
len += sizeof(write_reg_buf->nocrc.cmd);
}
return len;
}
static inline int
mcp251xfd_tef_tail_get_from_chip(const struct mcp251xfd_priv *priv,
u8 *tef_tail)
{
u32 tef_ua;
int err;
err = regmap_read(priv->map_reg, MCP251XFD_REG_TEFUA, &tef_ua);
if (err)
return err;
*tef_tail = tef_ua / sizeof(struct mcp251xfd_hw_tef_obj);
return 0;
}
static inline int
mcp251xfd_tx_tail_get_from_chip(const struct mcp251xfd_priv *priv,
u8 *tx_tail)
{
u32 fifo_sta;
int err;
err = regmap_read(priv->map_reg,
MCP251XFD_REG_FIFOSTA(MCP251XFD_TX_FIFO),
&fifo_sta);
if (err)
return err;
*tx_tail = FIELD_GET(MCP251XFD_REG_FIFOSTA_FIFOCI_MASK, fifo_sta);
return 0;
}
static inline int
mcp251xfd_rx_head_get_from_chip(const struct mcp251xfd_priv *priv,
const struct mcp251xfd_rx_ring *ring,
u8 *rx_head)
{
u32 fifo_sta;
int err;
err = regmap_read(priv->map_reg, MCP251XFD_REG_FIFOSTA(ring->fifo_nr),
&fifo_sta);
if (err)
return err;
*rx_head = FIELD_GET(MCP251XFD_REG_FIFOSTA_FIFOCI_MASK, fifo_sta);
return 0;
}
static inline int
mcp251xfd_rx_tail_get_from_chip(const struct mcp251xfd_priv *priv,
const struct mcp251xfd_rx_ring *ring,
u8 *rx_tail)
{
u32 fifo_ua;
int err;
err = regmap_read(priv->map_reg, MCP251XFD_REG_FIFOUA(ring->fifo_nr),
&fifo_ua);
if (err)
return err;
fifo_ua -= ring->base - MCP251XFD_RAM_START;
*rx_tail = fifo_ua / ring->obj_size;
return 0;
}
static void
mcp251xfd_tx_ring_init_tx_obj(const struct mcp251xfd_priv *priv,
const struct mcp251xfd_tx_ring *ring,
struct mcp251xfd_tx_obj *tx_obj,
const u8 rts_buf_len,
const u8 n)
{
struct spi_transfer *xfer;
u16 addr;
/* FIFO load */
addr = mcp251xfd_get_tx_obj_addr(ring, n);
if (priv->devtype_data.quirks & MCP251XFD_QUIRK_CRC_TX)
mcp251xfd_spi_cmd_write_crc_set_addr(&tx_obj->buf.crc.cmd,
addr);
else
mcp251xfd_spi_cmd_write_nocrc(&tx_obj->buf.nocrc.cmd,
addr);
xfer = &tx_obj->xfer[0];
xfer->tx_buf = &tx_obj->buf;
xfer->len = 0; /* actual len is assigned on the fly */
xfer->cs_change = 1;
xfer->cs_change_delay.value = 0;
xfer->cs_change_delay.unit = SPI_DELAY_UNIT_NSECS;
/* FIFO request to send */
xfer = &tx_obj->xfer[1];
xfer->tx_buf = &ring->rts_buf;
xfer->len = rts_buf_len;
/* SPI message */
spi_message_init_with_transfers(&tx_obj->msg, tx_obj->xfer,
ARRAY_SIZE(tx_obj->xfer));
}
static void mcp251xfd_ring_init(struct mcp251xfd_priv *priv)
{
struct mcp251xfd_tef_ring *tef_ring;
struct mcp251xfd_tx_ring *tx_ring;
struct mcp251xfd_rx_ring *rx_ring, *prev_rx_ring = NULL;
struct mcp251xfd_tx_obj *tx_obj;
u32 val;
u16 addr;
u8 len;
int i, j;
/* TEF */
tef_ring = priv->tef;
tef_ring->head = 0;
tef_ring->tail = 0;
/* FIFO increment TEF tail pointer */
addr = MCP251XFD_REG_TEFCON;
val = MCP251XFD_REG_TEFCON_UINC;
len = mcp251xfd_cmd_prepare_write_reg(priv, &tef_ring->uinc_buf,
addr, val, val);
for (j = 0; j < ARRAY_SIZE(tef_ring->uinc_xfer); j++) {
struct spi_transfer *xfer;
xfer = &tef_ring->uinc_xfer[j];
xfer->tx_buf = &tef_ring->uinc_buf;
xfer->len = len;
xfer->cs_change = 1;
xfer->cs_change_delay.value = 0;
xfer->cs_change_delay.unit = SPI_DELAY_UNIT_NSECS;
}
/* TX */
tx_ring = priv->tx;
tx_ring->head = 0;
tx_ring->tail = 0;
tx_ring->base = mcp251xfd_get_tef_obj_addr(tx_ring->obj_num);
/* FIFO request to send */
addr = MCP251XFD_REG_FIFOCON(MCP251XFD_TX_FIFO);
val = MCP251XFD_REG_FIFOCON_TXREQ | MCP251XFD_REG_FIFOCON_UINC;
len = mcp251xfd_cmd_prepare_write_reg(priv, &tx_ring->rts_buf,
addr, val, val);
mcp251xfd_for_each_tx_obj(tx_ring, tx_obj, i)
mcp251xfd_tx_ring_init_tx_obj(priv, tx_ring, tx_obj, len, i);
/* RX */
mcp251xfd_for_each_rx_ring(priv, rx_ring, i) {
rx_ring->head = 0;
rx_ring->tail = 0;
rx_ring->nr = i;
rx_ring->fifo_nr = MCP251XFD_RX_FIFO(i);
if (!prev_rx_ring)
rx_ring->base =
mcp251xfd_get_tx_obj_addr(tx_ring,
tx_ring->obj_num);
else
rx_ring->base = prev_rx_ring->base +
prev_rx_ring->obj_size *
prev_rx_ring->obj_num;
prev_rx_ring = rx_ring;
/* FIFO increment RX tail pointer */
addr = MCP251XFD_REG_FIFOCON(rx_ring->fifo_nr);
val = MCP251XFD_REG_FIFOCON_UINC;
len = mcp251xfd_cmd_prepare_write_reg(priv, &rx_ring->uinc_buf,
addr, val, val);
for (j = 0; j < ARRAY_SIZE(rx_ring->uinc_xfer); j++) {
struct spi_transfer *xfer;
xfer = &rx_ring->uinc_xfer[j];
xfer->tx_buf = &rx_ring->uinc_buf;
xfer->len = len;
xfer->cs_change = 1;
xfer->cs_change_delay.value = 0;
xfer->cs_change_delay.unit = SPI_DELAY_UNIT_NSECS;
}
}
}
static void mcp251xfd_ring_free(struct mcp251xfd_priv *priv)
{
int i;
for (i = ARRAY_SIZE(priv->rx) - 1; i >= 0; i--) {
kfree(priv->rx[i]);
priv->rx[i] = NULL;
}
}
static int mcp251xfd_ring_alloc(struct mcp251xfd_priv *priv)
{
struct mcp251xfd_tx_ring *tx_ring;
struct mcp251xfd_rx_ring *rx_ring;
int tef_obj_size, tx_obj_size, rx_obj_size;
int tx_obj_num;
int ram_free, i;
tef_obj_size = sizeof(struct mcp251xfd_hw_tef_obj);
/* listen-only mode works like FD mode */
if (priv->can.ctrlmode & (CAN_CTRLMODE_LISTENONLY | CAN_CTRLMODE_FD)) {
tx_obj_num = MCP251XFD_TX_OBJ_NUM_CANFD;
tx_obj_size = sizeof(struct mcp251xfd_hw_tx_obj_canfd);
rx_obj_size = sizeof(struct mcp251xfd_hw_rx_obj_canfd);
} else {
tx_obj_num = MCP251XFD_TX_OBJ_NUM_CAN;
tx_obj_size = sizeof(struct mcp251xfd_hw_tx_obj_can);
rx_obj_size = sizeof(struct mcp251xfd_hw_rx_obj_can);
}
tx_ring = priv->tx;
tx_ring->obj_num = tx_obj_num;
tx_ring->obj_size = tx_obj_size;
ram_free = MCP251XFD_RAM_SIZE - tx_obj_num *
(tef_obj_size + tx_obj_size);
for (i = 0;
i < ARRAY_SIZE(priv->rx) && ram_free >= rx_obj_size;
i++) {
int rx_obj_num;
rx_obj_num = ram_free / rx_obj_size;
rx_obj_num = min(1 << (fls(rx_obj_num) - 1),
MCP251XFD_RX_OBJ_NUM_MAX);
rx_ring = kzalloc(sizeof(*rx_ring) + rx_obj_size * rx_obj_num,
GFP_KERNEL);
if (!rx_ring) {
mcp251xfd_ring_free(priv);
return -ENOMEM;
}
rx_ring->obj_num = rx_obj_num;
rx_ring->obj_size = rx_obj_size;
priv->rx[i] = rx_ring;
ram_free -= rx_ring->obj_num * rx_ring->obj_size;
}
priv->rx_ring_num = i;
netdev_dbg(priv->ndev,
"FIFO setup: TEF: %d*%d bytes = %d bytes, TX: %d*%d bytes = %d bytes\n",
tx_obj_num, tef_obj_size, tef_obj_size * tx_obj_num,
tx_obj_num, tx_obj_size, tx_obj_size * tx_obj_num);
mcp251xfd_for_each_rx_ring(priv, rx_ring, i) {
netdev_dbg(priv->ndev,
"FIFO setup: RX-%d: %d*%d bytes = %d bytes\n",
i, rx_ring->obj_num, rx_ring->obj_size,
rx_ring->obj_size * rx_ring->obj_num);
}
netdev_dbg(priv->ndev,
"FIFO setup: free: %d bytes\n",
ram_free);
return 0;
}
static inline int
mcp251xfd_chip_get_mode(const struct mcp251xfd_priv *priv, u8 *mode)
{
u32 val;
int err;
err = regmap_read(priv->map_reg, MCP251XFD_REG_CON, &val);
if (err)
return err;
*mode = FIELD_GET(MCP251XFD_REG_CON_OPMOD_MASK, val);
return 0;
}
static int
__mcp251xfd_chip_set_mode(const struct mcp251xfd_priv *priv,
const u8 mode_req, bool nowait)
{
u32 con, con_reqop;
int err;
con_reqop = FIELD_PREP(MCP251XFD_REG_CON_REQOP_MASK, mode_req);
err = regmap_update_bits(priv->map_reg, MCP251XFD_REG_CON,
MCP251XFD_REG_CON_REQOP_MASK, con_reqop);
if (err)
return err;
if (mode_req == MCP251XFD_REG_CON_MODE_SLEEP || nowait)
return 0;
err = regmap_read_poll_timeout(priv->map_reg, MCP251XFD_REG_CON, con,
FIELD_GET(MCP251XFD_REG_CON_OPMOD_MASK,
con) == mode_req,
MCP251XFD_POLL_SLEEP_US,
MCP251XFD_POLL_TIMEOUT_US);
if (err) {
u8 mode = FIELD_GET(MCP251XFD_REG_CON_OPMOD_MASK, con);
netdev_err(priv->ndev,
"Controller failed to enter mode %s Mode (%u) and stays in %s Mode (%u).\n",
mcp251xfd_get_mode_str(mode_req), mode_req,
mcp251xfd_get_mode_str(mode), mode);
return err;
}
return 0;
}
static inline int
mcp251xfd_chip_set_mode(const struct mcp251xfd_priv *priv,
const u8 mode_req)
{
return __mcp251xfd_chip_set_mode(priv, mode_req, false);
}
static inline int
mcp251xfd_chip_set_mode_nowait(const struct mcp251xfd_priv *priv,
const u8 mode_req)
{
return __mcp251xfd_chip_set_mode(priv, mode_req, true);
}
static inline bool mcp251xfd_osc_invalid(u32 reg)
{
return reg == 0x0 || reg == 0xffffffff;
}
static int mcp251xfd_chip_clock_enable(const struct mcp251xfd_priv *priv)
{
u32 osc, osc_reference, osc_mask;
int err;
/* Set Power On Defaults for "Clock Output Divisor" and remove
* "Oscillator Disable" bit.
*/
osc = FIELD_PREP(MCP251XFD_REG_OSC_CLKODIV_MASK,
MCP251XFD_REG_OSC_CLKODIV_10);
osc_reference = MCP251XFD_REG_OSC_OSCRDY;
osc_mask = MCP251XFD_REG_OSC_OSCRDY | MCP251XFD_REG_OSC_PLLRDY;
/* Note:
*
* If the controller is in Sleep Mode the following write only
* removes the "Oscillator Disable" bit and powers it up. All
* other bits are unaffected.
*/
err = regmap_write(priv->map_reg, MCP251XFD_REG_OSC, osc);
if (err)
return err;
/* Wait for "Oscillator Ready" bit */
err = regmap_read_poll_timeout(priv->map_reg, MCP251XFD_REG_OSC, osc,
(osc & osc_mask) == osc_reference,
MCP251XFD_OSC_STAB_SLEEP_US,
MCP251XFD_OSC_STAB_TIMEOUT_US);
if (mcp251xfd_osc_invalid(osc)) {
netdev_err(priv->ndev,
"Failed to detect %s (osc=0x%08x).\n",
mcp251xfd_get_model_str(priv), osc);
return -ENODEV;
} else if (err == -ETIMEDOUT) {
netdev_err(priv->ndev,
"Timeout waiting for Oscillator Ready (osc=0x%08x, osc_reference=0x%08x)\n",
osc, osc_reference);
return -ETIMEDOUT;
} else if (err) {
return err;
}
return 0;
}
static int mcp251xfd_chip_softreset_do(const struct mcp251xfd_priv *priv)
{
const __be16 cmd = mcp251xfd_cmd_reset();
int err;
/* The Set Mode and SPI Reset command only seems to works if
* the controller is not in Sleep Mode.
*/
err = mcp251xfd_chip_clock_enable(priv);
if (err)
return err;
err = mcp251xfd_chip_set_mode(priv, MCP251XFD_REG_CON_MODE_CONFIG);
if (err)
return err;
/* spi_write_then_read() works with non DMA-safe buffers */
return spi_write_then_read(priv->spi, &cmd, sizeof(cmd), NULL, 0);
}
static int mcp251xfd_chip_softreset_check(const struct mcp251xfd_priv *priv)
{
u32 osc, osc_reference;
u8 mode;
int err;
err = mcp251xfd_chip_get_mode(priv, &mode);
if (err)
return err;
if (mode != MCP251XFD_REG_CON_MODE_CONFIG) {
netdev_info(priv->ndev,
"Controller not in Config Mode after reset, but in %s Mode (%u).\n",
mcp251xfd_get_mode_str(mode), mode);
return -ETIMEDOUT;
}
osc_reference = MCP251XFD_REG_OSC_OSCRDY |
FIELD_PREP(MCP251XFD_REG_OSC_CLKODIV_MASK,
MCP251XFD_REG_OSC_CLKODIV_10);
/* check reset defaults of OSC reg */
err = regmap_read(priv->map_reg, MCP251XFD_REG_OSC, &osc);
if (err)
return err;
if (osc != osc_reference) {
netdev_info(priv->ndev,
"Controller failed to reset. osc=0x%08x, reference value=0x%08x\n",
osc, osc_reference);
return -ETIMEDOUT;
}
return 0;
}
static int mcp251xfd_chip_softreset(const struct mcp251xfd_priv *priv)
{
int err, i;
for (i = 0; i < MCP251XFD_SOFTRESET_RETRIES_MAX; i++) {
if (i)
netdev_info(priv->ndev,
"Retrying to reset Controller.\n");
err = mcp251xfd_chip_softreset_do(priv);
if (err == -ETIMEDOUT)
continue;
if (err)
return err;
err = mcp251xfd_chip_softreset_check(priv);
if (err == -ETIMEDOUT)
continue;
if (err)
return err;
return 0;
}
return err;
}
static int mcp251xfd_chip_clock_init(const struct mcp251xfd_priv *priv)
{
u32 osc;
int err;
/* Activate Low Power Mode on Oscillator Disable. This only
* works on the MCP2518FD. The MCP2517FD will go into normal
* Sleep Mode instead.
*/
osc = MCP251XFD_REG_OSC_LPMEN |
FIELD_PREP(MCP251XFD_REG_OSC_CLKODIV_MASK,
MCP251XFD_REG_OSC_CLKODIV_10);
err = regmap_write(priv->map_reg, MCP251XFD_REG_OSC, osc);
if (err)
return err;
/* Set Time Base Counter Prescaler to 1.
*
* This means an overflow of the 32 bit Time Base Counter
* register at 40 MHz every 107 seconds.
*/
return regmap_write(priv->map_reg, MCP251XFD_REG_TSCON,
MCP251XFD_REG_TSCON_TBCEN);
}
static int mcp251xfd_set_bittiming(const struct mcp251xfd_priv *priv)
{
const struct can_bittiming *bt = &priv->can.bittiming;
const struct can_bittiming *dbt = &priv->can.data_bittiming;
u32 val = 0;
s8 tdco;
int err;
/* CAN Control Register
*
* - no transmit bandwidth sharing
* - config mode
* - disable transmit queue
* - store in transmit FIFO event
* - transition to restricted operation mode on system error
* - ESI is transmitted recessive when ESI of message is high or
* CAN controller error passive
* - restricted retransmission attempts,
* use TQXCON_TXAT and FIFOCON_TXAT
* - wake-up filter bits T11FILTER
* - use CAN bus line filter for wakeup
* - protocol exception is treated as a form error
* - Do not compare data bytes
*/
val = FIELD_PREP(MCP251XFD_REG_CON_REQOP_MASK,
MCP251XFD_REG_CON_MODE_CONFIG) |
MCP251XFD_REG_CON_STEF |
MCP251XFD_REG_CON_ESIGM |
MCP251XFD_REG_CON_RTXAT |
FIELD_PREP(MCP251XFD_REG_CON_WFT_MASK,
MCP251XFD_REG_CON_WFT_T11FILTER) |
MCP251XFD_REG_CON_WAKFIL |
MCP251XFD_REG_CON_PXEDIS;
if (!(priv->can.ctrlmode & CAN_CTRLMODE_FD_NON_ISO))
val |= MCP251XFD_REG_CON_ISOCRCEN;
err = regmap_write(priv->map_reg, MCP251XFD_REG_CON, val);
if (err)
return err;
/* Nominal Bit Time */
val = FIELD_PREP(MCP251XFD_REG_NBTCFG_BRP_MASK, bt->brp - 1) |
FIELD_PREP(MCP251XFD_REG_NBTCFG_TSEG1_MASK,
bt->prop_seg + bt->phase_seg1 - 1) |
FIELD_PREP(MCP251XFD_REG_NBTCFG_TSEG2_MASK,
bt->phase_seg2 - 1) |
FIELD_PREP(MCP251XFD_REG_NBTCFG_SJW_MASK, bt->sjw - 1);
err = regmap_write(priv->map_reg, MCP251XFD_REG_NBTCFG, val);
if (err)
return err;
if (!(priv->can.ctrlmode & CAN_CTRLMODE_FD))
return 0;
/* Data Bit Time */
val = FIELD_PREP(MCP251XFD_REG_DBTCFG_BRP_MASK, dbt->brp - 1) |
FIELD_PREP(MCP251XFD_REG_DBTCFG_TSEG1_MASK,
dbt->prop_seg + dbt->phase_seg1 - 1) |
FIELD_PREP(MCP251XFD_REG_DBTCFG_TSEG2_MASK,
dbt->phase_seg2 - 1) |
FIELD_PREP(MCP251XFD_REG_DBTCFG_SJW_MASK, dbt->sjw - 1);
err = regmap_write(priv->map_reg, MCP251XFD_REG_DBTCFG, val);
if (err)
return err;
/* Transmitter Delay Compensation */
tdco = clamp_t(int, dbt->brp * (dbt->prop_seg + dbt->phase_seg1),
-64, 63);
val = FIELD_PREP(MCP251XFD_REG_TDC_TDCMOD_MASK,
MCP251XFD_REG_TDC_TDCMOD_AUTO) |
FIELD_PREP(MCP251XFD_REG_TDC_TDCO_MASK, tdco);
return regmap_write(priv->map_reg, MCP251XFD_REG_TDC, val);
}
static int mcp251xfd_chip_rx_int_enable(const struct mcp251xfd_priv *priv)
{
u32 val;
if (!priv->rx_int)
return 0;
/* Configure GPIOs:
* - PIN0: GPIO Input
* - PIN1: GPIO Input/RX Interrupt
*
* PIN1 must be Input, otherwise there is a glitch on the
* rx-INT line. It happens between setting the PIN as output
* (in the first byte of the SPI transfer) and configuring the
* PIN as interrupt (in the last byte of the SPI transfer).
*/
val = MCP251XFD_REG_IOCON_PM0 | MCP251XFD_REG_IOCON_TRIS1 |
MCP251XFD_REG_IOCON_TRIS0;
return regmap_write(priv->map_reg, MCP251XFD_REG_IOCON, val);
}
static int mcp251xfd_chip_rx_int_disable(const struct mcp251xfd_priv *priv)
{
u32 val;
if (!priv->rx_int)
return 0;
/* Configure GPIOs:
* - PIN0: GPIO Input
* - PIN1: GPIO Input
*/
val = MCP251XFD_REG_IOCON_PM1 | MCP251XFD_REG_IOCON_PM0 |
MCP251XFD_REG_IOCON_TRIS1 | MCP251XFD_REG_IOCON_TRIS0;
return regmap_write(priv->map_reg, MCP251XFD_REG_IOCON, val);
}
static int
mcp251xfd_chip_rx_fifo_init_one(const struct mcp251xfd_priv *priv,
const struct mcp251xfd_rx_ring *ring)
{
u32 fifo_con;
/* Enable RXOVIE on _all_ RX FIFOs, not just the last one.
*
* FIFOs hit by a RX MAB overflow and RXOVIE enabled will
* generate a RXOVIF, use this to properly detect RX MAB
* overflows.
*/
fifo_con = FIELD_PREP(MCP251XFD_REG_FIFOCON_FSIZE_MASK,
ring->obj_num - 1) |
MCP251XFD_REG_FIFOCON_RXTSEN |
MCP251XFD_REG_FIFOCON_RXOVIE |
MCP251XFD_REG_FIFOCON_TFNRFNIE;
if (priv->can.ctrlmode & (CAN_CTRLMODE_LISTENONLY | CAN_CTRLMODE_FD))
fifo_con |= FIELD_PREP(MCP251XFD_REG_FIFOCON_PLSIZE_MASK,
MCP251XFD_REG_FIFOCON_PLSIZE_64);
else
fifo_con |= FIELD_PREP(MCP251XFD_REG_FIFOCON_PLSIZE_MASK,
MCP251XFD_REG_FIFOCON_PLSIZE_8);
return regmap_write(priv->map_reg,
MCP251XFD_REG_FIFOCON(ring->fifo_nr), fifo_con);
}
static int
mcp251xfd_chip_rx_filter_init_one(const struct mcp251xfd_priv *priv,
const struct mcp251xfd_rx_ring *ring)
{
u32 fltcon;
fltcon = MCP251XFD_REG_FLTCON_FLTEN(ring->nr) |
MCP251XFD_REG_FLTCON_FBP(ring->nr, ring->fifo_nr);
return regmap_update_bits(priv->map_reg,
MCP251XFD_REG_FLTCON(ring->nr >> 2),
MCP251XFD_REG_FLTCON_FLT_MASK(ring->nr),
fltcon);
}
static int mcp251xfd_chip_fifo_init(const struct mcp251xfd_priv *priv)
{
const struct mcp251xfd_tx_ring *tx_ring = priv->tx;
const struct mcp251xfd_rx_ring *rx_ring;
u32 val;
int err, n;
/* TEF */
val = FIELD_PREP(MCP251XFD_REG_TEFCON_FSIZE_MASK,
tx_ring->obj_num - 1) |
MCP251XFD_REG_TEFCON_TEFTSEN |
MCP251XFD_REG_TEFCON_TEFOVIE |
MCP251XFD_REG_TEFCON_TEFNEIE;
err = regmap_write(priv->map_reg, MCP251XFD_REG_TEFCON, val);
if (err)
return err;
/* FIFO 1 - TX */
val = FIELD_PREP(MCP251XFD_REG_FIFOCON_FSIZE_MASK,
tx_ring->obj_num - 1) |
MCP251XFD_REG_FIFOCON_TXEN |
MCP251XFD_REG_FIFOCON_TXATIE;
if (priv->can.ctrlmode & (CAN_CTRLMODE_LISTENONLY | CAN_CTRLMODE_FD))
val |= FIELD_PREP(MCP251XFD_REG_FIFOCON_PLSIZE_MASK,
MCP251XFD_REG_FIFOCON_PLSIZE_64);
else
val |= FIELD_PREP(MCP251XFD_REG_FIFOCON_PLSIZE_MASK,
MCP251XFD_REG_FIFOCON_PLSIZE_8);
if (priv->can.ctrlmode & CAN_CTRLMODE_ONE_SHOT)
val |= FIELD_PREP(MCP251XFD_REG_FIFOCON_TXAT_MASK,
MCP251XFD_REG_FIFOCON_TXAT_ONE_SHOT);
else
val |= FIELD_PREP(MCP251XFD_REG_FIFOCON_TXAT_MASK,
MCP251XFD_REG_FIFOCON_TXAT_UNLIMITED);
err = regmap_write(priv->map_reg,
MCP251XFD_REG_FIFOCON(MCP251XFD_TX_FIFO),
val);
if (err)
return err;
/* RX FIFOs */
mcp251xfd_for_each_rx_ring(priv, rx_ring, n) {
err = mcp251xfd_chip_rx_fifo_init_one(priv, rx_ring);
if (err)
return err;
err = mcp251xfd_chip_rx_filter_init_one(priv, rx_ring);
if (err)
return err;
}
return 0;
}
static int mcp251xfd_chip_ecc_init(struct mcp251xfd_priv *priv)
{
struct mcp251xfd_ecc *ecc = &priv->ecc;
void *ram;
u32 val = 0;
int err;
ecc->ecc_stat = 0;
if (priv->devtype_data.quirks & MCP251XFD_QUIRK_ECC)
val = MCP251XFD_REG_ECCCON_ECCEN;
err = regmap_update_bits(priv->map_reg, MCP251XFD_REG_ECCCON,
MCP251XFD_REG_ECCCON_ECCEN, val);
if (err)
return err;
ram = kzalloc(MCP251XFD_RAM_SIZE, GFP_KERNEL);
if (!ram)
return -ENOMEM;
err = regmap_raw_write(priv->map_reg, MCP251XFD_RAM_START, ram,
MCP251XFD_RAM_SIZE);
kfree(ram);
return err;
}
static inline void mcp251xfd_ecc_tefif_successful(struct mcp251xfd_priv *priv)
{
struct mcp251xfd_ecc *ecc = &priv->ecc;
ecc->ecc_stat = 0;
}
static u8 mcp251xfd_get_normal_mode(const struct mcp251xfd_priv *priv)
{
u8 mode;
if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK)
mode = MCP251XFD_REG_CON_MODE_INT_LOOPBACK;
else if (priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY)
mode = MCP251XFD_REG_CON_MODE_LISTENONLY;
else if (priv->can.ctrlmode & CAN_CTRLMODE_FD)
mode = MCP251XFD_REG_CON_MODE_MIXED;
else
mode = MCP251XFD_REG_CON_MODE_CAN2_0;
return mode;
}
static int
__mcp251xfd_chip_set_normal_mode(const struct mcp251xfd_priv *priv,
bool nowait)
{
u8 mode;
mode = mcp251xfd_get_normal_mode(priv);
return __mcp251xfd_chip_set_mode(priv, mode, nowait);
}
static inline int
mcp251xfd_chip_set_normal_mode(const struct mcp251xfd_priv *priv)
{
return __mcp251xfd_chip_set_normal_mode(priv, false);
}
static inline int
mcp251xfd_chip_set_normal_mode_nowait(const struct mcp251xfd_priv *priv)
{
return __mcp251xfd_chip_set_normal_mode(priv, true);
}
static int mcp251xfd_chip_interrupts_enable(const struct mcp251xfd_priv *priv)
{
u32 val;
int err;
val = MCP251XFD_REG_CRC_FERRIE | MCP251XFD_REG_CRC_CRCERRIE;
err = regmap_write(priv->map_reg, MCP251XFD_REG_CRC, val);
if (err)
return err;
val = MCP251XFD_REG_ECCCON_DEDIE | MCP251XFD_REG_ECCCON_SECIE;
err = regmap_update_bits(priv->map_reg, MCP251XFD_REG_ECCCON, val, val);
if (err)
return err;
val = MCP251XFD_REG_INT_CERRIE |
MCP251XFD_REG_INT_SERRIE |
MCP251XFD_REG_INT_RXOVIE |
MCP251XFD_REG_INT_TXATIE |
MCP251XFD_REG_INT_SPICRCIE |
MCP251XFD_REG_INT_ECCIE |
MCP251XFD_REG_INT_TEFIE |
MCP251XFD_REG_INT_MODIE |
MCP251XFD_REG_INT_RXIE;
if (priv->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING)
val |= MCP251XFD_REG_INT_IVMIE;
return regmap_write(priv->map_reg, MCP251XFD_REG_INT, val);
}
static int mcp251xfd_chip_interrupts_disable(const struct mcp251xfd_priv *priv)
{
int err;
u32 mask;
err = regmap_write(priv->map_reg, MCP251XFD_REG_INT, 0);
if (err)
return err;
mask = MCP251XFD_REG_ECCCON_DEDIE | MCP251XFD_REG_ECCCON_SECIE;
err = regmap_update_bits(priv->map_reg, MCP251XFD_REG_ECCCON,
mask, 0x0);
if (err)
return err;
return regmap_write(priv->map_reg, MCP251XFD_REG_CRC, 0);
}
static int mcp251xfd_chip_stop(struct mcp251xfd_priv *priv,
const enum can_state state)
{
priv->can.state = state;
mcp251xfd_chip_interrupts_disable(priv);
mcp251xfd_chip_rx_int_disable(priv);
return mcp251xfd_chip_set_mode(priv, MCP251XFD_REG_CON_MODE_SLEEP);
}
static int mcp251xfd_chip_start(struct mcp251xfd_priv *priv)
{
int err;
err = mcp251xfd_chip_softreset(priv);
if (err)
goto out_chip_stop;
err = mcp251xfd_chip_clock_init(priv);
if (err)
goto out_chip_stop;
err = mcp251xfd_set_bittiming(priv);
if (err)
goto out_chip_stop;
err = mcp251xfd_chip_rx_int_enable(priv);
if (err)
return err;
err = mcp251xfd_chip_ecc_init(priv);
if (err)
goto out_chip_stop;
mcp251xfd_ring_init(priv);
err = mcp251xfd_chip_fifo_init(priv);
if (err)
goto out_chip_stop;
priv->can.state = CAN_STATE_ERROR_ACTIVE;
err = mcp251xfd_chip_set_normal_mode(priv);
if (err)
goto out_chip_stop;
return 0;
out_chip_stop:
mcp251xfd_chip_stop(priv, CAN_STATE_STOPPED);
return err;
}
static int mcp251xfd_set_mode(struct net_device *ndev, enum can_mode mode)
{
struct mcp251xfd_priv *priv = netdev_priv(ndev);
int err;
switch (mode) {
case CAN_MODE_START:
err = mcp251xfd_chip_start(priv);
if (err)
return err;
err = mcp251xfd_chip_interrupts_enable(priv);
if (err) {
mcp251xfd_chip_stop(priv, CAN_STATE_STOPPED);
return err;
}
netif_wake_queue(ndev);
break;
default:
return -EOPNOTSUPP;
}
return 0;
}
static int __mcp251xfd_get_berr_counter(const struct net_device *ndev,
struct can_berr_counter *bec)
{
const struct mcp251xfd_priv *priv = netdev_priv(ndev);
u32 trec;
int err;
err = regmap_read(priv->map_reg, MCP251XFD_REG_TREC, &trec);
if (err)
return err;
if (trec & MCP251XFD_REG_TREC_TXBO)
bec->txerr = 256;
else
bec->txerr = FIELD_GET(MCP251XFD_REG_TREC_TEC_MASK, trec);
bec->rxerr = FIELD_GET(MCP251XFD_REG_TREC_REC_MASK, trec);
return 0;
}
static int mcp251xfd_get_berr_counter(const struct net_device *ndev,
struct can_berr_counter *bec)
{
const struct mcp251xfd_priv *priv = netdev_priv(ndev);
/* Avoid waking up the controller if the interface is down */
if (!(ndev->flags & IFF_UP))
return 0;
/* The controller is powered down during Bus Off, use saved
* bec values.
*/
if (priv->can.state == CAN_STATE_BUS_OFF) {
*bec = priv->bec;
return 0;
}
return __mcp251xfd_get_berr_counter(ndev, bec);
}
static int mcp251xfd_check_tef_tail(const struct mcp251xfd_priv *priv)
{
u8 tef_tail_chip, tef_tail;
int err;
if (!IS_ENABLED(CONFIG_CAN_MCP251XFD_SANITY))
return 0;
err = mcp251xfd_tef_tail_get_from_chip(priv, &tef_tail_chip);
if (err)
return err;
tef_tail = mcp251xfd_get_tef_tail(priv);
if (tef_tail_chip != tef_tail) {
netdev_err(priv->ndev,
"TEF tail of chip (0x%02x) and ours (0x%08x) inconsistent.\n",
tef_tail_chip, tef_tail);
return -EILSEQ;
}
return 0;
}
static int
mcp251xfd_check_rx_tail(const struct mcp251xfd_priv *priv,
const struct mcp251xfd_rx_ring *ring)
{
u8 rx_tail_chip, rx_tail;
int err;
if (!IS_ENABLED(CONFIG_CAN_MCP251XFD_SANITY))
return 0;
err = mcp251xfd_rx_tail_get_from_chip(priv, ring, &rx_tail_chip);
if (err)
return err;
rx_tail = mcp251xfd_get_rx_tail(ring);
if (rx_tail_chip != rx_tail) {
netdev_err(priv->ndev,
"RX tail of chip (%d) and ours (%d) inconsistent.\n",
rx_tail_chip, rx_tail);
return -EILSEQ;
}
return 0;
}
static int
mcp251xfd_handle_tefif_recover(const struct mcp251xfd_priv *priv, const u32 seq)
{
const struct mcp251xfd_tx_ring *tx_ring = priv->tx;
u32 tef_sta;
int err;
err = regmap_read(priv->map_reg, MCP251XFD_REG_TEFSTA, &tef_sta);
if (err)
return err;
if (tef_sta & MCP251XFD_REG_TEFSTA_TEFOVIF) {
netdev_err(priv->ndev,
"Transmit Event FIFO buffer overflow.\n");
return -ENOBUFS;
}
netdev_info(priv->ndev,
"Transmit Event FIFO buffer %s. (seq=0x%08x, tef_tail=0x%08x, tef_head=0x%08x, tx_head=0x%08x)\n",
tef_sta & MCP251XFD_REG_TEFSTA_TEFFIF ?
"full" : tef_sta & MCP251XFD_REG_TEFSTA_TEFNEIF ?
"not empty" : "empty",
seq, priv->tef->tail, priv->tef->head, tx_ring->head);
/* The Sequence Number in the TEF doesn't match our tef_tail. */
return -EAGAIN;
}
static int
mcp251xfd_handle_tefif_one(struct mcp251xfd_priv *priv,
const struct mcp251xfd_hw_tef_obj *hw_tef_obj)
{
struct net_device_stats *stats = &priv->ndev->stats;
u32 seq, seq_masked, tef_tail_masked;
seq = FIELD_GET(MCP251XFD_OBJ_FLAGS_SEQ_MCP2518FD_MASK,
hw_tef_obj->flags);
/* Use the MCP2517FD mask on the MCP2518FD, too. We only
* compare 7 bits, this should be enough to detect
* net-yet-completed, i.e. old TEF objects.
*/
seq_masked = seq &
field_mask(MCP251XFD_OBJ_FLAGS_SEQ_MCP2517FD_MASK);
tef_tail_masked = priv->tef->tail &
field_mask(MCP251XFD_OBJ_FLAGS_SEQ_MCP2517FD_MASK);
if (seq_masked != tef_tail_masked)
return mcp251xfd_handle_tefif_recover(priv, seq);
stats->tx_bytes +=
can_rx_offload_get_echo_skb(&priv->offload,
mcp251xfd_get_tef_tail(priv),
hw_tef_obj->ts);
stats->tx_packets++;
priv->tef->tail++;
return 0;
}
static int mcp251xfd_tef_ring_update(struct mcp251xfd_priv *priv)
{
const struct mcp251xfd_tx_ring *tx_ring = priv->tx;
unsigned int new_head;
u8 chip_tx_tail;
int err;
err = mcp251xfd_tx_tail_get_from_chip(priv, &chip_tx_tail);
if (err)
return err;
/* chip_tx_tail, is the next TX-Object send by the HW.
* The new TEF head must be >= the old head, ...
*/
new_head = round_down(priv->tef->head, tx_ring->obj_num) + chip_tx_tail;
if (new_head <= priv->tef->head)
new_head += tx_ring->obj_num;
/* ... but it cannot exceed the TX head. */
priv->tef->head = min(new_head, tx_ring->head);
return mcp251xfd_check_tef_tail(priv);
}
static inline int
mcp251xfd_tef_obj_read(const struct mcp251xfd_priv *priv,
struct mcp251xfd_hw_tef_obj *hw_tef_obj,
const u8 offset, const u8 len)
{
const struct mcp251xfd_tx_ring *tx_ring = priv->tx;
if (IS_ENABLED(CONFIG_CAN_MCP251XFD_SANITY) &&
(offset > tx_ring->obj_num ||
len > tx_ring->obj_num ||
offset + len > tx_ring->obj_num)) {
netdev_err(priv->ndev,
"Trying to read to many TEF objects (max=%d, offset=%d, len=%d).\n",
tx_ring->obj_num, offset, len);
return -ERANGE;
}
return regmap_bulk_read(priv->map_rx,
mcp251xfd_get_tef_obj_addr(offset),
hw_tef_obj,
sizeof(*hw_tef_obj) / sizeof(u32) * len);
}
static int mcp251xfd_handle_tefif(struct mcp251xfd_priv *priv)
{
struct mcp251xfd_hw_tef_obj hw_tef_obj[MCP251XFD_TX_OBJ_NUM_MAX];
u8 tef_tail, len, l;
int err, i;
err = mcp251xfd_tef_ring_update(priv);
if (err)
return err;
tef_tail = mcp251xfd_get_tef_tail(priv);
len = mcp251xfd_get_tef_len(priv);
l = mcp251xfd_get_tef_linear_len(priv);
err = mcp251xfd_tef_obj_read(priv, hw_tef_obj, tef_tail, l);
if (err)
return err;
if (l < len) {
err = mcp251xfd_tef_obj_read(priv, &hw_tef_obj[l], 0, len - l);
if (err)
return err;
}
for (i = 0; i < len; i++) {
err = mcp251xfd_handle_tefif_one(priv, &hw_tef_obj[i]);
/* -EAGAIN means the Sequence Number in the TEF
* doesn't match our tef_tail. This can happen if we
* read the TEF objects too early. Leave loop let the
* interrupt handler call us again.
*/
if (err == -EAGAIN)
goto out_netif_wake_queue;
if (err)
return err;
}
out_netif_wake_queue:
len = i; /* number of handled goods TEFs */
if (len) {
struct mcp251xfd_tef_ring *ring = priv->tef;
struct mcp251xfd_tx_ring *tx_ring = priv->tx;
struct spi_transfer *last_xfer;
tx_ring->tail += len;
/* Increment the TEF FIFO tail pointer 'len' times in
* a single SPI message.
*/
/* Note:
*
* "cs_change == 1" on the last transfer results in an
* active chip select after the complete SPI
* message. This causes the controller to interpret
* the next register access as data. Temporary set
* "cs_change" of the last transfer to "0" to properly
* deactivate the chip select at the end of the
* message.
*/
last_xfer = &ring->uinc_xfer[len - 1];
last_xfer->cs_change = 0;
err = spi_sync_transfer(priv->spi, ring->uinc_xfer, len);
last_xfer->cs_change = 1;
if (err)
return err;
err = mcp251xfd_check_tef_tail(priv);
if (err)
return err;
}
mcp251xfd_ecc_tefif_successful(priv);
if (mcp251xfd_get_tx_free(priv->tx)) {
/* Make sure that anybody stopping the queue after
* this sees the new tx_ring->tail.
*/
smp_mb();
netif_wake_queue(priv->ndev);
}
return 0;
}
static int
mcp251xfd_rx_ring_update(const struct mcp251xfd_priv *priv,
struct mcp251xfd_rx_ring *ring)
{
u32 new_head;
u8 chip_rx_head;
int err;
err = mcp251xfd_rx_head_get_from_chip(priv, ring, &chip_rx_head);
if (err)
return err;
/* chip_rx_head, is the next RX-Object filled by the HW.
* The new RX head must be >= the old head.
*/
new_head = round_down(ring->head, ring->obj_num) + chip_rx_head;
if (new_head <= ring->head)
new_head += ring->obj_num;
ring->head = new_head;
return mcp251xfd_check_rx_tail(priv, ring);
}
static void
mcp251xfd_hw_rx_obj_to_skb(const struct mcp251xfd_priv *priv,
const struct mcp251xfd_hw_rx_obj_canfd *hw_rx_obj,
struct sk_buff *skb)
{
struct canfd_frame *cfd = (struct canfd_frame *)skb->data;
if (hw_rx_obj->flags & MCP251XFD_OBJ_FLAGS_IDE) {
u32 sid, eid;
eid = FIELD_GET(MCP251XFD_OBJ_ID_EID_MASK, hw_rx_obj->id);
sid = FIELD_GET(MCP251XFD_OBJ_ID_SID_MASK, hw_rx_obj->id);
cfd->can_id = CAN_EFF_FLAG |
FIELD_PREP(MCP251XFD_REG_FRAME_EFF_EID_MASK, eid) |
FIELD_PREP(MCP251XFD_REG_FRAME_EFF_SID_MASK, sid);
} else {
cfd->can_id = FIELD_GET(MCP251XFD_OBJ_ID_SID_MASK,
hw_rx_obj->id);
}
/* CANFD */
if (hw_rx_obj->flags & MCP251XFD_OBJ_FLAGS_FDF) {
u8 dlc;
if (hw_rx_obj->flags & MCP251XFD_OBJ_FLAGS_ESI)
cfd->flags |= CANFD_ESI;
if (hw_rx_obj->flags & MCP251XFD_OBJ_FLAGS_BRS)
cfd->flags |= CANFD_BRS;
dlc = FIELD_GET(MCP251XFD_OBJ_FLAGS_DLC, hw_rx_obj->flags);
cfd->len = can_fd_dlc2len(dlc);
} else {
if (hw_rx_obj->flags & MCP251XFD_OBJ_FLAGS_RTR)
cfd->can_id |= CAN_RTR_FLAG;
cfd->len = can_cc_dlc2len(FIELD_GET(MCP251XFD_OBJ_FLAGS_DLC,
hw_rx_obj->flags));
}
memcpy(cfd->data, hw_rx_obj->data, cfd->len);
}
static int
mcp251xfd_handle_rxif_one(struct mcp251xfd_priv *priv,
struct mcp251xfd_rx_ring *ring,
const struct mcp251xfd_hw_rx_obj_canfd *hw_rx_obj)
{
struct net_device_stats *stats = &priv->ndev->stats;
struct sk_buff *skb;
struct canfd_frame *cfd;
int err;
if (hw_rx_obj->flags & MCP251XFD_OBJ_FLAGS_FDF)
skb = alloc_canfd_skb(priv->ndev, &cfd);
else
skb = alloc_can_skb(priv->ndev, (struct can_frame **)&cfd);
if (!cfd) {
stats->rx_dropped++;
return 0;
}
mcp251xfd_hw_rx_obj_to_skb(priv, hw_rx_obj, skb);
err = can_rx_offload_queue_sorted(&priv->offload, skb, hw_rx_obj->ts);
if (err)
stats->rx_fifo_errors++;
return 0;
}
static inline int
mcp251xfd_rx_obj_read(const struct mcp251xfd_priv *priv,
const struct mcp251xfd_rx_ring *ring,
struct mcp251xfd_hw_rx_obj_canfd *hw_rx_obj,
const u8 offset, const u8 len)
{
int err;
err = regmap_bulk_read(priv->map_rx,
mcp251xfd_get_rx_obj_addr(ring, offset),
hw_rx_obj,
len * ring->obj_size / sizeof(u32));
return err;
}
static int
mcp251xfd_handle_rxif_ring(struct mcp251xfd_priv *priv,
struct mcp251xfd_rx_ring *ring)
{
struct mcp251xfd_hw_rx_obj_canfd *hw_rx_obj = ring->obj;
u8 rx_tail, len;
int err, i;
err = mcp251xfd_rx_ring_update(priv, ring);
if (err)
return err;
while ((len = mcp251xfd_get_rx_linear_len(ring))) {
struct spi_transfer *last_xfer;
rx_tail = mcp251xfd_get_rx_tail(ring);
err = mcp251xfd_rx_obj_read(priv, ring, hw_rx_obj,
rx_tail, len);
if (err)
return err;
for (i = 0; i < len; i++) {
err = mcp251xfd_handle_rxif_one(priv, ring,
(void *)hw_rx_obj +
i * ring->obj_size);
if (err)
return err;
}
/* Increment the RX FIFO tail pointer 'len' times in a
* single SPI message.
*/
ring->tail += len;
/* Note:
*
* "cs_change == 1" on the last transfer results in an
* active chip select after the complete SPI
* message. This causes the controller to interpret
* the next register access as data. Temporary set
* "cs_change" of the last transfer to "0" to properly
* deactivate the chip select at the end of the
* message.
*/
last_xfer = &ring->uinc_xfer[len - 1];
last_xfer->cs_change = 0;
err = spi_sync_transfer(priv->spi, ring->uinc_xfer, len);
last_xfer->cs_change = 1;
if (err)
return err;
}
return 0;
}
static int mcp251xfd_handle_rxif(struct mcp251xfd_priv *priv)
{
struct mcp251xfd_rx_ring *ring;
int err, n;
mcp251xfd_for_each_rx_ring(priv, ring, n) {
err = mcp251xfd_handle_rxif_ring(priv, ring);
if (err)
return err;
}
return 0;
}
static inline int mcp251xfd_get_timestamp(const struct mcp251xfd_priv *priv,
u32 *timestamp)
{
return regmap_read(priv->map_reg, MCP251XFD_REG_TBC, timestamp);
}
static struct sk_buff *
mcp251xfd_alloc_can_err_skb(const struct mcp251xfd_priv *priv,
struct can_frame **cf, u32 *timestamp)
{
int err;
err = mcp251xfd_get_timestamp(priv, timestamp);
if (err)
return NULL;
return alloc_can_err_skb(priv->ndev, cf);
}
static int mcp251xfd_handle_rxovif(struct mcp251xfd_priv *priv)
{
struct net_device_stats *stats = &priv->ndev->stats;
struct mcp251xfd_rx_ring *ring;
struct sk_buff *skb;
struct can_frame *cf;
u32 timestamp, rxovif;
int err, i;
stats->rx_over_errors++;
stats->rx_errors++;
err = regmap_read(priv->map_reg, MCP251XFD_REG_RXOVIF, &rxovif);
if (err)
return err;
mcp251xfd_for_each_rx_ring(priv, ring, i) {
if (!(rxovif & BIT(ring->fifo_nr)))
continue;
/* If SERRIF is active, there was a RX MAB overflow. */
if (priv->regs_status.intf & MCP251XFD_REG_INT_SERRIF) {
netdev_info(priv->ndev,
"RX-%d: MAB overflow detected.\n",
ring->nr);
} else {
netdev_info(priv->ndev,
"RX-%d: FIFO overflow.\n", ring->nr);
}
err = regmap_update_bits(priv->map_reg,
MCP251XFD_REG_FIFOSTA(ring->fifo_nr),
MCP251XFD_REG_FIFOSTA_RXOVIF,
0x0);
if (err)
return err;
}
skb = mcp251xfd_alloc_can_err_skb(priv, &cf, &timestamp);
if (!skb)
return 0;
cf->can_id |= CAN_ERR_CRTL;
cf->data[1] = CAN_ERR_CRTL_RX_OVERFLOW;
err = can_rx_offload_queue_sorted(&priv->offload, skb, timestamp);
if (err)
stats->rx_fifo_errors++;
return 0;
}
static int mcp251xfd_handle_txatif(struct mcp251xfd_priv *priv)
{
netdev_info(priv->ndev, "%s\n", __func__);
return 0;
}
static int mcp251xfd_handle_ivmif(struct mcp251xfd_priv *priv)
{
struct net_device_stats *stats = &priv->ndev->stats;
u32 bdiag1, timestamp;
struct sk_buff *skb;
struct can_frame *cf = NULL;
int err;
err = mcp251xfd_get_timestamp(priv, &timestamp);
if (err)
return err;
err = regmap_read(priv->map_reg, MCP251XFD_REG_BDIAG1, &bdiag1);
if (err)
return err;
/* Write 0s to clear error bits, don't write 1s to non active
* bits, as they will be set.
*/
err = regmap_write(priv->map_reg, MCP251XFD_REG_BDIAG1, 0x0);
if (err)
return err;
priv->can.can_stats.bus_error++;
skb = alloc_can_err_skb(priv->ndev, &cf);
if (cf)
cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR;
/* Controller misconfiguration */
if (WARN_ON(bdiag1 & MCP251XFD_REG_BDIAG1_DLCMM))
netdev_err(priv->ndev,
"recv'd DLC is larger than PLSIZE of FIFO element.");
/* RX errors */
if (bdiag1 & (MCP251XFD_REG_BDIAG1_DCRCERR |
MCP251XFD_REG_BDIAG1_NCRCERR)) {
netdev_dbg(priv->ndev, "CRC error\n");
stats->rx_errors++;
if (cf)
cf->data[3] |= CAN_ERR_PROT_LOC_CRC_SEQ;
}
if (bdiag1 & (MCP251XFD_REG_BDIAG1_DSTUFERR |
MCP251XFD_REG_BDIAG1_NSTUFERR)) {
netdev_dbg(priv->ndev, "Stuff error\n");
stats->rx_errors++;
if (cf)
cf->data[2] |= CAN_ERR_PROT_STUFF;
}
if (bdiag1 & (MCP251XFD_REG_BDIAG1_DFORMERR |
MCP251XFD_REG_BDIAG1_NFORMERR)) {
netdev_dbg(priv->ndev, "Format error\n");
stats->rx_errors++;
if (cf)
cf->data[2] |= CAN_ERR_PROT_FORM;
}
/* TX errors */
if (bdiag1 & MCP251XFD_REG_BDIAG1_NACKERR) {
netdev_dbg(priv->ndev, "NACK error\n");
stats->tx_errors++;
if (cf) {
cf->can_id |= CAN_ERR_ACK;
cf->data[2] |= CAN_ERR_PROT_TX;
}
}
if (bdiag1 & (MCP251XFD_REG_BDIAG1_DBIT1ERR |
MCP251XFD_REG_BDIAG1_NBIT1ERR)) {
netdev_dbg(priv->ndev, "Bit1 error\n");
stats->tx_errors++;
if (cf)
cf->data[2] |= CAN_ERR_PROT_TX | CAN_ERR_PROT_BIT1;
}
if (bdiag1 & (MCP251XFD_REG_BDIAG1_DBIT0ERR |
MCP251XFD_REG_BDIAG1_NBIT0ERR)) {
netdev_dbg(priv->ndev, "Bit0 error\n");
stats->tx_errors++;
if (cf)
cf->data[2] |= CAN_ERR_PROT_TX | CAN_ERR_PROT_BIT0;
}
if (!cf)
return 0;
err = can_rx_offload_queue_sorted(&priv->offload, skb, timestamp);
if (err)
stats->rx_fifo_errors++;
return 0;
}
static int mcp251xfd_handle_cerrif(struct mcp251xfd_priv *priv)
{
struct net_device_stats *stats = &priv->ndev->stats;
struct sk_buff *skb;
struct can_frame *cf = NULL;
enum can_state new_state, rx_state, tx_state;
u32 trec, timestamp;
int err;
err = regmap_read(priv->map_reg, MCP251XFD_REG_TREC, &trec);
if (err)
return err;
if (trec & MCP251XFD_REG_TREC_TXBO)
tx_state = CAN_STATE_BUS_OFF;
else if (trec & MCP251XFD_REG_TREC_TXBP)
tx_state = CAN_STATE_ERROR_PASSIVE;
else if (trec & MCP251XFD_REG_TREC_TXWARN)
tx_state = CAN_STATE_ERROR_WARNING;
else
tx_state = CAN_STATE_ERROR_ACTIVE;
if (trec & MCP251XFD_REG_TREC_RXBP)
rx_state = CAN_STATE_ERROR_PASSIVE;
else if (trec & MCP251XFD_REG_TREC_RXWARN)
rx_state = CAN_STATE_ERROR_WARNING;
else
rx_state = CAN_STATE_ERROR_ACTIVE;
new_state = max(tx_state, rx_state);
if (new_state == priv->can.state)
return 0;
/* The skb allocation might fail, but can_change_state()
* handles cf == NULL.
*/
skb = mcp251xfd_alloc_can_err_skb(priv, &cf, &timestamp);
can_change_state(priv->ndev, cf, tx_state, rx_state);
if (new_state == CAN_STATE_BUS_OFF) {
/* As we're going to switch off the chip now, let's
* save the error counters and return them to
* userspace, if do_get_berr_counter() is called while
* the chip is in Bus Off.
*/
err = __mcp251xfd_get_berr_counter(priv->ndev, &priv->bec);
if (err)
return err;
mcp251xfd_chip_stop(priv, CAN_STATE_BUS_OFF);
can_bus_off(priv->ndev);
}
if (!skb)
return 0;
if (new_state != CAN_STATE_BUS_OFF) {
struct can_berr_counter bec;
err = mcp251xfd_get_berr_counter(priv->ndev, &bec);
if (err)
return err;
cf->data[6] = bec.txerr;
cf->data[7] = bec.rxerr;
}
err = can_rx_offload_queue_sorted(&priv->offload, skb, timestamp);
if (err)
stats->rx_fifo_errors++;
return 0;
}
static int
mcp251xfd_handle_modif(const struct mcp251xfd_priv *priv, bool *set_normal_mode)
{
const u8 mode_reference = mcp251xfd_get_normal_mode(priv);
u8 mode;
int err;
err = mcp251xfd_chip_get_mode(priv, &mode);
if (err)
return err;
if (mode == mode_reference) {
netdev_dbg(priv->ndev,
"Controller changed into %s Mode (%u).\n",
mcp251xfd_get_mode_str(mode), mode);
return 0;
}
/* According to MCP2517FD errata DS80000792B 1., during a TX
* MAB underflow, the controller will transition to Restricted
* Operation Mode or Listen Only Mode (depending on SERR2LOM).
*
* However this is not always the case. If SERR2LOM is
* configured for Restricted Operation Mode (SERR2LOM not set)
* the MCP2517FD will sometimes transition to Listen Only Mode
* first. When polling this bit we see that it will transition
* to Restricted Operation Mode shortly after.
*/
if ((priv->devtype_data.quirks & MCP251XFD_QUIRK_MAB_NO_WARN) &&
(mode == MCP251XFD_REG_CON_MODE_RESTRICTED ||
mode == MCP251XFD_REG_CON_MODE_LISTENONLY))
netdev_dbg(priv->ndev,
"Controller changed into %s Mode (%u).\n",
mcp251xfd_get_mode_str(mode), mode);
else
netdev_err(priv->ndev,
"Controller changed into %s Mode (%u).\n",
mcp251xfd_get_mode_str(mode), mode);
/* After the application requests Normal mode, the Controller
* will automatically attempt to retransmit the message that
* caused the TX MAB underflow.
*
* However, if there is an ECC error in the TX-RAM, we first
* have to reload the tx-object before requesting Normal
* mode. This is done later in mcp251xfd_handle_eccif().
*/
if (priv->regs_status.intf & MCP251XFD_REG_INT_ECCIF) {
*set_normal_mode = true;
return 0;
}
return mcp251xfd_chip_set_normal_mode_nowait(priv);
}
static int mcp251xfd_handle_serrif(struct mcp251xfd_priv *priv)
{
struct mcp251xfd_ecc *ecc = &priv->ecc;
struct net_device_stats *stats = &priv->ndev->stats;
bool handled = false;
/* TX MAB underflow
*
* According to MCP2517FD Errata DS80000792B 1. a TX MAB
* underflow is indicated by SERRIF and MODIF.
*
* In addition to the effects mentioned in the Errata, there
* are Bus Errors due to the aborted CAN frame, so a IVMIF
* will be seen as well.
*
* Sometimes there is an ECC error in the TX-RAM, which leads
* to a TX MAB underflow.
*
* However, probably due to a race condition, there is no
* associated MODIF pending.
*
* Further, there are situations, where the SERRIF is caused
* by an ECC error in the TX-RAM, but not even the ECCIF is
* set. This only seems to happen _after_ the first occurrence
* of a ECCIF (which is tracked in ecc->cnt).
*
* Treat all as a known system errors..
*/
if ((priv->regs_status.intf & MCP251XFD_REG_INT_MODIF &&
priv->regs_status.intf & MCP251XFD_REG_INT_IVMIF) ||
priv->regs_status.intf & MCP251XFD_REG_INT_ECCIF ||
ecc->cnt) {
const char *msg;
if (priv->regs_status.intf & MCP251XFD_REG_INT_ECCIF ||
ecc->cnt)
msg = "TX MAB underflow due to ECC error detected.";
else
msg = "TX MAB underflow detected.";
if (priv->devtype_data.quirks & MCP251XFD_QUIRK_MAB_NO_WARN)
netdev_dbg(priv->ndev, "%s\n", msg);
else
netdev_info(priv->ndev, "%s\n", msg);
stats->tx_aborted_errors++;
stats->tx_errors++;
handled = true;
}
/* RX MAB overflow
*
* According to MCP2517FD Errata DS80000792B 1. a RX MAB
* overflow is indicated by SERRIF.
*
* In addition to the effects mentioned in the Errata, (most
* of the times) a RXOVIF is raised, if the FIFO that is being
* received into has the RXOVIE activated (and we have enabled
* RXOVIE on all FIFOs).
*
* Sometimes there is no RXOVIF just a RXIF is pending.
*
* Treat all as a known system errors..
*/
if (priv->regs_status.intf & MCP251XFD_REG_INT_RXOVIF ||
priv->regs_status.intf & MCP251XFD_REG_INT_RXIF) {
stats->rx_dropped++;
handled = true;
}
if (!handled)
netdev_err(priv->ndev,
"Unhandled System Error Interrupt (intf=0x%08x)!\n",
priv->regs_status.intf);
return 0;
}
static int
mcp251xfd_handle_eccif_recover(struct mcp251xfd_priv *priv, u8 nr)
{
struct mcp251xfd_tx_ring *tx_ring = priv->tx;
struct mcp251xfd_ecc *ecc = &priv->ecc;
struct mcp251xfd_tx_obj *tx_obj;
u8 chip_tx_tail, tx_tail, offset;
u16 addr;
int err;
addr = FIELD_GET(MCP251XFD_REG_ECCSTAT_ERRADDR_MASK, ecc->ecc_stat);
err = mcp251xfd_tx_tail_get_from_chip(priv, &chip_tx_tail);
if (err)
return err;
tx_tail = mcp251xfd_get_tx_tail(tx_ring);
offset = (nr - chip_tx_tail) & (tx_ring->obj_num - 1);
/* Bail out if one of the following is met:
* - tx_tail information is inconsistent
* - for mcp2517fd: offset not 0
* - for mcp2518fd: offset not 0 or 1
*/
if (chip_tx_tail != tx_tail ||
!(offset == 0 || (offset == 1 && mcp251xfd_is_2518(priv)))) {
netdev_err(priv->ndev,
"ECC Error information inconsistent (addr=0x%04x, nr=%d, tx_tail=0x%08x(%d), chip_tx_tail=%d, offset=%d).\n",
addr, nr, tx_ring->tail, tx_tail, chip_tx_tail,
offset);
return -EINVAL;
}
netdev_info(priv->ndev,
"Recovering %s ECC Error at address 0x%04x (in TX-RAM, tx_obj=%d, tx_tail=0x%08x(%d), offset=%d).\n",
ecc->ecc_stat & MCP251XFD_REG_ECCSTAT_SECIF ?
"Single" : "Double",
addr, nr, tx_ring->tail, tx_tail, offset);
/* reload tx_obj into controller RAM ... */
tx_obj = &tx_ring->obj[nr];
err = spi_sync_transfer(priv->spi, tx_obj->xfer, 1);
if (err)
return err;
/* ... and trigger retransmit */
return mcp251xfd_chip_set_normal_mode(priv);
}
static int
mcp251xfd_handle_eccif(struct mcp251xfd_priv *priv, bool set_normal_mode)
{
struct mcp251xfd_ecc *ecc = &priv->ecc;
const char *msg;
bool in_tx_ram;
u32 ecc_stat;
u16 addr;
u8 nr;
int err;
err = regmap_read(priv->map_reg, MCP251XFD_REG_ECCSTAT, &ecc_stat);
if (err)
return err;
err = regmap_update_bits(priv->map_reg, MCP251XFD_REG_ECCSTAT,
MCP251XFD_REG_ECCSTAT_IF_MASK, ~ecc_stat);
if (err)
return err;
/* Check if ECC error occurred in TX-RAM */
addr = FIELD_GET(MCP251XFD_REG_ECCSTAT_ERRADDR_MASK, ecc_stat);
err = mcp251xfd_get_tx_nr_by_addr(priv->tx, &nr, addr);
if (!err)
in_tx_ram = true;
else if (err == -ENOENT)
in_tx_ram = false;
else
return err;
/* Errata Reference:
* mcp2517fd: DS80000789B, mcp2518fd: DS80000792C 2.
*
* ECC single error correction does not work in all cases:
*
* Fix/Work Around:
* Enable single error correction and double error detection
* interrupts by setting SECIE and DEDIE. Handle SECIF as a
* detection interrupt and do not rely on the error
* correction. Instead, handle both interrupts as a
* notification that the RAM word at ERRADDR was corrupted.
*/
if (ecc_stat & MCP251XFD_REG_ECCSTAT_SECIF)
msg = "Single ECC Error detected at address";
else if (ecc_stat & MCP251XFD_REG_ECCSTAT_DEDIF)
msg = "Double ECC Error detected at address";
else
return -EINVAL;
if (!in_tx_ram) {
ecc->ecc_stat = 0;
netdev_notice(priv->ndev, "%s 0x%04x.\n", msg, addr);
} else {
/* Re-occurring error? */
if (ecc->ecc_stat == ecc_stat) {
ecc->cnt++;
} else {
ecc->ecc_stat = ecc_stat;
ecc->cnt = 1;
}
netdev_info(priv->ndev,
"%s 0x%04x (in TX-RAM, tx_obj=%d), occurred %d time%s.\n",
msg, addr, nr, ecc->cnt, ecc->cnt > 1 ? "s" : "");
if (ecc->cnt >= MCP251XFD_ECC_CNT_MAX)
return mcp251xfd_handle_eccif_recover(priv, nr);
}
if (set_normal_mode)
return mcp251xfd_chip_set_normal_mode_nowait(priv);
return 0;
}
static int mcp251xfd_handle_spicrcif(struct mcp251xfd_priv *priv)
{
int err;
u32 crc;
err = regmap_read(priv->map_reg, MCP251XFD_REG_CRC, &crc);
if (err)
return err;
err = regmap_update_bits(priv->map_reg, MCP251XFD_REG_CRC,
MCP251XFD_REG_CRC_IF_MASK,
~crc);
if (err)
return err;
if (crc & MCP251XFD_REG_CRC_FERRIF)
netdev_notice(priv->ndev, "CRC write command format error.\n");
else if (crc & MCP251XFD_REG_CRC_CRCERRIF)
netdev_notice(priv->ndev,
"CRC write error detected. CRC=0x%04lx.\n",
FIELD_GET(MCP251XFD_REG_CRC_MASK, crc));
return 0;
}
#define mcp251xfd_handle(priv, irq, ...) \
({ \
struct mcp251xfd_priv *_priv = (priv); \
int err; \
\
err = mcp251xfd_handle_##irq(_priv, ## __VA_ARGS__); \
if (err) \
netdev_err(_priv->ndev, \
"IRQ handler mcp251xfd_handle_%s() returned %d.\n", \
__stringify(irq), err); \
err; \
})
static irqreturn_t mcp251xfd_irq(int irq, void *dev_id)
{
struct mcp251xfd_priv *priv = dev_id;
irqreturn_t handled = IRQ_NONE;
int err;
if (priv->rx_int)
do {
int rx_pending;
rx_pending = gpiod_get_value_cansleep(priv->rx_int);
if (!rx_pending)
break;
err = mcp251xfd_handle(priv, rxif);
if (err)
goto out_fail;
handled = IRQ_HANDLED;
} while (1);
do {
u32 intf_pending, intf_pending_clearable;
bool set_normal_mode = false;
err = regmap_bulk_read(priv->map_reg, MCP251XFD_REG_INT,
&priv->regs_status,
sizeof(priv->regs_status) /
sizeof(u32));
if (err)
goto out_fail;
intf_pending = FIELD_GET(MCP251XFD_REG_INT_IF_MASK,
priv->regs_status.intf) &
FIELD_GET(MCP251XFD_REG_INT_IE_MASK,
priv->regs_status.intf);
if (!(intf_pending))
return handled;
/* Some interrupts must be ACKed in the
* MCP251XFD_REG_INT register.
* - First ACK then handle, to avoid lost-IRQ race
* condition on fast re-occurring interrupts.
* - Write "0" to clear active IRQs, "1" to all other,
* to avoid r/m/w race condition on the
* MCP251XFD_REG_INT register.
*/
intf_pending_clearable = intf_pending &
MCP251XFD_REG_INT_IF_CLEARABLE_MASK;
if (intf_pending_clearable) {
err = regmap_update_bits(priv->map_reg,
MCP251XFD_REG_INT,
MCP251XFD_REG_INT_IF_MASK,
~intf_pending_clearable);
if (err)
goto out_fail;
}
if (intf_pending & MCP251XFD_REG_INT_MODIF) {
err = mcp251xfd_handle(priv, modif, &set_normal_mode);
if (err)
goto out_fail;
}
if (intf_pending & MCP251XFD_REG_INT_RXIF) {
err = mcp251xfd_handle(priv, rxif);
if (err)
goto out_fail;
}
if (intf_pending & MCP251XFD_REG_INT_TEFIF) {
err = mcp251xfd_handle(priv, tefif);
if (err)
goto out_fail;
}
if (intf_pending & MCP251XFD_REG_INT_RXOVIF) {
err = mcp251xfd_handle(priv, rxovif);
if (err)
goto out_fail;
}
if (intf_pending & MCP251XFD_REG_INT_TXATIF) {
err = mcp251xfd_handle(priv, txatif);
if (err)
goto out_fail;
}
if (intf_pending & MCP251XFD_REG_INT_IVMIF) {
err = mcp251xfd_handle(priv, ivmif);
if (err)
goto out_fail;
}
if (intf_pending & MCP251XFD_REG_INT_SERRIF) {
err = mcp251xfd_handle(priv, serrif);
if (err)
goto out_fail;
}
if (intf_pending & MCP251XFD_REG_INT_ECCIF) {
err = mcp251xfd_handle(priv, eccif, set_normal_mode);
if (err)
goto out_fail;
}
if (intf_pending & MCP251XFD_REG_INT_SPICRCIF) {
err = mcp251xfd_handle(priv, spicrcif);
if (err)
goto out_fail;
}
/* On the MCP2527FD and MCP2518FD, we don't get a
* CERRIF IRQ on the transition TX ERROR_WARNING -> TX
* ERROR_ACTIVE.
*/
if (intf_pending & MCP251XFD_REG_INT_CERRIF ||
priv->can.state > CAN_STATE_ERROR_ACTIVE) {
err = mcp251xfd_handle(priv, cerrif);
if (err)
goto out_fail;
/* In Bus Off we completely shut down the
* controller. Every subsequent register read
* will read bogus data, and if
* MCP251XFD_QUIRK_CRC_REG is enabled the CRC
* check will fail, too. So leave IRQ handler
* directly.
*/
if (priv->can.state == CAN_STATE_BUS_OFF)
return IRQ_HANDLED;
}
handled = IRQ_HANDLED;
} while (1);
out_fail:
netdev_err(priv->ndev, "IRQ handler returned %d (intf=0x%08x).\n",
err, priv->regs_status.intf);
mcp251xfd_chip_interrupts_disable(priv);
return handled;
}
static inline struct
mcp251xfd_tx_obj *mcp251xfd_get_tx_obj_next(struct mcp251xfd_tx_ring *tx_ring)
{
u8 tx_head;
tx_head = mcp251xfd_get_tx_head(tx_ring);
return &tx_ring->obj[tx_head];
}
static void
mcp251xfd_tx_obj_from_skb(const struct mcp251xfd_priv *priv,
struct mcp251xfd_tx_obj *tx_obj,
const struct sk_buff *skb,
unsigned int seq)
{
const struct canfd_frame *cfd = (struct canfd_frame *)skb->data;
struct mcp251xfd_hw_tx_obj_raw *hw_tx_obj;
union mcp251xfd_tx_obj_load_buf *load_buf;
u8 dlc;
u32 id, flags;
int offset, len;
if (cfd->can_id & CAN_EFF_FLAG) {
u32 sid, eid;
sid = FIELD_GET(MCP251XFD_REG_FRAME_EFF_SID_MASK, cfd->can_id);
eid = FIELD_GET(MCP251XFD_REG_FRAME_EFF_EID_MASK, cfd->can_id);
id = FIELD_PREP(MCP251XFD_OBJ_ID_EID_MASK, eid) |
FIELD_PREP(MCP251XFD_OBJ_ID_SID_MASK, sid);
flags = MCP251XFD_OBJ_FLAGS_IDE;
} else {
id = FIELD_PREP(MCP251XFD_OBJ_ID_SID_MASK, cfd->can_id);
flags = 0;
}
/* Use the MCP2518FD mask even on the MCP2517FD. It doesn't
* harm, only the lower 7 bits will be transferred into the
* TEF object.
*/
dlc = can_fd_len2dlc(cfd->len);
flags |= FIELD_PREP(MCP251XFD_OBJ_FLAGS_SEQ_MCP2518FD_MASK, seq) |
FIELD_PREP(MCP251XFD_OBJ_FLAGS_DLC, dlc);
if (cfd->can_id & CAN_RTR_FLAG)
flags |= MCP251XFD_OBJ_FLAGS_RTR;
/* CANFD */
if (can_is_canfd_skb(skb)) {
if (cfd->flags & CANFD_ESI)
flags |= MCP251XFD_OBJ_FLAGS_ESI;
flags |= MCP251XFD_OBJ_FLAGS_FDF;
if (cfd->flags & CANFD_BRS)
flags |= MCP251XFD_OBJ_FLAGS_BRS;
}
load_buf = &tx_obj->buf;
if (priv->devtype_data.quirks & MCP251XFD_QUIRK_CRC_TX)
hw_tx_obj = &load_buf->crc.hw_tx_obj;
else
hw_tx_obj = &load_buf->nocrc.hw_tx_obj;
put_unaligned_le32(id, &hw_tx_obj->id);
put_unaligned_le32(flags, &hw_tx_obj->flags);
/* Clear data at end of CAN frame */
offset = round_down(cfd->len, sizeof(u32));
len = round_up(can_fd_dlc2len(dlc), sizeof(u32)) - offset;
if (MCP251XFD_SANITIZE_CAN && len)
memset(hw_tx_obj->data + offset, 0x0, len);
memcpy(hw_tx_obj->data, cfd->data, cfd->len);
/* Number of bytes to be written into the RAM of the controller */
len = sizeof(hw_tx_obj->id) + sizeof(hw_tx_obj->flags);
if (MCP251XFD_SANITIZE_CAN)
len += round_up(can_fd_dlc2len(dlc), sizeof(u32));
else
len += round_up(cfd->len, sizeof(u32));
if (priv->devtype_data.quirks & MCP251XFD_QUIRK_CRC_TX) {
u16 crc;
mcp251xfd_spi_cmd_crc_set_len_in_ram(&load_buf->crc.cmd,
len);
/* CRC */
len += sizeof(load_buf->crc.cmd);
crc = mcp251xfd_crc16_compute(&load_buf->crc, len);
put_unaligned_be16(crc, (void *)load_buf + len);
/* Total length */
len += sizeof(load_buf->crc.crc);
} else {
len += sizeof(load_buf->nocrc.cmd);
}
tx_obj->xfer[0].len = len;
}
static int mcp251xfd_tx_obj_write(const struct mcp251xfd_priv *priv,
struct mcp251xfd_tx_obj *tx_obj)
{
return spi_async(priv->spi, &tx_obj->msg);
}
static bool mcp251xfd_tx_busy(const struct mcp251xfd_priv *priv,
struct mcp251xfd_tx_ring *tx_ring)
{
if (mcp251xfd_get_tx_free(tx_ring) > 0)
return false;
netif_stop_queue(priv->ndev);
/* Memory barrier before checking tx_free (head and tail) */
smp_mb();
if (mcp251xfd_get_tx_free(tx_ring) == 0) {
netdev_dbg(priv->ndev,
"Stopping tx-queue (tx_head=0x%08x, tx_tail=0x%08x, len=%d).\n",
tx_ring->head, tx_ring->tail,
tx_ring->head - tx_ring->tail);
return true;
}
netif_start_queue(priv->ndev);
return false;
}
static netdev_tx_t mcp251xfd_start_xmit(struct sk_buff *skb,
struct net_device *ndev)
{
struct mcp251xfd_priv *priv = netdev_priv(ndev);
struct mcp251xfd_tx_ring *tx_ring = priv->tx;
struct mcp251xfd_tx_obj *tx_obj;
u8 tx_head;
int err;
if (can_dropped_invalid_skb(ndev, skb))
return NETDEV_TX_OK;
if (mcp251xfd_tx_busy(priv, tx_ring))
return NETDEV_TX_BUSY;
tx_obj = mcp251xfd_get_tx_obj_next(tx_ring);
mcp251xfd_tx_obj_from_skb(priv, tx_obj, skb, tx_ring->head);
/* Stop queue if we occupy the complete TX FIFO */
tx_head = mcp251xfd_get_tx_head(tx_ring);
tx_ring->head++;
if (tx_ring->head - tx_ring->tail >= tx_ring->obj_num)
netif_stop_queue(ndev);
can_put_echo_skb(skb, ndev, tx_head);
err = mcp251xfd_tx_obj_write(priv, tx_obj);
if (err)
goto out_err;
return NETDEV_TX_OK;
out_err:
netdev_err(priv->ndev, "ERROR in %s: %d\n", __func__, err);
return NETDEV_TX_OK;
}
static int mcp251xfd_open(struct net_device *ndev)
{
struct mcp251xfd_priv *priv = netdev_priv(ndev);
const struct spi_device *spi = priv->spi;
int err;
err = pm_runtime_get_sync(ndev->dev.parent);
if (err < 0) {
pm_runtime_put_noidle(ndev->dev.parent);
return err;
}
err = open_candev(ndev);
if (err)
goto out_pm_runtime_put;
err = mcp251xfd_ring_alloc(priv);
if (err)
goto out_close_candev;
err = mcp251xfd_transceiver_enable(priv);
if (err)
goto out_mcp251xfd_ring_free;
err = mcp251xfd_chip_start(priv);
if (err)
goto out_transceiver_disable;
can_rx_offload_enable(&priv->offload);
err = request_threaded_irq(spi->irq, NULL, mcp251xfd_irq,
IRQF_ONESHOT, dev_name(&spi->dev),
priv);
if (err)
goto out_can_rx_offload_disable;
err = mcp251xfd_chip_interrupts_enable(priv);
if (err)
goto out_free_irq;
netif_start_queue(ndev);
return 0;
out_free_irq:
free_irq(spi->irq, priv);
out_can_rx_offload_disable:
can_rx_offload_disable(&priv->offload);
out_transceiver_disable:
mcp251xfd_transceiver_disable(priv);
out_mcp251xfd_ring_free:
mcp251xfd_ring_free(priv);
out_close_candev:
close_candev(ndev);
out_pm_runtime_put:
mcp251xfd_chip_stop(priv, CAN_STATE_STOPPED);
pm_runtime_put(ndev->dev.parent);
return err;
}
static int mcp251xfd_stop(struct net_device *ndev)
{
struct mcp251xfd_priv *priv = netdev_priv(ndev);
netif_stop_queue(ndev);
mcp251xfd_chip_interrupts_disable(priv);
free_irq(ndev->irq, priv);
can_rx_offload_disable(&priv->offload);
mcp251xfd_chip_stop(priv, CAN_STATE_STOPPED);
mcp251xfd_transceiver_disable(priv);
mcp251xfd_ring_free(priv);
close_candev(ndev);
pm_runtime_put(ndev->dev.parent);
return 0;
}
static const struct net_device_ops mcp251xfd_netdev_ops = {
.ndo_open = mcp251xfd_open,
.ndo_stop = mcp251xfd_stop,
.ndo_start_xmit = mcp251xfd_start_xmit,
.ndo_change_mtu = can_change_mtu,
};
static void
mcp251xfd_register_quirks(struct mcp251xfd_priv *priv)
{
const struct spi_device *spi = priv->spi;
const struct spi_controller *ctlr = spi->controller;
if (ctlr->flags & SPI_CONTROLLER_HALF_DUPLEX)
priv->devtype_data.quirks |= MCP251XFD_QUIRK_HALF_DUPLEX;
}
static int mcp251xfd_register_chip_detect(struct mcp251xfd_priv *priv)
{
const struct net_device *ndev = priv->ndev;
const struct mcp251xfd_devtype_data *devtype_data;
u32 osc;
int err;
/* The OSC_LPMEN is only supported on MCP2518FD, so use it to
* autodetect the model.
*/
err = regmap_update_bits(priv->map_reg, MCP251XFD_REG_OSC,
MCP251XFD_REG_OSC_LPMEN,
MCP251XFD_REG_OSC_LPMEN);
if (err)
return err;
err = regmap_read(priv->map_reg, MCP251XFD_REG_OSC, &osc);
if (err)
return err;
if (osc & MCP251XFD_REG_OSC_LPMEN)
devtype_data = &mcp251xfd_devtype_data_mcp2518fd;
else
devtype_data = &mcp251xfd_devtype_data_mcp2517fd;
if (!mcp251xfd_is_251X(priv) &&
priv->devtype_data.model != devtype_data->model) {
netdev_info(ndev,
"Detected %s, but firmware specifies a %s. Fixing up.",
__mcp251xfd_get_model_str(devtype_data->model),
mcp251xfd_get_model_str(priv));
}
priv->devtype_data = *devtype_data;
/* We need to preserve the Half Duplex Quirk. */
mcp251xfd_register_quirks(priv);
/* Re-init regmap with quirks of detected model. */
return mcp251xfd_regmap_init(priv);
}
static int mcp251xfd_register_check_rx_int(struct mcp251xfd_priv *priv)
{
int err, rx_pending;
if (!priv->rx_int)
return 0;
err = mcp251xfd_chip_rx_int_enable(priv);
if (err)
return err;
/* Check if RX_INT is properly working. The RX_INT should not
* be active after a softreset.
*/
rx_pending = gpiod_get_value_cansleep(priv->rx_int);
err = mcp251xfd_chip_rx_int_disable(priv);
if (err)
return err;
if (!rx_pending)
return 0;
netdev_info(priv->ndev,
"RX_INT active after softreset, disabling RX_INT support.");
devm_gpiod_put(&priv->spi->dev, priv->rx_int);
priv->rx_int = NULL;
return 0;
}
static int
mcp251xfd_register_get_dev_id(const struct mcp251xfd_priv *priv,
u32 *dev_id, u32 *effective_speed_hz)
{
struct mcp251xfd_map_buf_nocrc *buf_rx;
struct mcp251xfd_map_buf_nocrc *buf_tx;
struct spi_transfer xfer[2] = { };
int err;
buf_rx = kzalloc(sizeof(*buf_rx), GFP_KERNEL);
if (!buf_rx)
return -ENOMEM;
buf_tx = kzalloc(sizeof(*buf_tx), GFP_KERNEL);
if (!buf_tx) {
err = -ENOMEM;
goto out_kfree_buf_rx;
}
xfer[0].tx_buf = buf_tx;
xfer[0].len = sizeof(buf_tx->cmd);
xfer[1].rx_buf = buf_rx->data;
xfer[1].len = sizeof(dev_id);
mcp251xfd_spi_cmd_read_nocrc(&buf_tx->cmd, MCP251XFD_REG_DEVID);
err = spi_sync_transfer(priv->spi, xfer, ARRAY_SIZE(xfer));
if (err)
goto out_kfree_buf_tx;
*dev_id = be32_to_cpup((__be32 *)buf_rx->data);
*effective_speed_hz = xfer->effective_speed_hz;
out_kfree_buf_tx:
kfree(buf_tx);
out_kfree_buf_rx:
kfree(buf_rx);
return 0;
}
#define MCP251XFD_QUIRK_ACTIVE(quirk) \
(priv->devtype_data.quirks & MCP251XFD_QUIRK_##quirk ? '+' : '-')
static int
mcp251xfd_register_done(const struct mcp251xfd_priv *priv)
{
u32 dev_id, effective_speed_hz;
int err;
err = mcp251xfd_register_get_dev_id(priv, &dev_id,
&effective_speed_hz);
if (err)
return err;
netdev_info(priv->ndev,
"%s rev%lu.%lu (%cRX_INT %cMAB_NO_WARN %cCRC_REG %cCRC_RX %cCRC_TX %cECC %cHD c:%u.%02uMHz m:%u.%02uMHz r:%u.%02uMHz e:%u.%02uMHz) successfully initialized.\n",
mcp251xfd_get_model_str(priv),
FIELD_GET(MCP251XFD_REG_DEVID_ID_MASK, dev_id),
FIELD_GET(MCP251XFD_REG_DEVID_REV_MASK, dev_id),
priv->rx_int ? '+' : '-',
MCP251XFD_QUIRK_ACTIVE(MAB_NO_WARN),
MCP251XFD_QUIRK_ACTIVE(CRC_REG),
MCP251XFD_QUIRK_ACTIVE(CRC_RX),
MCP251XFD_QUIRK_ACTIVE(CRC_TX),
MCP251XFD_QUIRK_ACTIVE(ECC),
MCP251XFD_QUIRK_ACTIVE(HALF_DUPLEX),
priv->can.clock.freq / 1000000,
priv->can.clock.freq % 1000000 / 1000 / 10,
priv->spi_max_speed_hz_orig / 1000000,
priv->spi_max_speed_hz_orig % 1000000 / 1000 / 10,
priv->spi->max_speed_hz / 1000000,
priv->spi->max_speed_hz % 1000000 / 1000 / 10,
effective_speed_hz / 1000000,
effective_speed_hz % 1000000 / 1000 / 10);
return 0;
}
static int mcp251xfd_register(struct mcp251xfd_priv *priv)
{
struct net_device *ndev = priv->ndev;
int err;
err = mcp251xfd_clks_and_vdd_enable(priv);
if (err)
return err;
pm_runtime_get_noresume(ndev->dev.parent);
err = pm_runtime_set_active(ndev->dev.parent);
if (err)
goto out_runtime_put_noidle;
pm_runtime_enable(ndev->dev.parent);
mcp251xfd_register_quirks(priv);
err = mcp251xfd_chip_softreset(priv);
if (err == -ENODEV)
goto out_runtime_disable;
if (err)
goto out_chip_set_mode_sleep;
err = mcp251xfd_register_chip_detect(priv);
if (err)
goto out_chip_set_mode_sleep;
err = mcp251xfd_register_check_rx_int(priv);
if (err)
goto out_chip_set_mode_sleep;
err = register_candev(ndev);
if (err)
goto out_chip_set_mode_sleep;
err = mcp251xfd_register_done(priv);
if (err)
goto out_unregister_candev;
/* Put controller into sleep mode and let pm_runtime_put()
* disable the clocks and vdd. If CONFIG_PM is not enabled,
* the clocks and vdd will stay powered.
*/
err = mcp251xfd_chip_set_mode(priv, MCP251XFD_REG_CON_MODE_SLEEP);
if (err)
goto out_unregister_candev;
pm_runtime_put(ndev->dev.parent);
return 0;
out_unregister_candev:
unregister_candev(ndev);
out_chip_set_mode_sleep:
mcp251xfd_chip_set_mode(priv, MCP251XFD_REG_CON_MODE_SLEEP);
out_runtime_disable:
pm_runtime_disable(ndev->dev.parent);
out_runtime_put_noidle:
pm_runtime_put_noidle(ndev->dev.parent);
mcp251xfd_clks_and_vdd_disable(priv);
return err;
}
static inline void mcp251xfd_unregister(struct mcp251xfd_priv *priv)
{
struct net_device *ndev = priv->ndev;
unregister_candev(ndev);
pm_runtime_get_sync(ndev->dev.parent);
pm_runtime_put_noidle(ndev->dev.parent);
mcp251xfd_clks_and_vdd_disable(priv);
pm_runtime_disable(ndev->dev.parent);
}
static const struct of_device_id mcp251xfd_of_match[] = {
{
.compatible = "microchip,mcp2517fd",
.data = &mcp251xfd_devtype_data_mcp2517fd,
}, {
.compatible = "microchip,mcp2518fd",
.data = &mcp251xfd_devtype_data_mcp2518fd,
}, {
.compatible = "microchip,mcp251xfd",
.data = &mcp251xfd_devtype_data_mcp251xfd,
}, {
/* sentinel */
},
};
MODULE_DEVICE_TABLE(of, mcp251xfd_of_match);
static const struct spi_device_id mcp251xfd_id_table[] = {
{
.name = "mcp2517fd",
.driver_data = (kernel_ulong_t)&mcp251xfd_devtype_data_mcp2517fd,
}, {
.name = "mcp2518fd",
.driver_data = (kernel_ulong_t)&mcp251xfd_devtype_data_mcp2518fd,
}, {
.name = "mcp251xfd",
.driver_data = (kernel_ulong_t)&mcp251xfd_devtype_data_mcp251xfd,
}, {
/* sentinel */
},
};
MODULE_DEVICE_TABLE(spi, mcp251xfd_id_table);
static int mcp251xfd_probe(struct spi_device *spi)
{
const void *match;
struct net_device *ndev;
struct mcp251xfd_priv *priv;
struct gpio_desc *rx_int;
struct regulator *reg_vdd, *reg_xceiver;
struct clk *clk;
u32 freq;
int err;
if (!spi->irq)
return dev_err_probe(&spi->dev, -ENXIO,
"No IRQ specified (maybe node \"interrupts-extended\" in DT missing)!\n");
rx_int = devm_gpiod_get_optional(&spi->dev, "microchip,rx-int",
GPIOD_IN);
if (PTR_ERR(rx_int) == -EPROBE_DEFER)
return -EPROBE_DEFER;
else if (IS_ERR(rx_int))
return PTR_ERR(rx_int);
reg_vdd = devm_regulator_get_optional(&spi->dev, "vdd");
if (PTR_ERR(reg_vdd) == -EPROBE_DEFER)
return -EPROBE_DEFER;
else if (PTR_ERR(reg_vdd) == -ENODEV)
reg_vdd = NULL;
else if (IS_ERR(reg_vdd))
return PTR_ERR(reg_vdd);
reg_xceiver = devm_regulator_get_optional(&spi->dev, "xceiver");
if (PTR_ERR(reg_xceiver) == -EPROBE_DEFER)
return -EPROBE_DEFER;
else if (PTR_ERR(reg_xceiver) == -ENODEV)
reg_xceiver = NULL;
else if (IS_ERR(reg_xceiver))
return PTR_ERR(reg_xceiver);
clk = devm_clk_get(&spi->dev, NULL);
if (IS_ERR(clk)) {
dev_err(&spi->dev, "No Oscillator (clock) defined.\n");
return PTR_ERR(clk);
}
freq = clk_get_rate(clk);
/* Sanity check */
if (freq < MCP251XFD_SYSCLOCK_HZ_MIN ||
freq > MCP251XFD_SYSCLOCK_HZ_MAX) {
dev_err(&spi->dev,
"Oscillator frequency (%u Hz) is too low or high.\n",
freq);
return -ERANGE;
}
if (freq <= MCP251XFD_SYSCLOCK_HZ_MAX / MCP251XFD_OSC_PLL_MULTIPLIER) {
dev_err(&spi->dev,
"Oscillator frequency (%u Hz) is too low and PLL is not supported.\n",
freq);
return -ERANGE;
}
ndev = alloc_candev(sizeof(struct mcp251xfd_priv),
MCP251XFD_TX_OBJ_NUM_MAX);
if (!ndev)
return -ENOMEM;
SET_NETDEV_DEV(ndev, &spi->dev);
ndev->netdev_ops = &mcp251xfd_netdev_ops;
ndev->irq = spi->irq;
ndev->flags |= IFF_ECHO;
priv = netdev_priv(ndev);
spi_set_drvdata(spi, priv);
priv->can.clock.freq = freq;
priv->can.do_set_mode = mcp251xfd_set_mode;
priv->can.do_get_berr_counter = mcp251xfd_get_berr_counter;
priv->can.bittiming_const = &mcp251xfd_bittiming_const;
priv->can.data_bittiming_const = &mcp251xfd_data_bittiming_const;
priv->can.ctrlmode_supported = CAN_CTRLMODE_LOOPBACK |
CAN_CTRLMODE_LISTENONLY | CAN_CTRLMODE_BERR_REPORTING |
CAN_CTRLMODE_FD | CAN_CTRLMODE_FD_NON_ISO;
priv->ndev = ndev;
priv->spi = spi;
priv->rx_int = rx_int;
priv->clk = clk;
priv->reg_vdd = reg_vdd;
priv->reg_xceiver = reg_xceiver;
match = device_get_match_data(&spi->dev);
if (match)
priv->devtype_data = *(struct mcp251xfd_devtype_data *)match;
else
priv->devtype_data = *(struct mcp251xfd_devtype_data *)
spi_get_device_id(spi)->driver_data;
/* Errata Reference:
* mcp2517fd: DS80000789B, mcp2518fd: DS80000792C 4.
*
* The SPI can write corrupted data to the RAM at fast SPI
* speeds:
*
* Simultaneous activity on the CAN bus while writing data to
* RAM via the SPI interface, with high SCK frequency, can
* lead to corrupted data being written to RAM.
*
* Fix/Work Around:
* Ensure that FSCK is less than or equal to 0.85 *
* (FSYSCLK/2).
*
* Known good and bad combinations are:
*
* MCP ext-clk SoC SPI SPI-clk max-clk parent-clk Status config
*
* 2518 20 MHz allwinner,sun8i-h3 allwinner,sun8i-h3-spi 8333333 Hz 83.33% 600000000 Hz good assigned-clocks = <&ccu CLK_SPIx>
* 2518 20 MHz allwinner,sun8i-h3 allwinner,sun8i-h3-spi 9375000 Hz 93.75% 600000000 Hz bad assigned-clocks = <&ccu CLK_SPIx>
* 2518 40 MHz allwinner,sun8i-h3 allwinner,sun8i-h3-spi 16666667 Hz 83.33% 600000000 Hz good assigned-clocks = <&ccu CLK_SPIx>
* 2518 40 MHz allwinner,sun8i-h3 allwinner,sun8i-h3-spi 18750000 Hz 93.75% 600000000 Hz bad assigned-clocks = <&ccu CLK_SPIx>
* 2517 20 MHz fsl,imx8mm fsl,imx51-ecspi 8333333 Hz 83.33% 16666667 Hz good assigned-clocks = <&clk IMX8MM_CLK_ECSPIx_ROOT>
* 2517 20 MHz fsl,imx8mm fsl,imx51-ecspi 9523809 Hz 95.34% 28571429 Hz bad assigned-clocks = <&clk IMX8MM_CLK_ECSPIx_ROOT>
* 2517 40 MHz atmel,sama5d27 atmel,at91rm9200-spi 16400000 Hz 82.00% 82000000 Hz good default
* 2518 40 MHz atmel,sama5d27 atmel,at91rm9200-spi 16400000 Hz 82.00% 82000000 Hz good default
*
*/
priv->spi_max_speed_hz_orig = spi->max_speed_hz;
spi->max_speed_hz = min(spi->max_speed_hz, freq / 2 / 1000 * 850);
spi->bits_per_word = 8;
spi->rt = true;
err = spi_setup(spi);
if (err)
goto out_free_candev;
err = mcp251xfd_regmap_init(priv);
if (err)
goto out_free_candev;
err = can_rx_offload_add_manual(ndev, &priv->offload,
MCP251XFD_NAPI_WEIGHT);
if (err)
goto out_free_candev;
err = mcp251xfd_register(priv);
if (err)
goto out_free_candev;
return 0;
out_free_candev:
spi->max_speed_hz = priv->spi_max_speed_hz_orig;
free_candev(ndev);
return err;
}
static int mcp251xfd_remove(struct spi_device *spi)
{
struct mcp251xfd_priv *priv = spi_get_drvdata(spi);
struct net_device *ndev = priv->ndev;
can_rx_offload_del(&priv->offload);
mcp251xfd_unregister(priv);
spi->max_speed_hz = priv->spi_max_speed_hz_orig;
free_candev(ndev);
return 0;
}
static int __maybe_unused mcp251xfd_runtime_suspend(struct device *device)
{
const struct mcp251xfd_priv *priv = dev_get_drvdata(device);
return mcp251xfd_clks_and_vdd_disable(priv);
}
static int __maybe_unused mcp251xfd_runtime_resume(struct device *device)
{
const struct mcp251xfd_priv *priv = dev_get_drvdata(device);
return mcp251xfd_clks_and_vdd_enable(priv);
}
static const struct dev_pm_ops mcp251xfd_pm_ops = {
SET_RUNTIME_PM_OPS(mcp251xfd_runtime_suspend,
mcp251xfd_runtime_resume, NULL)
};
static struct spi_driver mcp251xfd_driver = {
.driver = {
.name = DEVICE_NAME,
.pm = &mcp251xfd_pm_ops,
.of_match_table = mcp251xfd_of_match,
},
.probe = mcp251xfd_probe,
.remove = mcp251xfd_remove,
.id_table = mcp251xfd_id_table,
};
module_spi_driver(mcp251xfd_driver);
MODULE_AUTHOR("Marc Kleine-Budde <mkl@pengutronix.de>");
MODULE_DESCRIPTION("Microchip MCP251xFD Family CAN controller driver");
MODULE_LICENSE("GPL v2");