forked from Minki/linux
70effdc375
With HW_TAGS KASAN and kasan.stacktrace=off, the cache created in the
kmem_cache_double_destroy() test might get merged with an existing one.
Thus, the first kmem_cache_destroy() call won't actually destroy it but
will only decrease the refcount. This causes the test to fail.
Provide an empty constructor for the created cache to prevent the cache
from getting merged.
Link: https://lkml.kernel.org/r/b597bd434c49591d8af00ee3993a42c609dc9a59.1644346040.git.andreyknvl@google.com
Fixes: f98f966cd7
("kasan: test: add test case for double-kmem_cache_destroy()")
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Reviewed-by: Marco Elver <elver@google.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
1230 lines
32 KiB
C
1230 lines
32 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
*
|
|
* Copyright (c) 2014 Samsung Electronics Co., Ltd.
|
|
* Author: Andrey Ryabinin <a.ryabinin@samsung.com>
|
|
*/
|
|
|
|
#include <linux/bitops.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/kasan.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/mman.h>
|
|
#include <linux/module.h>
|
|
#include <linux/printk.h>
|
|
#include <linux/random.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/string.h>
|
|
#include <linux/uaccess.h>
|
|
#include <linux/io.h>
|
|
#include <linux/vmalloc.h>
|
|
|
|
#include <asm/page.h>
|
|
|
|
#include <kunit/test.h>
|
|
|
|
#include "../mm/kasan/kasan.h"
|
|
|
|
#define OOB_TAG_OFF (IS_ENABLED(CONFIG_KASAN_GENERIC) ? 0 : KASAN_GRANULE_SIZE)
|
|
|
|
/*
|
|
* Some tests use these global variables to store return values from function
|
|
* calls that could otherwise be eliminated by the compiler as dead code.
|
|
*/
|
|
void *kasan_ptr_result;
|
|
int kasan_int_result;
|
|
|
|
static struct kunit_resource resource;
|
|
static struct kunit_kasan_expectation fail_data;
|
|
static bool multishot;
|
|
|
|
/*
|
|
* Temporarily enable multi-shot mode. Otherwise, KASAN would only report the
|
|
* first detected bug and panic the kernel if panic_on_warn is enabled. For
|
|
* hardware tag-based KASAN also allow tag checking to be reenabled for each
|
|
* test, see the comment for KUNIT_EXPECT_KASAN_FAIL().
|
|
*/
|
|
static int kasan_test_init(struct kunit *test)
|
|
{
|
|
if (!kasan_enabled()) {
|
|
kunit_err(test, "can't run KASAN tests with KASAN disabled");
|
|
return -1;
|
|
}
|
|
|
|
multishot = kasan_save_enable_multi_shot();
|
|
fail_data.report_found = false;
|
|
kunit_add_named_resource(test, NULL, NULL, &resource,
|
|
"kasan_data", &fail_data);
|
|
return 0;
|
|
}
|
|
|
|
static void kasan_test_exit(struct kunit *test)
|
|
{
|
|
kasan_restore_multi_shot(multishot);
|
|
KUNIT_EXPECT_FALSE(test, fail_data.report_found);
|
|
}
|
|
|
|
/**
|
|
* KUNIT_EXPECT_KASAN_FAIL() - check that the executed expression produces a
|
|
* KASAN report; causes a test failure otherwise. This relies on a KUnit
|
|
* resource named "kasan_data". Do not use this name for KUnit resources
|
|
* outside of KASAN tests.
|
|
*
|
|
* For hardware tag-based KASAN in sync mode, when a tag fault happens, tag
|
|
* checking is auto-disabled. When this happens, this test handler reenables
|
|
* tag checking. As tag checking can be only disabled or enabled per CPU,
|
|
* this handler disables migration (preemption).
|
|
*
|
|
* Since the compiler doesn't see that the expression can change the fail_data
|
|
* fields, it can reorder or optimize away the accesses to those fields.
|
|
* Use READ/WRITE_ONCE() for the accesses and compiler barriers around the
|
|
* expression to prevent that.
|
|
*
|
|
* In between KUNIT_EXPECT_KASAN_FAIL checks, fail_data.report_found is kept as
|
|
* false. This allows detecting KASAN reports that happen outside of the checks
|
|
* by asserting !fail_data.report_found at the start of KUNIT_EXPECT_KASAN_FAIL
|
|
* and in kasan_test_exit.
|
|
*/
|
|
#define KUNIT_EXPECT_KASAN_FAIL(test, expression) do { \
|
|
if (IS_ENABLED(CONFIG_KASAN_HW_TAGS) && \
|
|
kasan_sync_fault_possible()) \
|
|
migrate_disable(); \
|
|
KUNIT_EXPECT_FALSE(test, READ_ONCE(fail_data.report_found)); \
|
|
barrier(); \
|
|
expression; \
|
|
barrier(); \
|
|
if (!READ_ONCE(fail_data.report_found)) { \
|
|
KUNIT_FAIL(test, KUNIT_SUBTEST_INDENT "KASAN failure " \
|
|
"expected in \"" #expression \
|
|
"\", but none occurred"); \
|
|
} \
|
|
if (IS_ENABLED(CONFIG_KASAN_HW_TAGS)) { \
|
|
if (READ_ONCE(fail_data.report_found)) \
|
|
kasan_enable_tagging_sync(); \
|
|
migrate_enable(); \
|
|
} \
|
|
WRITE_ONCE(fail_data.report_found, false); \
|
|
} while (0)
|
|
|
|
#define KASAN_TEST_NEEDS_CONFIG_ON(test, config) do { \
|
|
if (!IS_ENABLED(config)) \
|
|
kunit_skip((test), "Test requires " #config "=y"); \
|
|
} while (0)
|
|
|
|
#define KASAN_TEST_NEEDS_CONFIG_OFF(test, config) do { \
|
|
if (IS_ENABLED(config)) \
|
|
kunit_skip((test), "Test requires " #config "=n"); \
|
|
} while (0)
|
|
|
|
static void kmalloc_oob_right(struct kunit *test)
|
|
{
|
|
char *ptr;
|
|
size_t size = 128 - KASAN_GRANULE_SIZE - 5;
|
|
|
|
ptr = kmalloc(size, GFP_KERNEL);
|
|
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
|
|
|
|
/*
|
|
* An unaligned access past the requested kmalloc size.
|
|
* Only generic KASAN can precisely detect these.
|
|
*/
|
|
if (IS_ENABLED(CONFIG_KASAN_GENERIC))
|
|
KUNIT_EXPECT_KASAN_FAIL(test, ptr[size] = 'x');
|
|
|
|
/*
|
|
* An aligned access into the first out-of-bounds granule that falls
|
|
* within the aligned kmalloc object.
|
|
*/
|
|
KUNIT_EXPECT_KASAN_FAIL(test, ptr[size + 5] = 'y');
|
|
|
|
/* Out-of-bounds access past the aligned kmalloc object. */
|
|
KUNIT_EXPECT_KASAN_FAIL(test, ptr[0] =
|
|
ptr[size + KASAN_GRANULE_SIZE + 5]);
|
|
|
|
kfree(ptr);
|
|
}
|
|
|
|
static void kmalloc_oob_left(struct kunit *test)
|
|
{
|
|
char *ptr;
|
|
size_t size = 15;
|
|
|
|
ptr = kmalloc(size, GFP_KERNEL);
|
|
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
|
|
|
|
KUNIT_EXPECT_KASAN_FAIL(test, *ptr = *(ptr - 1));
|
|
kfree(ptr);
|
|
}
|
|
|
|
static void kmalloc_node_oob_right(struct kunit *test)
|
|
{
|
|
char *ptr;
|
|
size_t size = 4096;
|
|
|
|
ptr = kmalloc_node(size, GFP_KERNEL, 0);
|
|
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
|
|
|
|
KUNIT_EXPECT_KASAN_FAIL(test, ptr[0] = ptr[size]);
|
|
kfree(ptr);
|
|
}
|
|
|
|
/*
|
|
* These kmalloc_pagealloc_* tests try allocating a memory chunk that doesn't
|
|
* fit into a slab cache and therefore is allocated via the page allocator
|
|
* fallback. Since this kind of fallback is only implemented for SLUB, these
|
|
* tests are limited to that allocator.
|
|
*/
|
|
static void kmalloc_pagealloc_oob_right(struct kunit *test)
|
|
{
|
|
char *ptr;
|
|
size_t size = KMALLOC_MAX_CACHE_SIZE + 10;
|
|
|
|
KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_SLUB);
|
|
|
|
ptr = kmalloc(size, GFP_KERNEL);
|
|
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
|
|
|
|
KUNIT_EXPECT_KASAN_FAIL(test, ptr[size + OOB_TAG_OFF] = 0);
|
|
|
|
kfree(ptr);
|
|
}
|
|
|
|
static void kmalloc_pagealloc_uaf(struct kunit *test)
|
|
{
|
|
char *ptr;
|
|
size_t size = KMALLOC_MAX_CACHE_SIZE + 10;
|
|
|
|
KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_SLUB);
|
|
|
|
ptr = kmalloc(size, GFP_KERNEL);
|
|
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
|
|
kfree(ptr);
|
|
|
|
KUNIT_EXPECT_KASAN_FAIL(test, ((volatile char *)ptr)[0]);
|
|
}
|
|
|
|
static void kmalloc_pagealloc_invalid_free(struct kunit *test)
|
|
{
|
|
char *ptr;
|
|
size_t size = KMALLOC_MAX_CACHE_SIZE + 10;
|
|
|
|
KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_SLUB);
|
|
|
|
ptr = kmalloc(size, GFP_KERNEL);
|
|
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
|
|
|
|
KUNIT_EXPECT_KASAN_FAIL(test, kfree(ptr + 1));
|
|
}
|
|
|
|
static void pagealloc_oob_right(struct kunit *test)
|
|
{
|
|
char *ptr;
|
|
struct page *pages;
|
|
size_t order = 4;
|
|
size_t size = (1UL << (PAGE_SHIFT + order));
|
|
|
|
/*
|
|
* With generic KASAN page allocations have no redzones, thus
|
|
* out-of-bounds detection is not guaranteed.
|
|
* See https://bugzilla.kernel.org/show_bug.cgi?id=210503.
|
|
*/
|
|
KASAN_TEST_NEEDS_CONFIG_OFF(test, CONFIG_KASAN_GENERIC);
|
|
|
|
pages = alloc_pages(GFP_KERNEL, order);
|
|
ptr = page_address(pages);
|
|
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
|
|
|
|
KUNIT_EXPECT_KASAN_FAIL(test, ptr[0] = ptr[size]);
|
|
free_pages((unsigned long)ptr, order);
|
|
}
|
|
|
|
static void pagealloc_uaf(struct kunit *test)
|
|
{
|
|
char *ptr;
|
|
struct page *pages;
|
|
size_t order = 4;
|
|
|
|
pages = alloc_pages(GFP_KERNEL, order);
|
|
ptr = page_address(pages);
|
|
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
|
|
free_pages((unsigned long)ptr, order);
|
|
|
|
KUNIT_EXPECT_KASAN_FAIL(test, ((volatile char *)ptr)[0]);
|
|
}
|
|
|
|
static void kmalloc_large_oob_right(struct kunit *test)
|
|
{
|
|
char *ptr;
|
|
size_t size = KMALLOC_MAX_CACHE_SIZE - 256;
|
|
|
|
/*
|
|
* Allocate a chunk that is large enough, but still fits into a slab
|
|
* and does not trigger the page allocator fallback in SLUB.
|
|
*/
|
|
ptr = kmalloc(size, GFP_KERNEL);
|
|
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
|
|
|
|
KUNIT_EXPECT_KASAN_FAIL(test, ptr[size] = 0);
|
|
kfree(ptr);
|
|
}
|
|
|
|
static void krealloc_more_oob_helper(struct kunit *test,
|
|
size_t size1, size_t size2)
|
|
{
|
|
char *ptr1, *ptr2;
|
|
size_t middle;
|
|
|
|
KUNIT_ASSERT_LT(test, size1, size2);
|
|
middle = size1 + (size2 - size1) / 2;
|
|
|
|
ptr1 = kmalloc(size1, GFP_KERNEL);
|
|
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr1);
|
|
|
|
ptr2 = krealloc(ptr1, size2, GFP_KERNEL);
|
|
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr2);
|
|
|
|
/* All offsets up to size2 must be accessible. */
|
|
ptr2[size1 - 1] = 'x';
|
|
ptr2[size1] = 'x';
|
|
ptr2[middle] = 'x';
|
|
ptr2[size2 - 1] = 'x';
|
|
|
|
/* Generic mode is precise, so unaligned size2 must be inaccessible. */
|
|
if (IS_ENABLED(CONFIG_KASAN_GENERIC))
|
|
KUNIT_EXPECT_KASAN_FAIL(test, ptr2[size2] = 'x');
|
|
|
|
/* For all modes first aligned offset after size2 must be inaccessible. */
|
|
KUNIT_EXPECT_KASAN_FAIL(test,
|
|
ptr2[round_up(size2, KASAN_GRANULE_SIZE)] = 'x');
|
|
|
|
kfree(ptr2);
|
|
}
|
|
|
|
static void krealloc_less_oob_helper(struct kunit *test,
|
|
size_t size1, size_t size2)
|
|
{
|
|
char *ptr1, *ptr2;
|
|
size_t middle;
|
|
|
|
KUNIT_ASSERT_LT(test, size2, size1);
|
|
middle = size2 + (size1 - size2) / 2;
|
|
|
|
ptr1 = kmalloc(size1, GFP_KERNEL);
|
|
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr1);
|
|
|
|
ptr2 = krealloc(ptr1, size2, GFP_KERNEL);
|
|
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr2);
|
|
|
|
/* Must be accessible for all modes. */
|
|
ptr2[size2 - 1] = 'x';
|
|
|
|
/* Generic mode is precise, so unaligned size2 must be inaccessible. */
|
|
if (IS_ENABLED(CONFIG_KASAN_GENERIC))
|
|
KUNIT_EXPECT_KASAN_FAIL(test, ptr2[size2] = 'x');
|
|
|
|
/* For all modes first aligned offset after size2 must be inaccessible. */
|
|
KUNIT_EXPECT_KASAN_FAIL(test,
|
|
ptr2[round_up(size2, KASAN_GRANULE_SIZE)] = 'x');
|
|
|
|
/*
|
|
* For all modes all size2, middle, and size1 should land in separate
|
|
* granules and thus the latter two offsets should be inaccessible.
|
|
*/
|
|
KUNIT_EXPECT_LE(test, round_up(size2, KASAN_GRANULE_SIZE),
|
|
round_down(middle, KASAN_GRANULE_SIZE));
|
|
KUNIT_EXPECT_LE(test, round_up(middle, KASAN_GRANULE_SIZE),
|
|
round_down(size1, KASAN_GRANULE_SIZE));
|
|
KUNIT_EXPECT_KASAN_FAIL(test, ptr2[middle] = 'x');
|
|
KUNIT_EXPECT_KASAN_FAIL(test, ptr2[size1 - 1] = 'x');
|
|
KUNIT_EXPECT_KASAN_FAIL(test, ptr2[size1] = 'x');
|
|
|
|
kfree(ptr2);
|
|
}
|
|
|
|
static void krealloc_more_oob(struct kunit *test)
|
|
{
|
|
krealloc_more_oob_helper(test, 201, 235);
|
|
}
|
|
|
|
static void krealloc_less_oob(struct kunit *test)
|
|
{
|
|
krealloc_less_oob_helper(test, 235, 201);
|
|
}
|
|
|
|
static void krealloc_pagealloc_more_oob(struct kunit *test)
|
|
{
|
|
/* page_alloc fallback in only implemented for SLUB. */
|
|
KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_SLUB);
|
|
|
|
krealloc_more_oob_helper(test, KMALLOC_MAX_CACHE_SIZE + 201,
|
|
KMALLOC_MAX_CACHE_SIZE + 235);
|
|
}
|
|
|
|
static void krealloc_pagealloc_less_oob(struct kunit *test)
|
|
{
|
|
/* page_alloc fallback in only implemented for SLUB. */
|
|
KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_SLUB);
|
|
|
|
krealloc_less_oob_helper(test, KMALLOC_MAX_CACHE_SIZE + 235,
|
|
KMALLOC_MAX_CACHE_SIZE + 201);
|
|
}
|
|
|
|
/*
|
|
* Check that krealloc() detects a use-after-free, returns NULL,
|
|
* and doesn't unpoison the freed object.
|
|
*/
|
|
static void krealloc_uaf(struct kunit *test)
|
|
{
|
|
char *ptr1, *ptr2;
|
|
int size1 = 201;
|
|
int size2 = 235;
|
|
|
|
ptr1 = kmalloc(size1, GFP_KERNEL);
|
|
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr1);
|
|
kfree(ptr1);
|
|
|
|
KUNIT_EXPECT_KASAN_FAIL(test, ptr2 = krealloc(ptr1, size2, GFP_KERNEL));
|
|
KUNIT_ASSERT_PTR_EQ(test, (void *)ptr2, NULL);
|
|
KUNIT_EXPECT_KASAN_FAIL(test, *(volatile char *)ptr1);
|
|
}
|
|
|
|
static void kmalloc_oob_16(struct kunit *test)
|
|
{
|
|
struct {
|
|
u64 words[2];
|
|
} *ptr1, *ptr2;
|
|
|
|
/* This test is specifically crafted for the generic mode. */
|
|
KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_GENERIC);
|
|
|
|
ptr1 = kmalloc(sizeof(*ptr1) - 3, GFP_KERNEL);
|
|
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr1);
|
|
|
|
ptr2 = kmalloc(sizeof(*ptr2), GFP_KERNEL);
|
|
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr2);
|
|
|
|
KUNIT_EXPECT_KASAN_FAIL(test, *ptr1 = *ptr2);
|
|
kfree(ptr1);
|
|
kfree(ptr2);
|
|
}
|
|
|
|
static void kmalloc_uaf_16(struct kunit *test)
|
|
{
|
|
struct {
|
|
u64 words[2];
|
|
} *ptr1, *ptr2;
|
|
|
|
ptr1 = kmalloc(sizeof(*ptr1), GFP_KERNEL);
|
|
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr1);
|
|
|
|
ptr2 = kmalloc(sizeof(*ptr2), GFP_KERNEL);
|
|
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr2);
|
|
kfree(ptr2);
|
|
|
|
KUNIT_EXPECT_KASAN_FAIL(test, *ptr1 = *ptr2);
|
|
kfree(ptr1);
|
|
}
|
|
|
|
/*
|
|
* Note: in the memset tests below, the written range touches both valid and
|
|
* invalid memory. This makes sure that the instrumentation does not only check
|
|
* the starting address but the whole range.
|
|
*/
|
|
|
|
static void kmalloc_oob_memset_2(struct kunit *test)
|
|
{
|
|
char *ptr;
|
|
size_t size = 128 - KASAN_GRANULE_SIZE;
|
|
|
|
ptr = kmalloc(size, GFP_KERNEL);
|
|
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
|
|
|
|
OPTIMIZER_HIDE_VAR(size);
|
|
KUNIT_EXPECT_KASAN_FAIL(test, memset(ptr + size - 1, 0, 2));
|
|
kfree(ptr);
|
|
}
|
|
|
|
static void kmalloc_oob_memset_4(struct kunit *test)
|
|
{
|
|
char *ptr;
|
|
size_t size = 128 - KASAN_GRANULE_SIZE;
|
|
|
|
ptr = kmalloc(size, GFP_KERNEL);
|
|
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
|
|
|
|
OPTIMIZER_HIDE_VAR(size);
|
|
KUNIT_EXPECT_KASAN_FAIL(test, memset(ptr + size - 3, 0, 4));
|
|
kfree(ptr);
|
|
}
|
|
|
|
static void kmalloc_oob_memset_8(struct kunit *test)
|
|
{
|
|
char *ptr;
|
|
size_t size = 128 - KASAN_GRANULE_SIZE;
|
|
|
|
ptr = kmalloc(size, GFP_KERNEL);
|
|
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
|
|
|
|
OPTIMIZER_HIDE_VAR(size);
|
|
KUNIT_EXPECT_KASAN_FAIL(test, memset(ptr + size - 7, 0, 8));
|
|
kfree(ptr);
|
|
}
|
|
|
|
static void kmalloc_oob_memset_16(struct kunit *test)
|
|
{
|
|
char *ptr;
|
|
size_t size = 128 - KASAN_GRANULE_SIZE;
|
|
|
|
ptr = kmalloc(size, GFP_KERNEL);
|
|
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
|
|
|
|
OPTIMIZER_HIDE_VAR(size);
|
|
KUNIT_EXPECT_KASAN_FAIL(test, memset(ptr + size - 15, 0, 16));
|
|
kfree(ptr);
|
|
}
|
|
|
|
static void kmalloc_oob_in_memset(struct kunit *test)
|
|
{
|
|
char *ptr;
|
|
size_t size = 128 - KASAN_GRANULE_SIZE;
|
|
|
|
ptr = kmalloc(size, GFP_KERNEL);
|
|
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
|
|
|
|
OPTIMIZER_HIDE_VAR(ptr);
|
|
OPTIMIZER_HIDE_VAR(size);
|
|
KUNIT_EXPECT_KASAN_FAIL(test,
|
|
memset(ptr, 0, size + KASAN_GRANULE_SIZE));
|
|
kfree(ptr);
|
|
}
|
|
|
|
static void kmalloc_memmove_negative_size(struct kunit *test)
|
|
{
|
|
char *ptr;
|
|
size_t size = 64;
|
|
size_t invalid_size = -2;
|
|
|
|
/*
|
|
* Hardware tag-based mode doesn't check memmove for negative size.
|
|
* As a result, this test introduces a side-effect memory corruption,
|
|
* which can result in a crash.
|
|
*/
|
|
KASAN_TEST_NEEDS_CONFIG_OFF(test, CONFIG_KASAN_HW_TAGS);
|
|
|
|
ptr = kmalloc(size, GFP_KERNEL);
|
|
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
|
|
|
|
memset((char *)ptr, 0, 64);
|
|
OPTIMIZER_HIDE_VAR(ptr);
|
|
OPTIMIZER_HIDE_VAR(invalid_size);
|
|
KUNIT_EXPECT_KASAN_FAIL(test,
|
|
memmove((char *)ptr, (char *)ptr + 4, invalid_size));
|
|
kfree(ptr);
|
|
}
|
|
|
|
static void kmalloc_memmove_invalid_size(struct kunit *test)
|
|
{
|
|
char *ptr;
|
|
size_t size = 64;
|
|
volatile size_t invalid_size = size;
|
|
|
|
ptr = kmalloc(size, GFP_KERNEL);
|
|
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
|
|
|
|
memset((char *)ptr, 0, 64);
|
|
OPTIMIZER_HIDE_VAR(ptr);
|
|
KUNIT_EXPECT_KASAN_FAIL(test,
|
|
memmove((char *)ptr, (char *)ptr + 4, invalid_size));
|
|
kfree(ptr);
|
|
}
|
|
|
|
static void kmalloc_uaf(struct kunit *test)
|
|
{
|
|
char *ptr;
|
|
size_t size = 10;
|
|
|
|
ptr = kmalloc(size, GFP_KERNEL);
|
|
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
|
|
|
|
kfree(ptr);
|
|
KUNIT_EXPECT_KASAN_FAIL(test, ((volatile char *)ptr)[8]);
|
|
}
|
|
|
|
static void kmalloc_uaf_memset(struct kunit *test)
|
|
{
|
|
char *ptr;
|
|
size_t size = 33;
|
|
|
|
/*
|
|
* Only generic KASAN uses quarantine, which is required to avoid a
|
|
* kernel memory corruption this test causes.
|
|
*/
|
|
KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_GENERIC);
|
|
|
|
ptr = kmalloc(size, GFP_KERNEL);
|
|
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
|
|
|
|
kfree(ptr);
|
|
KUNIT_EXPECT_KASAN_FAIL(test, memset(ptr, 0, size));
|
|
}
|
|
|
|
static void kmalloc_uaf2(struct kunit *test)
|
|
{
|
|
char *ptr1, *ptr2;
|
|
size_t size = 43;
|
|
int counter = 0;
|
|
|
|
again:
|
|
ptr1 = kmalloc(size, GFP_KERNEL);
|
|
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr1);
|
|
|
|
kfree(ptr1);
|
|
|
|
ptr2 = kmalloc(size, GFP_KERNEL);
|
|
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr2);
|
|
|
|
/*
|
|
* For tag-based KASAN ptr1 and ptr2 tags might happen to be the same.
|
|
* Allow up to 16 attempts at generating different tags.
|
|
*/
|
|
if (!IS_ENABLED(CONFIG_KASAN_GENERIC) && ptr1 == ptr2 && counter++ < 16) {
|
|
kfree(ptr2);
|
|
goto again;
|
|
}
|
|
|
|
KUNIT_EXPECT_KASAN_FAIL(test, ((volatile char *)ptr1)[40]);
|
|
KUNIT_EXPECT_PTR_NE(test, ptr1, ptr2);
|
|
|
|
kfree(ptr2);
|
|
}
|
|
|
|
static void kfree_via_page(struct kunit *test)
|
|
{
|
|
char *ptr;
|
|
size_t size = 8;
|
|
struct page *page;
|
|
unsigned long offset;
|
|
|
|
ptr = kmalloc(size, GFP_KERNEL);
|
|
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
|
|
|
|
page = virt_to_page(ptr);
|
|
offset = offset_in_page(ptr);
|
|
kfree(page_address(page) + offset);
|
|
}
|
|
|
|
static void kfree_via_phys(struct kunit *test)
|
|
{
|
|
char *ptr;
|
|
size_t size = 8;
|
|
phys_addr_t phys;
|
|
|
|
ptr = kmalloc(size, GFP_KERNEL);
|
|
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
|
|
|
|
phys = virt_to_phys(ptr);
|
|
kfree(phys_to_virt(phys));
|
|
}
|
|
|
|
static void kmem_cache_oob(struct kunit *test)
|
|
{
|
|
char *p;
|
|
size_t size = 200;
|
|
struct kmem_cache *cache;
|
|
|
|
cache = kmem_cache_create("test_cache", size, 0, 0, NULL);
|
|
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, cache);
|
|
|
|
p = kmem_cache_alloc(cache, GFP_KERNEL);
|
|
if (!p) {
|
|
kunit_err(test, "Allocation failed: %s\n", __func__);
|
|
kmem_cache_destroy(cache);
|
|
return;
|
|
}
|
|
|
|
KUNIT_EXPECT_KASAN_FAIL(test, *p = p[size + OOB_TAG_OFF]);
|
|
|
|
kmem_cache_free(cache, p);
|
|
kmem_cache_destroy(cache);
|
|
}
|
|
|
|
static void kmem_cache_accounted(struct kunit *test)
|
|
{
|
|
int i;
|
|
char *p;
|
|
size_t size = 200;
|
|
struct kmem_cache *cache;
|
|
|
|
cache = kmem_cache_create("test_cache", size, 0, SLAB_ACCOUNT, NULL);
|
|
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, cache);
|
|
|
|
/*
|
|
* Several allocations with a delay to allow for lazy per memcg kmem
|
|
* cache creation.
|
|
*/
|
|
for (i = 0; i < 5; i++) {
|
|
p = kmem_cache_alloc(cache, GFP_KERNEL);
|
|
if (!p)
|
|
goto free_cache;
|
|
|
|
kmem_cache_free(cache, p);
|
|
msleep(100);
|
|
}
|
|
|
|
free_cache:
|
|
kmem_cache_destroy(cache);
|
|
}
|
|
|
|
static void kmem_cache_bulk(struct kunit *test)
|
|
{
|
|
struct kmem_cache *cache;
|
|
size_t size = 200;
|
|
char *p[10];
|
|
bool ret;
|
|
int i;
|
|
|
|
cache = kmem_cache_create("test_cache", size, 0, 0, NULL);
|
|
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, cache);
|
|
|
|
ret = kmem_cache_alloc_bulk(cache, GFP_KERNEL, ARRAY_SIZE(p), (void **)&p);
|
|
if (!ret) {
|
|
kunit_err(test, "Allocation failed: %s\n", __func__);
|
|
kmem_cache_destroy(cache);
|
|
return;
|
|
}
|
|
|
|
for (i = 0; i < ARRAY_SIZE(p); i++)
|
|
p[i][0] = p[i][size - 1] = 42;
|
|
|
|
kmem_cache_free_bulk(cache, ARRAY_SIZE(p), (void **)&p);
|
|
kmem_cache_destroy(cache);
|
|
}
|
|
|
|
static char global_array[10];
|
|
|
|
static void kasan_global_oob_right(struct kunit *test)
|
|
{
|
|
/*
|
|
* Deliberate out-of-bounds access. To prevent CONFIG_UBSAN_LOCAL_BOUNDS
|
|
* from failing here and panicking the kernel, access the array via a
|
|
* volatile pointer, which will prevent the compiler from being able to
|
|
* determine the array bounds.
|
|
*
|
|
* This access uses a volatile pointer to char (char *volatile) rather
|
|
* than the more conventional pointer to volatile char (volatile char *)
|
|
* because we want to prevent the compiler from making inferences about
|
|
* the pointer itself (i.e. its array bounds), not the data that it
|
|
* refers to.
|
|
*/
|
|
char *volatile array = global_array;
|
|
char *p = &array[ARRAY_SIZE(global_array) + 3];
|
|
|
|
/* Only generic mode instruments globals. */
|
|
KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_GENERIC);
|
|
|
|
KUNIT_EXPECT_KASAN_FAIL(test, *(volatile char *)p);
|
|
}
|
|
|
|
static void kasan_global_oob_left(struct kunit *test)
|
|
{
|
|
char *volatile array = global_array;
|
|
char *p = array - 3;
|
|
|
|
/*
|
|
* GCC is known to fail this test, skip it.
|
|
* See https://bugzilla.kernel.org/show_bug.cgi?id=215051.
|
|
*/
|
|
KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_CC_IS_CLANG);
|
|
KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_GENERIC);
|
|
KUNIT_EXPECT_KASAN_FAIL(test, *(volatile char *)p);
|
|
}
|
|
|
|
/* Check that ksize() makes the whole object accessible. */
|
|
static void ksize_unpoisons_memory(struct kunit *test)
|
|
{
|
|
char *ptr;
|
|
size_t size = 123, real_size;
|
|
|
|
ptr = kmalloc(size, GFP_KERNEL);
|
|
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
|
|
real_size = ksize(ptr);
|
|
|
|
/* This access shouldn't trigger a KASAN report. */
|
|
ptr[size] = 'x';
|
|
|
|
/* This one must. */
|
|
KUNIT_EXPECT_KASAN_FAIL(test, ((volatile char *)ptr)[real_size]);
|
|
|
|
kfree(ptr);
|
|
}
|
|
|
|
/*
|
|
* Check that a use-after-free is detected by ksize() and via normal accesses
|
|
* after it.
|
|
*/
|
|
static void ksize_uaf(struct kunit *test)
|
|
{
|
|
char *ptr;
|
|
int size = 128 - KASAN_GRANULE_SIZE;
|
|
|
|
ptr = kmalloc(size, GFP_KERNEL);
|
|
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
|
|
kfree(ptr);
|
|
|
|
KUNIT_EXPECT_KASAN_FAIL(test, ksize(ptr));
|
|
KUNIT_EXPECT_KASAN_FAIL(test, ((volatile char *)ptr)[0]);
|
|
KUNIT_EXPECT_KASAN_FAIL(test, ((volatile char *)ptr)[size]);
|
|
}
|
|
|
|
static void kasan_stack_oob(struct kunit *test)
|
|
{
|
|
char stack_array[10];
|
|
/* See comment in kasan_global_oob. */
|
|
char *volatile array = stack_array;
|
|
char *p = &array[ARRAY_SIZE(stack_array) + OOB_TAG_OFF];
|
|
|
|
KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_STACK);
|
|
|
|
KUNIT_EXPECT_KASAN_FAIL(test, *(volatile char *)p);
|
|
}
|
|
|
|
static void kasan_alloca_oob_left(struct kunit *test)
|
|
{
|
|
volatile int i = 10;
|
|
char alloca_array[i];
|
|
/* See comment in kasan_global_oob. */
|
|
char *volatile array = alloca_array;
|
|
char *p = array - 1;
|
|
|
|
/* Only generic mode instruments dynamic allocas. */
|
|
KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_GENERIC);
|
|
KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_STACK);
|
|
|
|
KUNIT_EXPECT_KASAN_FAIL(test, *(volatile char *)p);
|
|
}
|
|
|
|
static void kasan_alloca_oob_right(struct kunit *test)
|
|
{
|
|
volatile int i = 10;
|
|
char alloca_array[i];
|
|
/* See comment in kasan_global_oob. */
|
|
char *volatile array = alloca_array;
|
|
char *p = array + i;
|
|
|
|
/* Only generic mode instruments dynamic allocas. */
|
|
KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_GENERIC);
|
|
KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_STACK);
|
|
|
|
KUNIT_EXPECT_KASAN_FAIL(test, *(volatile char *)p);
|
|
}
|
|
|
|
static void kmem_cache_double_free(struct kunit *test)
|
|
{
|
|
char *p;
|
|
size_t size = 200;
|
|
struct kmem_cache *cache;
|
|
|
|
cache = kmem_cache_create("test_cache", size, 0, 0, NULL);
|
|
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, cache);
|
|
|
|
p = kmem_cache_alloc(cache, GFP_KERNEL);
|
|
if (!p) {
|
|
kunit_err(test, "Allocation failed: %s\n", __func__);
|
|
kmem_cache_destroy(cache);
|
|
return;
|
|
}
|
|
|
|
kmem_cache_free(cache, p);
|
|
KUNIT_EXPECT_KASAN_FAIL(test, kmem_cache_free(cache, p));
|
|
kmem_cache_destroy(cache);
|
|
}
|
|
|
|
static void kmem_cache_invalid_free(struct kunit *test)
|
|
{
|
|
char *p;
|
|
size_t size = 200;
|
|
struct kmem_cache *cache;
|
|
|
|
cache = kmem_cache_create("test_cache", size, 0, SLAB_TYPESAFE_BY_RCU,
|
|
NULL);
|
|
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, cache);
|
|
|
|
p = kmem_cache_alloc(cache, GFP_KERNEL);
|
|
if (!p) {
|
|
kunit_err(test, "Allocation failed: %s\n", __func__);
|
|
kmem_cache_destroy(cache);
|
|
return;
|
|
}
|
|
|
|
/* Trigger invalid free, the object doesn't get freed. */
|
|
KUNIT_EXPECT_KASAN_FAIL(test, kmem_cache_free(cache, p + 1));
|
|
|
|
/*
|
|
* Properly free the object to prevent the "Objects remaining in
|
|
* test_cache on __kmem_cache_shutdown" BUG failure.
|
|
*/
|
|
kmem_cache_free(cache, p);
|
|
|
|
kmem_cache_destroy(cache);
|
|
}
|
|
|
|
static void empty_cache_ctor(void *object) { }
|
|
|
|
static void kmem_cache_double_destroy(struct kunit *test)
|
|
{
|
|
struct kmem_cache *cache;
|
|
|
|
/* Provide a constructor to prevent cache merging. */
|
|
cache = kmem_cache_create("test_cache", 200, 0, 0, empty_cache_ctor);
|
|
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, cache);
|
|
kmem_cache_destroy(cache);
|
|
KUNIT_EXPECT_KASAN_FAIL(test, kmem_cache_destroy(cache));
|
|
}
|
|
|
|
static void kasan_memchr(struct kunit *test)
|
|
{
|
|
char *ptr;
|
|
size_t size = 24;
|
|
|
|
/*
|
|
* str* functions are not instrumented with CONFIG_AMD_MEM_ENCRYPT.
|
|
* See https://bugzilla.kernel.org/show_bug.cgi?id=206337 for details.
|
|
*/
|
|
KASAN_TEST_NEEDS_CONFIG_OFF(test, CONFIG_AMD_MEM_ENCRYPT);
|
|
|
|
if (OOB_TAG_OFF)
|
|
size = round_up(size, OOB_TAG_OFF);
|
|
|
|
ptr = kmalloc(size, GFP_KERNEL | __GFP_ZERO);
|
|
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
|
|
|
|
OPTIMIZER_HIDE_VAR(ptr);
|
|
OPTIMIZER_HIDE_VAR(size);
|
|
KUNIT_EXPECT_KASAN_FAIL(test,
|
|
kasan_ptr_result = memchr(ptr, '1', size + 1));
|
|
|
|
kfree(ptr);
|
|
}
|
|
|
|
static void kasan_memcmp(struct kunit *test)
|
|
{
|
|
char *ptr;
|
|
size_t size = 24;
|
|
int arr[9];
|
|
|
|
/*
|
|
* str* functions are not instrumented with CONFIG_AMD_MEM_ENCRYPT.
|
|
* See https://bugzilla.kernel.org/show_bug.cgi?id=206337 for details.
|
|
*/
|
|
KASAN_TEST_NEEDS_CONFIG_OFF(test, CONFIG_AMD_MEM_ENCRYPT);
|
|
|
|
if (OOB_TAG_OFF)
|
|
size = round_up(size, OOB_TAG_OFF);
|
|
|
|
ptr = kmalloc(size, GFP_KERNEL | __GFP_ZERO);
|
|
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
|
|
memset(arr, 0, sizeof(arr));
|
|
|
|
OPTIMIZER_HIDE_VAR(ptr);
|
|
OPTIMIZER_HIDE_VAR(size);
|
|
KUNIT_EXPECT_KASAN_FAIL(test,
|
|
kasan_int_result = memcmp(ptr, arr, size+1));
|
|
kfree(ptr);
|
|
}
|
|
|
|
static void kasan_strings(struct kunit *test)
|
|
{
|
|
char *ptr;
|
|
size_t size = 24;
|
|
|
|
/*
|
|
* str* functions are not instrumented with CONFIG_AMD_MEM_ENCRYPT.
|
|
* See https://bugzilla.kernel.org/show_bug.cgi?id=206337 for details.
|
|
*/
|
|
KASAN_TEST_NEEDS_CONFIG_OFF(test, CONFIG_AMD_MEM_ENCRYPT);
|
|
|
|
ptr = kmalloc(size, GFP_KERNEL | __GFP_ZERO);
|
|
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
|
|
|
|
kfree(ptr);
|
|
|
|
/*
|
|
* Try to cause only 1 invalid access (less spam in dmesg).
|
|
* For that we need ptr to point to zeroed byte.
|
|
* Skip metadata that could be stored in freed object so ptr
|
|
* will likely point to zeroed byte.
|
|
*/
|
|
ptr += 16;
|
|
KUNIT_EXPECT_KASAN_FAIL(test, kasan_ptr_result = strchr(ptr, '1'));
|
|
|
|
KUNIT_EXPECT_KASAN_FAIL(test, kasan_ptr_result = strrchr(ptr, '1'));
|
|
|
|
KUNIT_EXPECT_KASAN_FAIL(test, kasan_int_result = strcmp(ptr, "2"));
|
|
|
|
KUNIT_EXPECT_KASAN_FAIL(test, kasan_int_result = strncmp(ptr, "2", 1));
|
|
|
|
KUNIT_EXPECT_KASAN_FAIL(test, kasan_int_result = strlen(ptr));
|
|
|
|
KUNIT_EXPECT_KASAN_FAIL(test, kasan_int_result = strnlen(ptr, 1));
|
|
}
|
|
|
|
static void kasan_bitops_modify(struct kunit *test, int nr, void *addr)
|
|
{
|
|
KUNIT_EXPECT_KASAN_FAIL(test, set_bit(nr, addr));
|
|
KUNIT_EXPECT_KASAN_FAIL(test, __set_bit(nr, addr));
|
|
KUNIT_EXPECT_KASAN_FAIL(test, clear_bit(nr, addr));
|
|
KUNIT_EXPECT_KASAN_FAIL(test, __clear_bit(nr, addr));
|
|
KUNIT_EXPECT_KASAN_FAIL(test, clear_bit_unlock(nr, addr));
|
|
KUNIT_EXPECT_KASAN_FAIL(test, __clear_bit_unlock(nr, addr));
|
|
KUNIT_EXPECT_KASAN_FAIL(test, change_bit(nr, addr));
|
|
KUNIT_EXPECT_KASAN_FAIL(test, __change_bit(nr, addr));
|
|
}
|
|
|
|
static void kasan_bitops_test_and_modify(struct kunit *test, int nr, void *addr)
|
|
{
|
|
KUNIT_EXPECT_KASAN_FAIL(test, test_and_set_bit(nr, addr));
|
|
KUNIT_EXPECT_KASAN_FAIL(test, __test_and_set_bit(nr, addr));
|
|
KUNIT_EXPECT_KASAN_FAIL(test, test_and_set_bit_lock(nr, addr));
|
|
KUNIT_EXPECT_KASAN_FAIL(test, test_and_clear_bit(nr, addr));
|
|
KUNIT_EXPECT_KASAN_FAIL(test, __test_and_clear_bit(nr, addr));
|
|
KUNIT_EXPECT_KASAN_FAIL(test, test_and_change_bit(nr, addr));
|
|
KUNIT_EXPECT_KASAN_FAIL(test, __test_and_change_bit(nr, addr));
|
|
KUNIT_EXPECT_KASAN_FAIL(test, kasan_int_result = test_bit(nr, addr));
|
|
|
|
#if defined(clear_bit_unlock_is_negative_byte)
|
|
KUNIT_EXPECT_KASAN_FAIL(test, kasan_int_result =
|
|
clear_bit_unlock_is_negative_byte(nr, addr));
|
|
#endif
|
|
}
|
|
|
|
static void kasan_bitops_generic(struct kunit *test)
|
|
{
|
|
long *bits;
|
|
|
|
/* This test is specifically crafted for the generic mode. */
|
|
KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_GENERIC);
|
|
|
|
/*
|
|
* Allocate 1 more byte, which causes kzalloc to round up to 16 bytes;
|
|
* this way we do not actually corrupt other memory.
|
|
*/
|
|
bits = kzalloc(sizeof(*bits) + 1, GFP_KERNEL);
|
|
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, bits);
|
|
|
|
/*
|
|
* Below calls try to access bit within allocated memory; however, the
|
|
* below accesses are still out-of-bounds, since bitops are defined to
|
|
* operate on the whole long the bit is in.
|
|
*/
|
|
kasan_bitops_modify(test, BITS_PER_LONG, bits);
|
|
|
|
/*
|
|
* Below calls try to access bit beyond allocated memory.
|
|
*/
|
|
kasan_bitops_test_and_modify(test, BITS_PER_LONG + BITS_PER_BYTE, bits);
|
|
|
|
kfree(bits);
|
|
}
|
|
|
|
static void kasan_bitops_tags(struct kunit *test)
|
|
{
|
|
long *bits;
|
|
|
|
/* This test is specifically crafted for tag-based modes. */
|
|
KASAN_TEST_NEEDS_CONFIG_OFF(test, CONFIG_KASAN_GENERIC);
|
|
|
|
/* kmalloc-64 cache will be used and the last 16 bytes will be the redzone. */
|
|
bits = kzalloc(48, GFP_KERNEL);
|
|
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, bits);
|
|
|
|
/* Do the accesses past the 48 allocated bytes, but within the redone. */
|
|
kasan_bitops_modify(test, BITS_PER_LONG, (void *)bits + 48);
|
|
kasan_bitops_test_and_modify(test, BITS_PER_LONG + BITS_PER_BYTE, (void *)bits + 48);
|
|
|
|
kfree(bits);
|
|
}
|
|
|
|
static void kmalloc_double_kzfree(struct kunit *test)
|
|
{
|
|
char *ptr;
|
|
size_t size = 16;
|
|
|
|
ptr = kmalloc(size, GFP_KERNEL);
|
|
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
|
|
|
|
kfree_sensitive(ptr);
|
|
KUNIT_EXPECT_KASAN_FAIL(test, kfree_sensitive(ptr));
|
|
}
|
|
|
|
static void vmalloc_oob(struct kunit *test)
|
|
{
|
|
void *area;
|
|
|
|
KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_VMALLOC);
|
|
|
|
/*
|
|
* We have to be careful not to hit the guard page.
|
|
* The MMU will catch that and crash us.
|
|
*/
|
|
area = vmalloc(3000);
|
|
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, area);
|
|
|
|
KUNIT_EXPECT_KASAN_FAIL(test, ((volatile char *)area)[3100]);
|
|
vfree(area);
|
|
}
|
|
|
|
/*
|
|
* Check that the assigned pointer tag falls within the [KASAN_TAG_MIN,
|
|
* KASAN_TAG_KERNEL) range (note: excluding the match-all tag) for tag-based
|
|
* modes.
|
|
*/
|
|
static void match_all_not_assigned(struct kunit *test)
|
|
{
|
|
char *ptr;
|
|
struct page *pages;
|
|
int i, size, order;
|
|
|
|
KASAN_TEST_NEEDS_CONFIG_OFF(test, CONFIG_KASAN_GENERIC);
|
|
|
|
for (i = 0; i < 256; i++) {
|
|
size = (get_random_int() % 1024) + 1;
|
|
ptr = kmalloc(size, GFP_KERNEL);
|
|
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
|
|
KUNIT_EXPECT_GE(test, (u8)get_tag(ptr), (u8)KASAN_TAG_MIN);
|
|
KUNIT_EXPECT_LT(test, (u8)get_tag(ptr), (u8)KASAN_TAG_KERNEL);
|
|
kfree(ptr);
|
|
}
|
|
|
|
for (i = 0; i < 256; i++) {
|
|
order = (get_random_int() % 4) + 1;
|
|
pages = alloc_pages(GFP_KERNEL, order);
|
|
ptr = page_address(pages);
|
|
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
|
|
KUNIT_EXPECT_GE(test, (u8)get_tag(ptr), (u8)KASAN_TAG_MIN);
|
|
KUNIT_EXPECT_LT(test, (u8)get_tag(ptr), (u8)KASAN_TAG_KERNEL);
|
|
free_pages((unsigned long)ptr, order);
|
|
}
|
|
}
|
|
|
|
/* Check that 0xff works as a match-all pointer tag for tag-based modes. */
|
|
static void match_all_ptr_tag(struct kunit *test)
|
|
{
|
|
char *ptr;
|
|
u8 tag;
|
|
|
|
KASAN_TEST_NEEDS_CONFIG_OFF(test, CONFIG_KASAN_GENERIC);
|
|
|
|
ptr = kmalloc(128, GFP_KERNEL);
|
|
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
|
|
|
|
/* Backup the assigned tag. */
|
|
tag = get_tag(ptr);
|
|
KUNIT_EXPECT_NE(test, tag, (u8)KASAN_TAG_KERNEL);
|
|
|
|
/* Reset the tag to 0xff.*/
|
|
ptr = set_tag(ptr, KASAN_TAG_KERNEL);
|
|
|
|
/* This access shouldn't trigger a KASAN report. */
|
|
*ptr = 0;
|
|
|
|
/* Recover the pointer tag and free. */
|
|
ptr = set_tag(ptr, tag);
|
|
kfree(ptr);
|
|
}
|
|
|
|
/* Check that there are no match-all memory tags for tag-based modes. */
|
|
static void match_all_mem_tag(struct kunit *test)
|
|
{
|
|
char *ptr;
|
|
int tag;
|
|
|
|
KASAN_TEST_NEEDS_CONFIG_OFF(test, CONFIG_KASAN_GENERIC);
|
|
|
|
ptr = kmalloc(128, GFP_KERNEL);
|
|
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
|
|
KUNIT_EXPECT_NE(test, (u8)get_tag(ptr), (u8)KASAN_TAG_KERNEL);
|
|
|
|
/* For each possible tag value not matching the pointer tag. */
|
|
for (tag = KASAN_TAG_MIN; tag <= KASAN_TAG_KERNEL; tag++) {
|
|
if (tag == get_tag(ptr))
|
|
continue;
|
|
|
|
/* Mark the first memory granule with the chosen memory tag. */
|
|
kasan_poison(ptr, KASAN_GRANULE_SIZE, (u8)tag, false);
|
|
|
|
/* This access must cause a KASAN report. */
|
|
KUNIT_EXPECT_KASAN_FAIL(test, *ptr = 0);
|
|
}
|
|
|
|
/* Recover the memory tag and free. */
|
|
kasan_poison(ptr, KASAN_GRANULE_SIZE, get_tag(ptr), false);
|
|
kfree(ptr);
|
|
}
|
|
|
|
static struct kunit_case kasan_kunit_test_cases[] = {
|
|
KUNIT_CASE(kmalloc_oob_right),
|
|
KUNIT_CASE(kmalloc_oob_left),
|
|
KUNIT_CASE(kmalloc_node_oob_right),
|
|
KUNIT_CASE(kmalloc_pagealloc_oob_right),
|
|
KUNIT_CASE(kmalloc_pagealloc_uaf),
|
|
KUNIT_CASE(kmalloc_pagealloc_invalid_free),
|
|
KUNIT_CASE(pagealloc_oob_right),
|
|
KUNIT_CASE(pagealloc_uaf),
|
|
KUNIT_CASE(kmalloc_large_oob_right),
|
|
KUNIT_CASE(krealloc_more_oob),
|
|
KUNIT_CASE(krealloc_less_oob),
|
|
KUNIT_CASE(krealloc_pagealloc_more_oob),
|
|
KUNIT_CASE(krealloc_pagealloc_less_oob),
|
|
KUNIT_CASE(krealloc_uaf),
|
|
KUNIT_CASE(kmalloc_oob_16),
|
|
KUNIT_CASE(kmalloc_uaf_16),
|
|
KUNIT_CASE(kmalloc_oob_in_memset),
|
|
KUNIT_CASE(kmalloc_oob_memset_2),
|
|
KUNIT_CASE(kmalloc_oob_memset_4),
|
|
KUNIT_CASE(kmalloc_oob_memset_8),
|
|
KUNIT_CASE(kmalloc_oob_memset_16),
|
|
KUNIT_CASE(kmalloc_memmove_negative_size),
|
|
KUNIT_CASE(kmalloc_memmove_invalid_size),
|
|
KUNIT_CASE(kmalloc_uaf),
|
|
KUNIT_CASE(kmalloc_uaf_memset),
|
|
KUNIT_CASE(kmalloc_uaf2),
|
|
KUNIT_CASE(kfree_via_page),
|
|
KUNIT_CASE(kfree_via_phys),
|
|
KUNIT_CASE(kmem_cache_oob),
|
|
KUNIT_CASE(kmem_cache_accounted),
|
|
KUNIT_CASE(kmem_cache_bulk),
|
|
KUNIT_CASE(kasan_global_oob_right),
|
|
KUNIT_CASE(kasan_global_oob_left),
|
|
KUNIT_CASE(kasan_stack_oob),
|
|
KUNIT_CASE(kasan_alloca_oob_left),
|
|
KUNIT_CASE(kasan_alloca_oob_right),
|
|
KUNIT_CASE(ksize_unpoisons_memory),
|
|
KUNIT_CASE(ksize_uaf),
|
|
KUNIT_CASE(kmem_cache_double_free),
|
|
KUNIT_CASE(kmem_cache_invalid_free),
|
|
KUNIT_CASE(kmem_cache_double_destroy),
|
|
KUNIT_CASE(kasan_memchr),
|
|
KUNIT_CASE(kasan_memcmp),
|
|
KUNIT_CASE(kasan_strings),
|
|
KUNIT_CASE(kasan_bitops_generic),
|
|
KUNIT_CASE(kasan_bitops_tags),
|
|
KUNIT_CASE(kmalloc_double_kzfree),
|
|
KUNIT_CASE(vmalloc_oob),
|
|
KUNIT_CASE(match_all_not_assigned),
|
|
KUNIT_CASE(match_all_ptr_tag),
|
|
KUNIT_CASE(match_all_mem_tag),
|
|
{}
|
|
};
|
|
|
|
static struct kunit_suite kasan_kunit_test_suite = {
|
|
.name = "kasan",
|
|
.init = kasan_test_init,
|
|
.test_cases = kasan_kunit_test_cases,
|
|
.exit = kasan_test_exit,
|
|
};
|
|
|
|
kunit_test_suite(kasan_kunit_test_suite);
|
|
|
|
MODULE_LICENSE("GPL");
|