linux/drivers/net/wireless/ath9k/eeprom.c
Sujith 394cf0a1ca ath9k: Header file cleanup
Split the core header files into manageable pieces.

Signed-off-by: Sujith <Sujith.Manoharan@atheros.com>
Signed-off-by: John W. Linville <linville@tuxdriver.com>
2009-02-13 13:44:54 -05:00

2762 lines
77 KiB
C

/*
* Copyright (c) 2008 Atheros Communications Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include "ath9k.h"
static void ath9k_hw_analog_shift_rmw(struct ath_hal *ah,
u32 reg, u32 mask,
u32 shift, u32 val)
{
u32 regVal;
regVal = REG_READ(ah, reg) & ~mask;
regVal |= (val << shift) & mask;
REG_WRITE(ah, reg, regVal);
if (ah->ah_config.analog_shiftreg)
udelay(100);
return;
}
static inline u16 ath9k_hw_fbin2freq(u8 fbin, bool is2GHz)
{
if (fbin == AR5416_BCHAN_UNUSED)
return fbin;
return (u16) ((is2GHz) ? (2300 + fbin) : (4800 + 5 * fbin));
}
static inline int16_t ath9k_hw_interpolate(u16 target,
u16 srcLeft, u16 srcRight,
int16_t targetLeft,
int16_t targetRight)
{
int16_t rv;
if (srcRight == srcLeft) {
rv = targetLeft;
} else {
rv = (int16_t) (((target - srcLeft) * targetRight +
(srcRight - target) * targetLeft) /
(srcRight - srcLeft));
}
return rv;
}
static inline bool ath9k_hw_get_lower_upper_index(u8 target, u8 *pList,
u16 listSize, u16 *indexL,
u16 *indexR)
{
u16 i;
if (target <= pList[0]) {
*indexL = *indexR = 0;
return true;
}
if (target >= pList[listSize - 1]) {
*indexL = *indexR = (u16) (listSize - 1);
return true;
}
for (i = 0; i < listSize - 1; i++) {
if (pList[i] == target) {
*indexL = *indexR = i;
return true;
}
if (target < pList[i + 1]) {
*indexL = i;
*indexR = (u16) (i + 1);
return false;
}
}
return false;
}
static inline bool ath9k_hw_nvram_read(struct ath_hal *ah, u32 off, u16 *data)
{
struct ath_softc *sc = ah->ah_sc;
return sc->bus_ops->eeprom_read(ah, off, data);
}
static bool ath9k_hw_fill_4k_eeprom(struct ath_hal *ah)
{
#define SIZE_EEPROM_4K (sizeof(struct ar5416_eeprom_4k) / sizeof(u16))
struct ath_hal_5416 *ahp = AH5416(ah);
struct ar5416_eeprom_4k *eep = &ahp->ah_eeprom.map4k;
u16 *eep_data;
int addr, eep_start_loc = 0;
eep_start_loc = 64;
if (!ath9k_hw_use_flash(ah)) {
DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
"Reading from EEPROM, not flash\n");
}
eep_data = (u16 *)eep;
for (addr = 0; addr < SIZE_EEPROM_4K; addr++) {
if (!ath9k_hw_nvram_read(ah, addr + eep_start_loc, eep_data)) {
DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
"Unable to read eeprom region \n");
return false;
}
eep_data++;
}
return true;
#undef SIZE_EEPROM_4K
}
static bool ath9k_hw_fill_def_eeprom(struct ath_hal *ah)
{
#define SIZE_EEPROM_DEF (sizeof(struct ar5416_eeprom_def) / sizeof(u16))
struct ath_hal_5416 *ahp = AH5416(ah);
struct ar5416_eeprom_def *eep = &ahp->ah_eeprom.def;
u16 *eep_data;
int addr, ar5416_eep_start_loc = 0x100;
eep_data = (u16 *)eep;
for (addr = 0; addr < SIZE_EEPROM_DEF; addr++) {
if (!ath9k_hw_nvram_read(ah, addr + ar5416_eep_start_loc,
eep_data)) {
DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
"Unable to read eeprom region\n");
return false;
}
eep_data++;
}
return true;
#undef SIZE_EEPROM_DEF
}
static bool (*ath9k_fill_eeprom[]) (struct ath_hal *) = {
ath9k_hw_fill_def_eeprom,
ath9k_hw_fill_4k_eeprom
};
static inline bool ath9k_hw_fill_eeprom(struct ath_hal *ah)
{
struct ath_hal_5416 *ahp = AH5416(ah);
return ath9k_fill_eeprom[ahp->ah_eep_map](ah);
}
static int ath9k_hw_check_def_eeprom(struct ath_hal *ah)
{
struct ath_hal_5416 *ahp = AH5416(ah);
struct ar5416_eeprom_def *eep =
(struct ar5416_eeprom_def *) &ahp->ah_eeprom.def;
u16 *eepdata, temp, magic, magic2;
u32 sum = 0, el;
bool need_swap = false;
int i, addr, size;
if (!ath9k_hw_nvram_read(ah, AR5416_EEPROM_MAGIC_OFFSET,
&magic)) {
DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
"Reading Magic # failed\n");
return false;
}
if (!ath9k_hw_use_flash(ah)) {
DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
"Read Magic = 0x%04X\n", magic);
if (magic != AR5416_EEPROM_MAGIC) {
magic2 = swab16(magic);
if (magic2 == AR5416_EEPROM_MAGIC) {
size = sizeof(struct ar5416_eeprom_def);
need_swap = true;
eepdata = (u16 *) (&ahp->ah_eeprom);
for (addr = 0; addr < size / sizeof(u16); addr++) {
temp = swab16(*eepdata);
*eepdata = temp;
eepdata++;
DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
"0x%04X ", *eepdata);
if (((addr + 1) % 6) == 0)
DPRINTF(ah->ah_sc,
ATH_DBG_EEPROM, "\n");
}
} else {
DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
"Invalid EEPROM Magic. "
"endianness mismatch.\n");
return -EINVAL;
}
}
}
DPRINTF(ah->ah_sc, ATH_DBG_EEPROM, "need_swap = %s.\n",
need_swap ? "True" : "False");
if (need_swap)
el = swab16(ahp->ah_eeprom.def.baseEepHeader.length);
else
el = ahp->ah_eeprom.def.baseEepHeader.length;
if (el > sizeof(struct ar5416_eeprom_def))
el = sizeof(struct ar5416_eeprom_def) / sizeof(u16);
else
el = el / sizeof(u16);
eepdata = (u16 *)(&ahp->ah_eeprom);
for (i = 0; i < el; i++)
sum ^= *eepdata++;
if (need_swap) {
u32 integer, j;
u16 word;
DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
"EEPROM Endianness is not native.. Changing \n");
word = swab16(eep->baseEepHeader.length);
eep->baseEepHeader.length = word;
word = swab16(eep->baseEepHeader.checksum);
eep->baseEepHeader.checksum = word;
word = swab16(eep->baseEepHeader.version);
eep->baseEepHeader.version = word;
word = swab16(eep->baseEepHeader.regDmn[0]);
eep->baseEepHeader.regDmn[0] = word;
word = swab16(eep->baseEepHeader.regDmn[1]);
eep->baseEepHeader.regDmn[1] = word;
word = swab16(eep->baseEepHeader.rfSilent);
eep->baseEepHeader.rfSilent = word;
word = swab16(eep->baseEepHeader.blueToothOptions);
eep->baseEepHeader.blueToothOptions = word;
word = swab16(eep->baseEepHeader.deviceCap);
eep->baseEepHeader.deviceCap = word;
for (j = 0; j < ARRAY_SIZE(eep->modalHeader); j++) {
struct modal_eep_header *pModal =
&eep->modalHeader[j];
integer = swab32(pModal->antCtrlCommon);
pModal->antCtrlCommon = integer;
for (i = 0; i < AR5416_MAX_CHAINS; i++) {
integer = swab32(pModal->antCtrlChain[i]);
pModal->antCtrlChain[i] = integer;
}
for (i = 0; i < AR5416_EEPROM_MODAL_SPURS; i++) {
word = swab16(pModal->spurChans[i].spurChan);
pModal->spurChans[i].spurChan = word;
}
}
}
if (sum != 0xffff || ar5416_get_eep_ver(ahp) != AR5416_EEP_VER ||
ar5416_get_eep_rev(ahp) < AR5416_EEP_NO_BACK_VER) {
DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
"Bad EEPROM checksum 0x%x or revision 0x%04x\n",
sum, ar5416_get_eep_ver(ahp));
return -EINVAL;
}
return 0;
}
static int ath9k_hw_check_4k_eeprom(struct ath_hal *ah)
{
#define EEPROM_4K_SIZE (sizeof(struct ar5416_eeprom_4k) / sizeof(u16))
struct ath_hal_5416 *ahp = AH5416(ah);
struct ar5416_eeprom_4k *eep =
(struct ar5416_eeprom_4k *) &ahp->ah_eeprom.map4k;
u16 *eepdata, temp, magic, magic2;
u32 sum = 0, el;
bool need_swap = false;
int i, addr;
if (!ath9k_hw_use_flash(ah)) {
if (!ath9k_hw_nvram_read(ah, AR5416_EEPROM_MAGIC_OFFSET,
&magic)) {
DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
"Reading Magic # failed\n");
return false;
}
DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
"Read Magic = 0x%04X\n", magic);
if (magic != AR5416_EEPROM_MAGIC) {
magic2 = swab16(magic);
if (magic2 == AR5416_EEPROM_MAGIC) {
need_swap = true;
eepdata = (u16 *) (&ahp->ah_eeprom);
for (addr = 0; addr < EEPROM_4K_SIZE; addr++) {
temp = swab16(*eepdata);
*eepdata = temp;
eepdata++;
DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
"0x%04X ", *eepdata);
if (((addr + 1) % 6) == 0)
DPRINTF(ah->ah_sc,
ATH_DBG_EEPROM, "\n");
}
} else {
DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
"Invalid EEPROM Magic. "
"endianness mismatch.\n");
return -EINVAL;
}
}
}
DPRINTF(ah->ah_sc, ATH_DBG_EEPROM, "need_swap = %s.\n",
need_swap ? "True" : "False");
if (need_swap)
el = swab16(ahp->ah_eeprom.map4k.baseEepHeader.length);
else
el = ahp->ah_eeprom.map4k.baseEepHeader.length;
if (el > sizeof(struct ar5416_eeprom_def))
el = sizeof(struct ar5416_eeprom_4k) / sizeof(u16);
else
el = el / sizeof(u16);
eepdata = (u16 *)(&ahp->ah_eeprom);
for (i = 0; i < el; i++)
sum ^= *eepdata++;
if (need_swap) {
u32 integer;
u16 word;
DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
"EEPROM Endianness is not native.. Changing \n");
word = swab16(eep->baseEepHeader.length);
eep->baseEepHeader.length = word;
word = swab16(eep->baseEepHeader.checksum);
eep->baseEepHeader.checksum = word;
word = swab16(eep->baseEepHeader.version);
eep->baseEepHeader.version = word;
word = swab16(eep->baseEepHeader.regDmn[0]);
eep->baseEepHeader.regDmn[0] = word;
word = swab16(eep->baseEepHeader.regDmn[1]);
eep->baseEepHeader.regDmn[1] = word;
word = swab16(eep->baseEepHeader.rfSilent);
eep->baseEepHeader.rfSilent = word;
word = swab16(eep->baseEepHeader.blueToothOptions);
eep->baseEepHeader.blueToothOptions = word;
word = swab16(eep->baseEepHeader.deviceCap);
eep->baseEepHeader.deviceCap = word;
integer = swab32(eep->modalHeader.antCtrlCommon);
eep->modalHeader.antCtrlCommon = integer;
for (i = 0; i < AR5416_MAX_CHAINS; i++) {
integer = swab32(eep->modalHeader.antCtrlChain[i]);
eep->modalHeader.antCtrlChain[i] = integer;
}
for (i = 0; i < AR5416_EEPROM_MODAL_SPURS; i++) {
word = swab16(eep->modalHeader.spurChans[i].spurChan);
eep->modalHeader.spurChans[i].spurChan = word;
}
}
if (sum != 0xffff || ar5416_get_eep4k_ver(ahp) != AR5416_EEP_VER ||
ar5416_get_eep4k_rev(ahp) < AR5416_EEP_NO_BACK_VER) {
DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
"Bad EEPROM checksum 0x%x or revision 0x%04x\n",
sum, ar5416_get_eep4k_ver(ahp));
return -EINVAL;
}
return 0;
#undef EEPROM_4K_SIZE
}
static int (*ath9k_check_eeprom[]) (struct ath_hal *) = {
ath9k_hw_check_def_eeprom,
ath9k_hw_check_4k_eeprom
};
static inline int ath9k_hw_check_eeprom(struct ath_hal *ah)
{
struct ath_hal_5416 *ahp = AH5416(ah);
return ath9k_check_eeprom[ahp->ah_eep_map](ah);
}
static inline bool ath9k_hw_fill_vpd_table(u8 pwrMin, u8 pwrMax, u8 *pPwrList,
u8 *pVpdList, u16 numIntercepts,
u8 *pRetVpdList)
{
u16 i, k;
u8 currPwr = pwrMin;
u16 idxL = 0, idxR = 0;
for (i = 0; i <= (pwrMax - pwrMin) / 2; i++) {
ath9k_hw_get_lower_upper_index(currPwr, pPwrList,
numIntercepts, &(idxL),
&(idxR));
if (idxR < 1)
idxR = 1;
if (idxL == numIntercepts - 1)
idxL = (u16) (numIntercepts - 2);
if (pPwrList[idxL] == pPwrList[idxR])
k = pVpdList[idxL];
else
k = (u16)(((currPwr - pPwrList[idxL]) * pVpdList[idxR] +
(pPwrList[idxR] - currPwr) * pVpdList[idxL]) /
(pPwrList[idxR] - pPwrList[idxL]));
pRetVpdList[i] = (u8) k;
currPwr += 2;
}
return true;
}
static void ath9k_hw_get_4k_gain_boundaries_pdadcs(struct ath_hal *ah,
struct ath9k_channel *chan,
struct cal_data_per_freq_4k *pRawDataSet,
u8 *bChans, u16 availPiers,
u16 tPdGainOverlap, int16_t *pMinCalPower,
u16 *pPdGainBoundaries, u8 *pPDADCValues,
u16 numXpdGains)
{
#define TMP_VAL_VPD_TABLE \
((vpdTableI[i][sizeCurrVpdTable - 1] + (ss - maxIndex + 1) * vpdStep));
int i, j, k;
int16_t ss;
u16 idxL = 0, idxR = 0, numPiers;
static u8 vpdTableL[AR5416_EEP4K_NUM_PD_GAINS]
[AR5416_MAX_PWR_RANGE_IN_HALF_DB];
static u8 vpdTableR[AR5416_EEP4K_NUM_PD_GAINS]
[AR5416_MAX_PWR_RANGE_IN_HALF_DB];
static u8 vpdTableI[AR5416_EEP4K_NUM_PD_GAINS]
[AR5416_MAX_PWR_RANGE_IN_HALF_DB];
u8 *pVpdL, *pVpdR, *pPwrL, *pPwrR;
u8 minPwrT4[AR5416_EEP4K_NUM_PD_GAINS];
u8 maxPwrT4[AR5416_EEP4K_NUM_PD_GAINS];
int16_t vpdStep;
int16_t tmpVal;
u16 sizeCurrVpdTable, maxIndex, tgtIndex;
bool match;
int16_t minDelta = 0;
struct chan_centers centers;
#define PD_GAIN_BOUNDARY_DEFAULT 58;
ath9k_hw_get_channel_centers(ah, chan, &centers);
for (numPiers = 0; numPiers < availPiers; numPiers++) {
if (bChans[numPiers] == AR5416_BCHAN_UNUSED)
break;
}
match = ath9k_hw_get_lower_upper_index(
(u8)FREQ2FBIN(centers.synth_center,
IS_CHAN_2GHZ(chan)), bChans, numPiers,
&idxL, &idxR);
if (match) {
for (i = 0; i < numXpdGains; i++) {
minPwrT4[i] = pRawDataSet[idxL].pwrPdg[i][0];
maxPwrT4[i] = pRawDataSet[idxL].pwrPdg[i][4];
ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
pRawDataSet[idxL].pwrPdg[i],
pRawDataSet[idxL].vpdPdg[i],
AR5416_EEP4K_PD_GAIN_ICEPTS,
vpdTableI[i]);
}
} else {
for (i = 0; i < numXpdGains; i++) {
pVpdL = pRawDataSet[idxL].vpdPdg[i];
pPwrL = pRawDataSet[idxL].pwrPdg[i];
pVpdR = pRawDataSet[idxR].vpdPdg[i];
pPwrR = pRawDataSet[idxR].pwrPdg[i];
minPwrT4[i] = max(pPwrL[0], pPwrR[0]);
maxPwrT4[i] =
min(pPwrL[AR5416_EEP4K_PD_GAIN_ICEPTS - 1],
pPwrR[AR5416_EEP4K_PD_GAIN_ICEPTS - 1]);
ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
pPwrL, pVpdL,
AR5416_EEP4K_PD_GAIN_ICEPTS,
vpdTableL[i]);
ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
pPwrR, pVpdR,
AR5416_EEP4K_PD_GAIN_ICEPTS,
vpdTableR[i]);
for (j = 0; j <= (maxPwrT4[i] - minPwrT4[i]) / 2; j++) {
vpdTableI[i][j] =
(u8)(ath9k_hw_interpolate((u16)
FREQ2FBIN(centers.
synth_center,
IS_CHAN_2GHZ
(chan)),
bChans[idxL], bChans[idxR],
vpdTableL[i][j], vpdTableR[i][j]));
}
}
}
*pMinCalPower = (int16_t)(minPwrT4[0] / 2);
k = 0;
for (i = 0; i < numXpdGains; i++) {
if (i == (numXpdGains - 1))
pPdGainBoundaries[i] =
(u16)(maxPwrT4[i] / 2);
else
pPdGainBoundaries[i] =
(u16)((maxPwrT4[i] + minPwrT4[i + 1]) / 4);
pPdGainBoundaries[i] =
min((u16)AR5416_MAX_RATE_POWER, pPdGainBoundaries[i]);
if ((i == 0) && !AR_SREV_5416_V20_OR_LATER(ah)) {
minDelta = pPdGainBoundaries[0] - 23;
pPdGainBoundaries[0] = 23;
} else {
minDelta = 0;
}
if (i == 0) {
if (AR_SREV_9280_10_OR_LATER(ah))
ss = (int16_t)(0 - (minPwrT4[i] / 2));
else
ss = 0;
} else {
ss = (int16_t)((pPdGainBoundaries[i - 1] -
(minPwrT4[i] / 2)) -
tPdGainOverlap + 1 + minDelta);
}
vpdStep = (int16_t)(vpdTableI[i][1] - vpdTableI[i][0]);
vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
while ((ss < 0) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
tmpVal = (int16_t)(vpdTableI[i][0] + ss * vpdStep);
pPDADCValues[k++] = (u8)((tmpVal < 0) ? 0 : tmpVal);
ss++;
}
sizeCurrVpdTable = (u8) ((maxPwrT4[i] - minPwrT4[i]) / 2 + 1);
tgtIndex = (u8)(pPdGainBoundaries[i] + tPdGainOverlap -
(minPwrT4[i] / 2));
maxIndex = (tgtIndex < sizeCurrVpdTable) ?
tgtIndex : sizeCurrVpdTable;
while ((ss < maxIndex) && (k < (AR5416_NUM_PDADC_VALUES - 1)))
pPDADCValues[k++] = vpdTableI[i][ss++];
vpdStep = (int16_t)(vpdTableI[i][sizeCurrVpdTable - 1] -
vpdTableI[i][sizeCurrVpdTable - 2]);
vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
if (tgtIndex > maxIndex) {
while ((ss <= tgtIndex) &&
(k < (AR5416_NUM_PDADC_VALUES - 1))) {
tmpVal = (int16_t) TMP_VAL_VPD_TABLE;
pPDADCValues[k++] = (u8)((tmpVal > 255) ?
255 : tmpVal);
ss++;
}
}
}
while (i < AR5416_EEP4K_PD_GAINS_IN_MASK) {
pPdGainBoundaries[i] = PD_GAIN_BOUNDARY_DEFAULT;
i++;
}
while (k < AR5416_NUM_PDADC_VALUES) {
pPDADCValues[k] = pPDADCValues[k - 1];
k++;
}
return;
#undef TMP_VAL_VPD_TABLE
}
static void ath9k_hw_get_def_gain_boundaries_pdadcs(struct ath_hal *ah,
struct ath9k_channel *chan,
struct cal_data_per_freq *pRawDataSet,
u8 *bChans, u16 availPiers,
u16 tPdGainOverlap, int16_t *pMinCalPower,
u16 *pPdGainBoundaries, u8 *pPDADCValues,
u16 numXpdGains)
{
int i, j, k;
int16_t ss;
u16 idxL = 0, idxR = 0, numPiers;
static u8 vpdTableL[AR5416_NUM_PD_GAINS]
[AR5416_MAX_PWR_RANGE_IN_HALF_DB];
static u8 vpdTableR[AR5416_NUM_PD_GAINS]
[AR5416_MAX_PWR_RANGE_IN_HALF_DB];
static u8 vpdTableI[AR5416_NUM_PD_GAINS]
[AR5416_MAX_PWR_RANGE_IN_HALF_DB];
u8 *pVpdL, *pVpdR, *pPwrL, *pPwrR;
u8 minPwrT4[AR5416_NUM_PD_GAINS];
u8 maxPwrT4[AR5416_NUM_PD_GAINS];
int16_t vpdStep;
int16_t tmpVal;
u16 sizeCurrVpdTable, maxIndex, tgtIndex;
bool match;
int16_t minDelta = 0;
struct chan_centers centers;
ath9k_hw_get_channel_centers(ah, chan, &centers);
for (numPiers = 0; numPiers < availPiers; numPiers++) {
if (bChans[numPiers] == AR5416_BCHAN_UNUSED)
break;
}
match = ath9k_hw_get_lower_upper_index((u8)FREQ2FBIN(centers.synth_center,
IS_CHAN_2GHZ(chan)),
bChans, numPiers, &idxL, &idxR);
if (match) {
for (i = 0; i < numXpdGains; i++) {
minPwrT4[i] = pRawDataSet[idxL].pwrPdg[i][0];
maxPwrT4[i] = pRawDataSet[idxL].pwrPdg[i][4];
ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
pRawDataSet[idxL].pwrPdg[i],
pRawDataSet[idxL].vpdPdg[i],
AR5416_PD_GAIN_ICEPTS,
vpdTableI[i]);
}
} else {
for (i = 0; i < numXpdGains; i++) {
pVpdL = pRawDataSet[idxL].vpdPdg[i];
pPwrL = pRawDataSet[idxL].pwrPdg[i];
pVpdR = pRawDataSet[idxR].vpdPdg[i];
pPwrR = pRawDataSet[idxR].pwrPdg[i];
minPwrT4[i] = max(pPwrL[0], pPwrR[0]);
maxPwrT4[i] =
min(pPwrL[AR5416_PD_GAIN_ICEPTS - 1],
pPwrR[AR5416_PD_GAIN_ICEPTS - 1]);
ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
pPwrL, pVpdL,
AR5416_PD_GAIN_ICEPTS,
vpdTableL[i]);
ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
pPwrR, pVpdR,
AR5416_PD_GAIN_ICEPTS,
vpdTableR[i]);
for (j = 0; j <= (maxPwrT4[i] - minPwrT4[i]) / 2; j++) {
vpdTableI[i][j] =
(u8)(ath9k_hw_interpolate((u16)
FREQ2FBIN(centers.
synth_center,
IS_CHAN_2GHZ
(chan)),
bChans[idxL], bChans[idxR],
vpdTableL[i][j], vpdTableR[i][j]));
}
}
}
*pMinCalPower = (int16_t)(minPwrT4[0] / 2);
k = 0;
for (i = 0; i < numXpdGains; i++) {
if (i == (numXpdGains - 1))
pPdGainBoundaries[i] =
(u16)(maxPwrT4[i] / 2);
else
pPdGainBoundaries[i] =
(u16)((maxPwrT4[i] + minPwrT4[i + 1]) / 4);
pPdGainBoundaries[i] =
min((u16)AR5416_MAX_RATE_POWER, pPdGainBoundaries[i]);
if ((i == 0) && !AR_SREV_5416_V20_OR_LATER(ah)) {
minDelta = pPdGainBoundaries[0] - 23;
pPdGainBoundaries[0] = 23;
} else {
minDelta = 0;
}
if (i == 0) {
if (AR_SREV_9280_10_OR_LATER(ah))
ss = (int16_t)(0 - (minPwrT4[i] / 2));
else
ss = 0;
} else {
ss = (int16_t)((pPdGainBoundaries[i - 1] -
(minPwrT4[i] / 2)) -
tPdGainOverlap + 1 + minDelta);
}
vpdStep = (int16_t)(vpdTableI[i][1] - vpdTableI[i][0]);
vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
while ((ss < 0) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
tmpVal = (int16_t)(vpdTableI[i][0] + ss * vpdStep);
pPDADCValues[k++] = (u8)((tmpVal < 0) ? 0 : tmpVal);
ss++;
}
sizeCurrVpdTable = (u8) ((maxPwrT4[i] - minPwrT4[i]) / 2 + 1);
tgtIndex = (u8)(pPdGainBoundaries[i] + tPdGainOverlap -
(minPwrT4[i] / 2));
maxIndex = (tgtIndex < sizeCurrVpdTable) ?
tgtIndex : sizeCurrVpdTable;
while ((ss < maxIndex) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
pPDADCValues[k++] = vpdTableI[i][ss++];
}
vpdStep = (int16_t)(vpdTableI[i][sizeCurrVpdTable - 1] -
vpdTableI[i][sizeCurrVpdTable - 2]);
vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
if (tgtIndex > maxIndex) {
while ((ss <= tgtIndex) &&
(k < (AR5416_NUM_PDADC_VALUES - 1))) {
tmpVal = (int16_t)((vpdTableI[i][sizeCurrVpdTable - 1] +
(ss - maxIndex + 1) * vpdStep));
pPDADCValues[k++] = (u8)((tmpVal > 255) ?
255 : tmpVal);
ss++;
}
}
}
while (i < AR5416_PD_GAINS_IN_MASK) {
pPdGainBoundaries[i] = pPdGainBoundaries[i - 1];
i++;
}
while (k < AR5416_NUM_PDADC_VALUES) {
pPDADCValues[k] = pPDADCValues[k - 1];
k++;
}
return;
}
static void ath9k_hw_get_legacy_target_powers(struct ath_hal *ah,
struct ath9k_channel *chan,
struct cal_target_power_leg *powInfo,
u16 numChannels,
struct cal_target_power_leg *pNewPower,
u16 numRates, bool isExtTarget)
{
struct chan_centers centers;
u16 clo, chi;
int i;
int matchIndex = -1, lowIndex = -1;
u16 freq;
ath9k_hw_get_channel_centers(ah, chan, &centers);
freq = (isExtTarget) ? centers.ext_center : centers.ctl_center;
if (freq <= ath9k_hw_fbin2freq(powInfo[0].bChannel,
IS_CHAN_2GHZ(chan))) {
matchIndex = 0;
} else {
for (i = 0; (i < numChannels) &&
(powInfo[i].bChannel != AR5416_BCHAN_UNUSED); i++) {
if (freq == ath9k_hw_fbin2freq(powInfo[i].bChannel,
IS_CHAN_2GHZ(chan))) {
matchIndex = i;
break;
} else if ((freq < ath9k_hw_fbin2freq(powInfo[i].bChannel,
IS_CHAN_2GHZ(chan))) &&
(freq > ath9k_hw_fbin2freq(powInfo[i - 1].bChannel,
IS_CHAN_2GHZ(chan)))) {
lowIndex = i - 1;
break;
}
}
if ((matchIndex == -1) && (lowIndex == -1))
matchIndex = i - 1;
}
if (matchIndex != -1) {
*pNewPower = powInfo[matchIndex];
} else {
clo = ath9k_hw_fbin2freq(powInfo[lowIndex].bChannel,
IS_CHAN_2GHZ(chan));
chi = ath9k_hw_fbin2freq(powInfo[lowIndex + 1].bChannel,
IS_CHAN_2GHZ(chan));
for (i = 0; i < numRates; i++) {
pNewPower->tPow2x[i] =
(u8)ath9k_hw_interpolate(freq, clo, chi,
powInfo[lowIndex].tPow2x[i],
powInfo[lowIndex + 1].tPow2x[i]);
}
}
}
static void ath9k_hw_get_target_powers(struct ath_hal *ah,
struct ath9k_channel *chan,
struct cal_target_power_ht *powInfo,
u16 numChannels,
struct cal_target_power_ht *pNewPower,
u16 numRates, bool isHt40Target)
{
struct chan_centers centers;
u16 clo, chi;
int i;
int matchIndex = -1, lowIndex = -1;
u16 freq;
ath9k_hw_get_channel_centers(ah, chan, &centers);
freq = isHt40Target ? centers.synth_center : centers.ctl_center;
if (freq <= ath9k_hw_fbin2freq(powInfo[0].bChannel, IS_CHAN_2GHZ(chan))) {
matchIndex = 0;
} else {
for (i = 0; (i < numChannels) &&
(powInfo[i].bChannel != AR5416_BCHAN_UNUSED); i++) {
if (freq == ath9k_hw_fbin2freq(powInfo[i].bChannel,
IS_CHAN_2GHZ(chan))) {
matchIndex = i;
break;
} else
if ((freq < ath9k_hw_fbin2freq(powInfo[i].bChannel,
IS_CHAN_2GHZ(chan))) &&
(freq > ath9k_hw_fbin2freq(powInfo[i - 1].bChannel,
IS_CHAN_2GHZ(chan)))) {
lowIndex = i - 1;
break;
}
}
if ((matchIndex == -1) && (lowIndex == -1))
matchIndex = i - 1;
}
if (matchIndex != -1) {
*pNewPower = powInfo[matchIndex];
} else {
clo = ath9k_hw_fbin2freq(powInfo[lowIndex].bChannel,
IS_CHAN_2GHZ(chan));
chi = ath9k_hw_fbin2freq(powInfo[lowIndex + 1].bChannel,
IS_CHAN_2GHZ(chan));
for (i = 0; i < numRates; i++) {
pNewPower->tPow2x[i] = (u8)ath9k_hw_interpolate(freq,
clo, chi,
powInfo[lowIndex].tPow2x[i],
powInfo[lowIndex + 1].tPow2x[i]);
}
}
}
static u16 ath9k_hw_get_max_edge_power(u16 freq,
struct cal_ctl_edges *pRdEdgesPower,
bool is2GHz, int num_band_edges)
{
u16 twiceMaxEdgePower = AR5416_MAX_RATE_POWER;
int i;
for (i = 0; (i < num_band_edges) &&
(pRdEdgesPower[i].bChannel != AR5416_BCHAN_UNUSED); i++) {
if (freq == ath9k_hw_fbin2freq(pRdEdgesPower[i].bChannel, is2GHz)) {
twiceMaxEdgePower = pRdEdgesPower[i].tPower;
break;
} else if ((i > 0) &&
(freq < ath9k_hw_fbin2freq(pRdEdgesPower[i].bChannel,
is2GHz))) {
if (ath9k_hw_fbin2freq(pRdEdgesPower[i - 1].bChannel,
is2GHz) < freq &&
pRdEdgesPower[i - 1].flag) {
twiceMaxEdgePower =
pRdEdgesPower[i - 1].tPower;
}
break;
}
}
return twiceMaxEdgePower;
}
static bool ath9k_hw_set_def_power_cal_table(struct ath_hal *ah,
struct ath9k_channel *chan,
int16_t *pTxPowerIndexOffset)
{
struct ath_hal_5416 *ahp = AH5416(ah);
struct ar5416_eeprom_def *pEepData = &ahp->ah_eeprom.def;
struct cal_data_per_freq *pRawDataset;
u8 *pCalBChans = NULL;
u16 pdGainOverlap_t2;
static u8 pdadcValues[AR5416_NUM_PDADC_VALUES];
u16 gainBoundaries[AR5416_PD_GAINS_IN_MASK];
u16 numPiers, i, j;
int16_t tMinCalPower;
u16 numXpdGain, xpdMask;
u16 xpdGainValues[AR5416_NUM_PD_GAINS] = { 0, 0, 0, 0 };
u32 reg32, regOffset, regChainOffset;
int16_t modalIdx;
modalIdx = IS_CHAN_2GHZ(chan) ? 1 : 0;
xpdMask = pEepData->modalHeader[modalIdx].xpdGain;
if ((pEepData->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
AR5416_EEP_MINOR_VER_2) {
pdGainOverlap_t2 =
pEepData->modalHeader[modalIdx].pdGainOverlap;
} else {
pdGainOverlap_t2 = (u16)(MS(REG_READ(ah, AR_PHY_TPCRG5),
AR_PHY_TPCRG5_PD_GAIN_OVERLAP));
}
if (IS_CHAN_2GHZ(chan)) {
pCalBChans = pEepData->calFreqPier2G;
numPiers = AR5416_NUM_2G_CAL_PIERS;
} else {
pCalBChans = pEepData->calFreqPier5G;
numPiers = AR5416_NUM_5G_CAL_PIERS;
}
numXpdGain = 0;
for (i = 1; i <= AR5416_PD_GAINS_IN_MASK; i++) {
if ((xpdMask >> (AR5416_PD_GAINS_IN_MASK - i)) & 1) {
if (numXpdGain >= AR5416_NUM_PD_GAINS)
break;
xpdGainValues[numXpdGain] =
(u16)(AR5416_PD_GAINS_IN_MASK - i);
numXpdGain++;
}
}
REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN,
(numXpdGain - 1) & 0x3);
REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_1,
xpdGainValues[0]);
REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_2,
xpdGainValues[1]);
REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_3,
xpdGainValues[2]);
for (i = 0; i < AR5416_MAX_CHAINS; i++) {
if (AR_SREV_5416_V20_OR_LATER(ah) &&
(ahp->ah_rxchainmask == 5 || ahp->ah_txchainmask == 5) &&
(i != 0)) {
regChainOffset = (i == 1) ? 0x2000 : 0x1000;
} else
regChainOffset = i * 0x1000;
if (pEepData->baseEepHeader.txMask & (1 << i)) {
if (IS_CHAN_2GHZ(chan))
pRawDataset = pEepData->calPierData2G[i];
else
pRawDataset = pEepData->calPierData5G[i];
ath9k_hw_get_def_gain_boundaries_pdadcs(ah, chan,
pRawDataset, pCalBChans,
numPiers, pdGainOverlap_t2,
&tMinCalPower, gainBoundaries,
pdadcValues, numXpdGain);
if ((i == 0) || AR_SREV_5416_V20_OR_LATER(ah)) {
REG_WRITE(ah,
AR_PHY_TPCRG5 + regChainOffset,
SM(pdGainOverlap_t2,
AR_PHY_TPCRG5_PD_GAIN_OVERLAP)
| SM(gainBoundaries[0],
AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1)
| SM(gainBoundaries[1],
AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2)
| SM(gainBoundaries[2],
AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3)
| SM(gainBoundaries[3],
AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4));
}
regOffset = AR_PHY_BASE + (672 << 2) + regChainOffset;
for (j = 0; j < 32; j++) {
reg32 = ((pdadcValues[4 * j + 0] & 0xFF) << 0) |
((pdadcValues[4 * j + 1] & 0xFF) << 8) |
((pdadcValues[4 * j + 2] & 0xFF) << 16)|
((pdadcValues[4 * j + 3] & 0xFF) << 24);
REG_WRITE(ah, regOffset, reg32);
DPRINTF(ah->ah_sc, ATH_DBG_REG_IO,
"PDADC (%d,%4x): %4.4x %8.8x\n",
i, regChainOffset, regOffset,
reg32);
DPRINTF(ah->ah_sc, ATH_DBG_REG_IO,
"PDADC: Chain %d | PDADC %3d "
"Value %3d | PDADC %3d Value %3d | "
"PDADC %3d Value %3d | PDADC %3d "
"Value %3d |\n",
i, 4 * j, pdadcValues[4 * j],
4 * j + 1, pdadcValues[4 * j + 1],
4 * j + 2, pdadcValues[4 * j + 2],
4 * j + 3,
pdadcValues[4 * j + 3]);
regOffset += 4;
}
}
}
*pTxPowerIndexOffset = 0;
return true;
}
static bool ath9k_hw_set_4k_power_cal_table(struct ath_hal *ah,
struct ath9k_channel *chan,
int16_t *pTxPowerIndexOffset)
{
struct ath_hal_5416 *ahp = AH5416(ah);
struct ar5416_eeprom_4k *pEepData = &ahp->ah_eeprom.map4k;
struct cal_data_per_freq_4k *pRawDataset;
u8 *pCalBChans = NULL;
u16 pdGainOverlap_t2;
static u8 pdadcValues[AR5416_NUM_PDADC_VALUES];
u16 gainBoundaries[AR5416_PD_GAINS_IN_MASK];
u16 numPiers, i, j;
int16_t tMinCalPower;
u16 numXpdGain, xpdMask;
u16 xpdGainValues[AR5416_NUM_PD_GAINS] = { 0, 0, 0, 0 };
u32 reg32, regOffset, regChainOffset;
xpdMask = pEepData->modalHeader.xpdGain;
if ((pEepData->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
AR5416_EEP_MINOR_VER_2) {
pdGainOverlap_t2 =
pEepData->modalHeader.pdGainOverlap;
} else {
pdGainOverlap_t2 = (u16)(MS(REG_READ(ah, AR_PHY_TPCRG5),
AR_PHY_TPCRG5_PD_GAIN_OVERLAP));
}
pCalBChans = pEepData->calFreqPier2G;
numPiers = AR5416_NUM_2G_CAL_PIERS;
numXpdGain = 0;
for (i = 1; i <= AR5416_PD_GAINS_IN_MASK; i++) {
if ((xpdMask >> (AR5416_PD_GAINS_IN_MASK - i)) & 1) {
if (numXpdGain >= AR5416_NUM_PD_GAINS)
break;
xpdGainValues[numXpdGain] =
(u16)(AR5416_PD_GAINS_IN_MASK - i);
numXpdGain++;
}
}
REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN,
(numXpdGain - 1) & 0x3);
REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_1,
xpdGainValues[0]);
REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_2,
xpdGainValues[1]);
REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_3,
xpdGainValues[2]);
for (i = 0; i < AR5416_MAX_CHAINS; i++) {
if (AR_SREV_5416_V20_OR_LATER(ah) &&
(ahp->ah_rxchainmask == 5 || ahp->ah_txchainmask == 5) &&
(i != 0)) {
regChainOffset = (i == 1) ? 0x2000 : 0x1000;
} else
regChainOffset = i * 0x1000;
if (pEepData->baseEepHeader.txMask & (1 << i)) {
pRawDataset = pEepData->calPierData2G[i];
ath9k_hw_get_4k_gain_boundaries_pdadcs(ah, chan,
pRawDataset, pCalBChans,
numPiers, pdGainOverlap_t2,
&tMinCalPower, gainBoundaries,
pdadcValues, numXpdGain);
if ((i == 0) || AR_SREV_5416_V20_OR_LATER(ah)) {
REG_WRITE(ah, AR_PHY_TPCRG5 + regChainOffset,
SM(pdGainOverlap_t2,
AR_PHY_TPCRG5_PD_GAIN_OVERLAP)
| SM(gainBoundaries[0],
AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1)
| SM(gainBoundaries[1],
AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2)
| SM(gainBoundaries[2],
AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3)
| SM(gainBoundaries[3],
AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4));
}
regOffset = AR_PHY_BASE + (672 << 2) + regChainOffset;
for (j = 0; j < 32; j++) {
reg32 = ((pdadcValues[4 * j + 0] & 0xFF) << 0) |
((pdadcValues[4 * j + 1] & 0xFF) << 8) |
((pdadcValues[4 * j + 2] & 0xFF) << 16)|
((pdadcValues[4 * j + 3] & 0xFF) << 24);
REG_WRITE(ah, regOffset, reg32);
DPRINTF(ah->ah_sc, ATH_DBG_REG_IO,
"PDADC (%d,%4x): %4.4x %8.8x\n",
i, regChainOffset, regOffset,
reg32);
DPRINTF(ah->ah_sc, ATH_DBG_REG_IO,
"PDADC: Chain %d | "
"PDADC %3d Value %3d | "
"PDADC %3d Value %3d | "
"PDADC %3d Value %3d | "
"PDADC %3d Value %3d |\n",
i, 4 * j, pdadcValues[4 * j],
4 * j + 1, pdadcValues[4 * j + 1],
4 * j + 2, pdadcValues[4 * j + 2],
4 * j + 3,
pdadcValues[4 * j + 3]);
regOffset += 4;
}
}
}
*pTxPowerIndexOffset = 0;
return true;
}
static bool ath9k_hw_set_def_power_per_rate_table(struct ath_hal *ah,
struct ath9k_channel *chan,
int16_t *ratesArray,
u16 cfgCtl,
u16 AntennaReduction,
u16 twiceMaxRegulatoryPower,
u16 powerLimit)
{
#define REDUCE_SCALED_POWER_BY_TWO_CHAIN 6 /* 10*log10(2)*2 */
#define REDUCE_SCALED_POWER_BY_THREE_CHAIN 10 /* 10*log10(3)*2 */
struct ath_hal_5416 *ahp = AH5416(ah);
struct ar5416_eeprom_def *pEepData = &ahp->ah_eeprom.def;
u16 twiceMaxEdgePower = AR5416_MAX_RATE_POWER;
static const u16 tpScaleReductionTable[5] =
{ 0, 3, 6, 9, AR5416_MAX_RATE_POWER };
int i;
int16_t twiceLargestAntenna;
struct cal_ctl_data *rep;
struct cal_target_power_leg targetPowerOfdm, targetPowerCck = {
0, { 0, 0, 0, 0}
};
struct cal_target_power_leg targetPowerOfdmExt = {
0, { 0, 0, 0, 0} }, targetPowerCckExt = {
0, { 0, 0, 0, 0 }
};
struct cal_target_power_ht targetPowerHt20, targetPowerHt40 = {
0, {0, 0, 0, 0}
};
u16 scaledPower = 0, minCtlPower, maxRegAllowedPower;
u16 ctlModesFor11a[] =
{ CTL_11A, CTL_5GHT20, CTL_11A_EXT, CTL_5GHT40 };
u16 ctlModesFor11g[] =
{ CTL_11B, CTL_11G, CTL_2GHT20, CTL_11B_EXT, CTL_11G_EXT,
CTL_2GHT40
};
u16 numCtlModes, *pCtlMode, ctlMode, freq;
struct chan_centers centers;
int tx_chainmask;
u16 twiceMinEdgePower;
tx_chainmask = ahp->ah_txchainmask;
ath9k_hw_get_channel_centers(ah, chan, &centers);
twiceLargestAntenna = max(
pEepData->modalHeader
[IS_CHAN_2GHZ(chan)].antennaGainCh[0],
pEepData->modalHeader
[IS_CHAN_2GHZ(chan)].antennaGainCh[1]);
twiceLargestAntenna = max((u8)twiceLargestAntenna,
pEepData->modalHeader
[IS_CHAN_2GHZ(chan)].antennaGainCh[2]);
twiceLargestAntenna = (int16_t)min(AntennaReduction -
twiceLargestAntenna, 0);
maxRegAllowedPower = twiceMaxRegulatoryPower + twiceLargestAntenna;
if (ah->ah_tpScale != ATH9K_TP_SCALE_MAX) {
maxRegAllowedPower -=
(tpScaleReductionTable[(ah->ah_tpScale)] * 2);
}
scaledPower = min(powerLimit, maxRegAllowedPower);
switch (ar5416_get_ntxchains(tx_chainmask)) {
case 1:
break;
case 2:
scaledPower -= REDUCE_SCALED_POWER_BY_TWO_CHAIN;
break;
case 3:
scaledPower -= REDUCE_SCALED_POWER_BY_THREE_CHAIN;
break;
}
scaledPower = max((u16)0, scaledPower);
if (IS_CHAN_2GHZ(chan)) {
numCtlModes = ARRAY_SIZE(ctlModesFor11g) -
SUB_NUM_CTL_MODES_AT_2G_40;
pCtlMode = ctlModesFor11g;
ath9k_hw_get_legacy_target_powers(ah, chan,
pEepData->calTargetPowerCck,
AR5416_NUM_2G_CCK_TARGET_POWERS,
&targetPowerCck, 4, false);
ath9k_hw_get_legacy_target_powers(ah, chan,
pEepData->calTargetPower2G,
AR5416_NUM_2G_20_TARGET_POWERS,
&targetPowerOfdm, 4, false);
ath9k_hw_get_target_powers(ah, chan,
pEepData->calTargetPower2GHT20,
AR5416_NUM_2G_20_TARGET_POWERS,
&targetPowerHt20, 8, false);
if (IS_CHAN_HT40(chan)) {
numCtlModes = ARRAY_SIZE(ctlModesFor11g);
ath9k_hw_get_target_powers(ah, chan,
pEepData->calTargetPower2GHT40,
AR5416_NUM_2G_40_TARGET_POWERS,
&targetPowerHt40, 8, true);
ath9k_hw_get_legacy_target_powers(ah, chan,
pEepData->calTargetPowerCck,
AR5416_NUM_2G_CCK_TARGET_POWERS,
&targetPowerCckExt, 4, true);
ath9k_hw_get_legacy_target_powers(ah, chan,
pEepData->calTargetPower2G,
AR5416_NUM_2G_20_TARGET_POWERS,
&targetPowerOfdmExt, 4, true);
}
} else {
numCtlModes = ARRAY_SIZE(ctlModesFor11a) -
SUB_NUM_CTL_MODES_AT_5G_40;
pCtlMode = ctlModesFor11a;
ath9k_hw_get_legacy_target_powers(ah, chan,
pEepData->calTargetPower5G,
AR5416_NUM_5G_20_TARGET_POWERS,
&targetPowerOfdm, 4, false);
ath9k_hw_get_target_powers(ah, chan,
pEepData->calTargetPower5GHT20,
AR5416_NUM_5G_20_TARGET_POWERS,
&targetPowerHt20, 8, false);
if (IS_CHAN_HT40(chan)) {
numCtlModes = ARRAY_SIZE(ctlModesFor11a);
ath9k_hw_get_target_powers(ah, chan,
pEepData->calTargetPower5GHT40,
AR5416_NUM_5G_40_TARGET_POWERS,
&targetPowerHt40, 8, true);
ath9k_hw_get_legacy_target_powers(ah, chan,
pEepData->calTargetPower5G,
AR5416_NUM_5G_20_TARGET_POWERS,
&targetPowerOfdmExt, 4, true);
}
}
for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) {
bool isHt40CtlMode = (pCtlMode[ctlMode] == CTL_5GHT40) ||
(pCtlMode[ctlMode] == CTL_2GHT40);
if (isHt40CtlMode)
freq = centers.synth_center;
else if (pCtlMode[ctlMode] & EXT_ADDITIVE)
freq = centers.ext_center;
else
freq = centers.ctl_center;
if (ar5416_get_eep_ver(ahp) == 14 && ar5416_get_eep_rev(ahp) <= 2)
twiceMaxEdgePower = AR5416_MAX_RATE_POWER;
DPRINTF(ah->ah_sc, ATH_DBG_POWER_MGMT,
"LOOP-Mode ctlMode %d < %d, isHt40CtlMode %d, "
"EXT_ADDITIVE %d\n",
ctlMode, numCtlModes, isHt40CtlMode,
(pCtlMode[ctlMode] & EXT_ADDITIVE));
for (i = 0; (i < AR5416_NUM_CTLS) && pEepData->ctlIndex[i]; i++) {
DPRINTF(ah->ah_sc, ATH_DBG_POWER_MGMT,
" LOOP-Ctlidx %d: cfgCtl 0x%2.2x "
"pCtlMode 0x%2.2x ctlIndex 0x%2.2x "
"chan %d\n",
i, cfgCtl, pCtlMode[ctlMode],
pEepData->ctlIndex[i], chan->channel);
if ((((cfgCtl & ~CTL_MODE_M) |
(pCtlMode[ctlMode] & CTL_MODE_M)) ==
pEepData->ctlIndex[i]) ||
(((cfgCtl & ~CTL_MODE_M) |
(pCtlMode[ctlMode] & CTL_MODE_M)) ==
((pEepData->ctlIndex[i] & CTL_MODE_M) | SD_NO_CTL))) {
rep = &(pEepData->ctlData[i]);
twiceMinEdgePower = ath9k_hw_get_max_edge_power(freq,
rep->ctlEdges[ar5416_get_ntxchains(tx_chainmask) - 1],
IS_CHAN_2GHZ(chan), AR5416_NUM_BAND_EDGES);
DPRINTF(ah->ah_sc, ATH_DBG_POWER_MGMT,
" MATCH-EE_IDX %d: ch %d is2 %d "
"2xMinEdge %d chainmask %d chains %d\n",
i, freq, IS_CHAN_2GHZ(chan),
twiceMinEdgePower, tx_chainmask,
ar5416_get_ntxchains
(tx_chainmask));
if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL) {
twiceMaxEdgePower = min(twiceMaxEdgePower,
twiceMinEdgePower);
} else {
twiceMaxEdgePower = twiceMinEdgePower;
break;
}
}
}
minCtlPower = min(twiceMaxEdgePower, scaledPower);
DPRINTF(ah->ah_sc, ATH_DBG_POWER_MGMT,
" SEL-Min ctlMode %d pCtlMode %d "
"2xMaxEdge %d sP %d minCtlPwr %d\n",
ctlMode, pCtlMode[ctlMode], twiceMaxEdgePower,
scaledPower, minCtlPower);
switch (pCtlMode[ctlMode]) {
case CTL_11B:
for (i = 0; i < ARRAY_SIZE(targetPowerCck.tPow2x); i++) {
targetPowerCck.tPow2x[i] =
min((u16)targetPowerCck.tPow2x[i],
minCtlPower);
}
break;
case CTL_11A:
case CTL_11G:
for (i = 0; i < ARRAY_SIZE(targetPowerOfdm.tPow2x); i++) {
targetPowerOfdm.tPow2x[i] =
min((u16)targetPowerOfdm.tPow2x[i],
minCtlPower);
}
break;
case CTL_5GHT20:
case CTL_2GHT20:
for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++) {
targetPowerHt20.tPow2x[i] =
min((u16)targetPowerHt20.tPow2x[i],
minCtlPower);
}
break;
case CTL_11B_EXT:
targetPowerCckExt.tPow2x[0] = min((u16)
targetPowerCckExt.tPow2x[0],
minCtlPower);
break;
case CTL_11A_EXT:
case CTL_11G_EXT:
targetPowerOfdmExt.tPow2x[0] = min((u16)
targetPowerOfdmExt.tPow2x[0],
minCtlPower);
break;
case CTL_5GHT40:
case CTL_2GHT40:
for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++) {
targetPowerHt40.tPow2x[i] =
min((u16)targetPowerHt40.tPow2x[i],
minCtlPower);
}
break;
default:
break;
}
}
ratesArray[rate6mb] = ratesArray[rate9mb] = ratesArray[rate12mb] =
ratesArray[rate18mb] = ratesArray[rate24mb] =
targetPowerOfdm.tPow2x[0];
ratesArray[rate36mb] = targetPowerOfdm.tPow2x[1];
ratesArray[rate48mb] = targetPowerOfdm.tPow2x[2];
ratesArray[rate54mb] = targetPowerOfdm.tPow2x[3];
ratesArray[rateXr] = targetPowerOfdm.tPow2x[0];
for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++)
ratesArray[rateHt20_0 + i] = targetPowerHt20.tPow2x[i];
if (IS_CHAN_2GHZ(chan)) {
ratesArray[rate1l] = targetPowerCck.tPow2x[0];
ratesArray[rate2s] = ratesArray[rate2l] =
targetPowerCck.tPow2x[1];
ratesArray[rate5_5s] = ratesArray[rate5_5l] =
targetPowerCck.tPow2x[2];
;
ratesArray[rate11s] = ratesArray[rate11l] =
targetPowerCck.tPow2x[3];
;
}
if (IS_CHAN_HT40(chan)) {
for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++) {
ratesArray[rateHt40_0 + i] =
targetPowerHt40.tPow2x[i];
}
ratesArray[rateDupOfdm] = targetPowerHt40.tPow2x[0];
ratesArray[rateDupCck] = targetPowerHt40.tPow2x[0];
ratesArray[rateExtOfdm] = targetPowerOfdmExt.tPow2x[0];
if (IS_CHAN_2GHZ(chan)) {
ratesArray[rateExtCck] =
targetPowerCckExt.tPow2x[0];
}
}
return true;
}
static bool ath9k_hw_set_4k_power_per_rate_table(struct ath_hal *ah,
struct ath9k_channel *chan,
int16_t *ratesArray,
u16 cfgCtl,
u16 AntennaReduction,
u16 twiceMaxRegulatoryPower,
u16 powerLimit)
{
struct ath_hal_5416 *ahp = AH5416(ah);
struct ar5416_eeprom_4k *pEepData = &ahp->ah_eeprom.map4k;
u16 twiceMaxEdgePower = AR5416_MAX_RATE_POWER;
static const u16 tpScaleReductionTable[5] =
{ 0, 3, 6, 9, AR5416_MAX_RATE_POWER };
int i;
int16_t twiceLargestAntenna;
struct cal_ctl_data_4k *rep;
struct cal_target_power_leg targetPowerOfdm, targetPowerCck = {
0, { 0, 0, 0, 0}
};
struct cal_target_power_leg targetPowerOfdmExt = {
0, { 0, 0, 0, 0} }, targetPowerCckExt = {
0, { 0, 0, 0, 0 }
};
struct cal_target_power_ht targetPowerHt20, targetPowerHt40 = {
0, {0, 0, 0, 0}
};
u16 scaledPower = 0, minCtlPower, maxRegAllowedPower;
u16 ctlModesFor11g[] =
{ CTL_11B, CTL_11G, CTL_2GHT20, CTL_11B_EXT, CTL_11G_EXT,
CTL_2GHT40
};
u16 numCtlModes, *pCtlMode, ctlMode, freq;
struct chan_centers centers;
int tx_chainmask;
u16 twiceMinEdgePower;
tx_chainmask = ahp->ah_txchainmask;
ath9k_hw_get_channel_centers(ah, chan, &centers);
twiceLargestAntenna = pEepData->modalHeader.antennaGainCh[0];
twiceLargestAntenna = (int16_t)min(AntennaReduction -
twiceLargestAntenna, 0);
maxRegAllowedPower = twiceMaxRegulatoryPower + twiceLargestAntenna;
if (ah->ah_tpScale != ATH9K_TP_SCALE_MAX) {
maxRegAllowedPower -=
(tpScaleReductionTable[(ah->ah_tpScale)] * 2);
}
scaledPower = min(powerLimit, maxRegAllowedPower);
scaledPower = max((u16)0, scaledPower);
numCtlModes = ARRAY_SIZE(ctlModesFor11g) - SUB_NUM_CTL_MODES_AT_2G_40;
pCtlMode = ctlModesFor11g;
ath9k_hw_get_legacy_target_powers(ah, chan,
pEepData->calTargetPowerCck,
AR5416_NUM_2G_CCK_TARGET_POWERS,
&targetPowerCck, 4, false);
ath9k_hw_get_legacy_target_powers(ah, chan,
pEepData->calTargetPower2G,
AR5416_NUM_2G_20_TARGET_POWERS,
&targetPowerOfdm, 4, false);
ath9k_hw_get_target_powers(ah, chan,
pEepData->calTargetPower2GHT20,
AR5416_NUM_2G_20_TARGET_POWERS,
&targetPowerHt20, 8, false);
if (IS_CHAN_HT40(chan)) {
numCtlModes = ARRAY_SIZE(ctlModesFor11g);
ath9k_hw_get_target_powers(ah, chan,
pEepData->calTargetPower2GHT40,
AR5416_NUM_2G_40_TARGET_POWERS,
&targetPowerHt40, 8, true);
ath9k_hw_get_legacy_target_powers(ah, chan,
pEepData->calTargetPowerCck,
AR5416_NUM_2G_CCK_TARGET_POWERS,
&targetPowerCckExt, 4, true);
ath9k_hw_get_legacy_target_powers(ah, chan,
pEepData->calTargetPower2G,
AR5416_NUM_2G_20_TARGET_POWERS,
&targetPowerOfdmExt, 4, true);
}
for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) {
bool isHt40CtlMode = (pCtlMode[ctlMode] == CTL_5GHT40) ||
(pCtlMode[ctlMode] == CTL_2GHT40);
if (isHt40CtlMode)
freq = centers.synth_center;
else if (pCtlMode[ctlMode] & EXT_ADDITIVE)
freq = centers.ext_center;
else
freq = centers.ctl_center;
if (ar5416_get_eep_ver(ahp) == 14 &&
ar5416_get_eep_rev(ahp) <= 2)
twiceMaxEdgePower = AR5416_MAX_RATE_POWER;
DPRINTF(ah->ah_sc, ATH_DBG_POWER_MGMT,
"LOOP-Mode ctlMode %d < %d, isHt40CtlMode %d, "
"EXT_ADDITIVE %d\n",
ctlMode, numCtlModes, isHt40CtlMode,
(pCtlMode[ctlMode] & EXT_ADDITIVE));
for (i = 0; (i < AR5416_NUM_CTLS) &&
pEepData->ctlIndex[i]; i++) {
DPRINTF(ah->ah_sc, ATH_DBG_POWER_MGMT,
" LOOP-Ctlidx %d: cfgCtl 0x%2.2x "
"pCtlMode 0x%2.2x ctlIndex 0x%2.2x "
"chan %d\n",
i, cfgCtl, pCtlMode[ctlMode],
pEepData->ctlIndex[i], chan->channel);
if ((((cfgCtl & ~CTL_MODE_M) |
(pCtlMode[ctlMode] & CTL_MODE_M)) ==
pEepData->ctlIndex[i]) ||
(((cfgCtl & ~CTL_MODE_M) |
(pCtlMode[ctlMode] & CTL_MODE_M)) ==
((pEepData->ctlIndex[i] & CTL_MODE_M) |
SD_NO_CTL))) {
rep = &(pEepData->ctlData[i]);
twiceMinEdgePower =
ath9k_hw_get_max_edge_power(freq,
rep->ctlEdges[ar5416_get_ntxchains
(tx_chainmask) - 1],
IS_CHAN_2GHZ(chan),
AR5416_EEP4K_NUM_BAND_EDGES);
DPRINTF(ah->ah_sc, ATH_DBG_POWER_MGMT,
" MATCH-EE_IDX %d: ch %d is2 %d "
"2xMinEdge %d chainmask %d chains %d\n",
i, freq, IS_CHAN_2GHZ(chan),
twiceMinEdgePower, tx_chainmask,
ar5416_get_ntxchains
(tx_chainmask));
if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL) {
twiceMaxEdgePower =
min(twiceMaxEdgePower,
twiceMinEdgePower);
} else {
twiceMaxEdgePower = twiceMinEdgePower;
break;
}
}
}
minCtlPower = (u8)min(twiceMaxEdgePower, scaledPower);
DPRINTF(ah->ah_sc, ATH_DBG_POWER_MGMT,
" SEL-Min ctlMode %d pCtlMode %d "
"2xMaxEdge %d sP %d minCtlPwr %d\n",
ctlMode, pCtlMode[ctlMode], twiceMaxEdgePower,
scaledPower, minCtlPower);
switch (pCtlMode[ctlMode]) {
case CTL_11B:
for (i = 0; i < ARRAY_SIZE(targetPowerCck.tPow2x);
i++) {
targetPowerCck.tPow2x[i] =
min((u16)targetPowerCck.tPow2x[i],
minCtlPower);
}
break;
case CTL_11G:
for (i = 0; i < ARRAY_SIZE(targetPowerOfdm.tPow2x);
i++) {
targetPowerOfdm.tPow2x[i] =
min((u16)targetPowerOfdm.tPow2x[i],
minCtlPower);
}
break;
case CTL_2GHT20:
for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x);
i++) {
targetPowerHt20.tPow2x[i] =
min((u16)targetPowerHt20.tPow2x[i],
minCtlPower);
}
break;
case CTL_11B_EXT:
targetPowerCckExt.tPow2x[0] = min((u16)
targetPowerCckExt.tPow2x[0],
minCtlPower);
break;
case CTL_11G_EXT:
targetPowerOfdmExt.tPow2x[0] = min((u16)
targetPowerOfdmExt.tPow2x[0],
minCtlPower);
break;
case CTL_2GHT40:
for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x);
i++) {
targetPowerHt40.tPow2x[i] =
min((u16)targetPowerHt40.tPow2x[i],
minCtlPower);
}
break;
default:
break;
}
}
ratesArray[rate6mb] = ratesArray[rate9mb] = ratesArray[rate12mb] =
ratesArray[rate18mb] = ratesArray[rate24mb] =
targetPowerOfdm.tPow2x[0];
ratesArray[rate36mb] = targetPowerOfdm.tPow2x[1];
ratesArray[rate48mb] = targetPowerOfdm.tPow2x[2];
ratesArray[rate54mb] = targetPowerOfdm.tPow2x[3];
ratesArray[rateXr] = targetPowerOfdm.tPow2x[0];
for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++)
ratesArray[rateHt20_0 + i] = targetPowerHt20.tPow2x[i];
ratesArray[rate1l] = targetPowerCck.tPow2x[0];
ratesArray[rate2s] = ratesArray[rate2l] = targetPowerCck.tPow2x[1];
ratesArray[rate5_5s] = ratesArray[rate5_5l] = targetPowerCck.tPow2x[2];
ratesArray[rate11s] = ratesArray[rate11l] = targetPowerCck.tPow2x[3];
if (IS_CHAN_HT40(chan)) {
for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++) {
ratesArray[rateHt40_0 + i] =
targetPowerHt40.tPow2x[i];
}
ratesArray[rateDupOfdm] = targetPowerHt40.tPow2x[0];
ratesArray[rateDupCck] = targetPowerHt40.tPow2x[0];
ratesArray[rateExtOfdm] = targetPowerOfdmExt.tPow2x[0];
ratesArray[rateExtCck] = targetPowerCckExt.tPow2x[0];
}
return true;
}
static int ath9k_hw_def_set_txpower(struct ath_hal *ah,
struct ath9k_channel *chan,
u16 cfgCtl,
u8 twiceAntennaReduction,
u8 twiceMaxRegulatoryPower,
u8 powerLimit)
{
struct ath_hal_5416 *ahp = AH5416(ah);
struct ar5416_eeprom_def *pEepData = &ahp->ah_eeprom.def;
struct modal_eep_header *pModal =
&(pEepData->modalHeader[IS_CHAN_2GHZ(chan)]);
int16_t ratesArray[Ar5416RateSize];
int16_t txPowerIndexOffset = 0;
u8 ht40PowerIncForPdadc = 2;
int i;
memset(ratesArray, 0, sizeof(ratesArray));
if ((pEepData->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
AR5416_EEP_MINOR_VER_2) {
ht40PowerIncForPdadc = pModal->ht40PowerIncForPdadc;
}
if (!ath9k_hw_set_def_power_per_rate_table(ah, chan,
&ratesArray[0], cfgCtl,
twiceAntennaReduction,
twiceMaxRegulatoryPower,
powerLimit)) {
DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
"ath9k_hw_set_txpower: unable to set "
"tx power per rate table\n");
return -EIO;
}
if (!ath9k_hw_set_def_power_cal_table(ah, chan, &txPowerIndexOffset)) {
DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
"ath9k_hw_set_txpower: unable to set power table\n");
return -EIO;
}
for (i = 0; i < ARRAY_SIZE(ratesArray); i++) {
ratesArray[i] = (int16_t)(txPowerIndexOffset + ratesArray[i]);
if (ratesArray[i] > AR5416_MAX_RATE_POWER)
ratesArray[i] = AR5416_MAX_RATE_POWER;
}
if (AR_SREV_9280_10_OR_LATER(ah)) {
for (i = 0; i < Ar5416RateSize; i++)
ratesArray[i] -= AR5416_PWR_TABLE_OFFSET * 2;
}
REG_WRITE(ah, AR_PHY_POWER_TX_RATE1,
ATH9K_POW_SM(ratesArray[rate18mb], 24)
| ATH9K_POW_SM(ratesArray[rate12mb], 16)
| ATH9K_POW_SM(ratesArray[rate9mb], 8)
| ATH9K_POW_SM(ratesArray[rate6mb], 0));
REG_WRITE(ah, AR_PHY_POWER_TX_RATE2,
ATH9K_POW_SM(ratesArray[rate54mb], 24)
| ATH9K_POW_SM(ratesArray[rate48mb], 16)
| ATH9K_POW_SM(ratesArray[rate36mb], 8)
| ATH9K_POW_SM(ratesArray[rate24mb], 0));
if (IS_CHAN_2GHZ(chan)) {
REG_WRITE(ah, AR_PHY_POWER_TX_RATE3,
ATH9K_POW_SM(ratesArray[rate2s], 24)
| ATH9K_POW_SM(ratesArray[rate2l], 16)
| ATH9K_POW_SM(ratesArray[rateXr], 8)
| ATH9K_POW_SM(ratesArray[rate1l], 0));
REG_WRITE(ah, AR_PHY_POWER_TX_RATE4,
ATH9K_POW_SM(ratesArray[rate11s], 24)
| ATH9K_POW_SM(ratesArray[rate11l], 16)
| ATH9K_POW_SM(ratesArray[rate5_5s], 8)
| ATH9K_POW_SM(ratesArray[rate5_5l], 0));
}
REG_WRITE(ah, AR_PHY_POWER_TX_RATE5,
ATH9K_POW_SM(ratesArray[rateHt20_3], 24)
| ATH9K_POW_SM(ratesArray[rateHt20_2], 16)
| ATH9K_POW_SM(ratesArray[rateHt20_1], 8)
| ATH9K_POW_SM(ratesArray[rateHt20_0], 0));
REG_WRITE(ah, AR_PHY_POWER_TX_RATE6,
ATH9K_POW_SM(ratesArray[rateHt20_7], 24)
| ATH9K_POW_SM(ratesArray[rateHt20_6], 16)
| ATH9K_POW_SM(ratesArray[rateHt20_5], 8)
| ATH9K_POW_SM(ratesArray[rateHt20_4], 0));
if (IS_CHAN_HT40(chan)) {
REG_WRITE(ah, AR_PHY_POWER_TX_RATE7,
ATH9K_POW_SM(ratesArray[rateHt40_3] +
ht40PowerIncForPdadc, 24)
| ATH9K_POW_SM(ratesArray[rateHt40_2] +
ht40PowerIncForPdadc, 16)
| ATH9K_POW_SM(ratesArray[rateHt40_1] +
ht40PowerIncForPdadc, 8)
| ATH9K_POW_SM(ratesArray[rateHt40_0] +
ht40PowerIncForPdadc, 0));
REG_WRITE(ah, AR_PHY_POWER_TX_RATE8,
ATH9K_POW_SM(ratesArray[rateHt40_7] +
ht40PowerIncForPdadc, 24)
| ATH9K_POW_SM(ratesArray[rateHt40_6] +
ht40PowerIncForPdadc, 16)
| ATH9K_POW_SM(ratesArray[rateHt40_5] +
ht40PowerIncForPdadc, 8)
| ATH9K_POW_SM(ratesArray[rateHt40_4] +
ht40PowerIncForPdadc, 0));
REG_WRITE(ah, AR_PHY_POWER_TX_RATE9,
ATH9K_POW_SM(ratesArray[rateExtOfdm], 24)
| ATH9K_POW_SM(ratesArray[rateExtCck], 16)
| ATH9K_POW_SM(ratesArray[rateDupOfdm], 8)
| ATH9K_POW_SM(ratesArray[rateDupCck], 0));
}
REG_WRITE(ah, AR_PHY_POWER_TX_SUB,
ATH9K_POW_SM(pModal->pwrDecreaseFor3Chain, 6)
| ATH9K_POW_SM(pModal->pwrDecreaseFor2Chain, 0));
i = rate6mb;
if (IS_CHAN_HT40(chan))
i = rateHt40_0;
else if (IS_CHAN_HT20(chan))
i = rateHt20_0;
if (AR_SREV_9280_10_OR_LATER(ah))
ah->ah_maxPowerLevel =
ratesArray[i] + AR5416_PWR_TABLE_OFFSET * 2;
else
ah->ah_maxPowerLevel = ratesArray[i];
return 0;
}
static int ath9k_hw_4k_set_txpower(struct ath_hal *ah,
struct ath9k_channel *chan,
u16 cfgCtl,
u8 twiceAntennaReduction,
u8 twiceMaxRegulatoryPower,
u8 powerLimit)
{
struct ath_hal_5416 *ahp = AH5416(ah);
struct ar5416_eeprom_4k *pEepData = &ahp->ah_eeprom.map4k;
struct modal_eep_4k_header *pModal = &pEepData->modalHeader;
int16_t ratesArray[Ar5416RateSize];
int16_t txPowerIndexOffset = 0;
u8 ht40PowerIncForPdadc = 2;
int i;
memset(ratesArray, 0, sizeof(ratesArray));
if ((pEepData->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
AR5416_EEP_MINOR_VER_2) {
ht40PowerIncForPdadc = pModal->ht40PowerIncForPdadc;
}
if (!ath9k_hw_set_4k_power_per_rate_table(ah, chan,
&ratesArray[0], cfgCtl,
twiceAntennaReduction,
twiceMaxRegulatoryPower,
powerLimit)) {
DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
"ath9k_hw_set_txpower: unable to set "
"tx power per rate table\n");
return -EIO;
}
if (!ath9k_hw_set_4k_power_cal_table(ah, chan, &txPowerIndexOffset)) {
DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
"ath9k_hw_set_txpower: unable to set power table\n");
return -EIO;
}
for (i = 0; i < ARRAY_SIZE(ratesArray); i++) {
ratesArray[i] = (int16_t)(txPowerIndexOffset + ratesArray[i]);
if (ratesArray[i] > AR5416_MAX_RATE_POWER)
ratesArray[i] = AR5416_MAX_RATE_POWER;
}
if (AR_SREV_9280_10_OR_LATER(ah)) {
for (i = 0; i < Ar5416RateSize; i++)
ratesArray[i] -= AR5416_PWR_TABLE_OFFSET * 2;
}
REG_WRITE(ah, AR_PHY_POWER_TX_RATE1,
ATH9K_POW_SM(ratesArray[rate18mb], 24)
| ATH9K_POW_SM(ratesArray[rate12mb], 16)
| ATH9K_POW_SM(ratesArray[rate9mb], 8)
| ATH9K_POW_SM(ratesArray[rate6mb], 0));
REG_WRITE(ah, AR_PHY_POWER_TX_RATE2,
ATH9K_POW_SM(ratesArray[rate54mb], 24)
| ATH9K_POW_SM(ratesArray[rate48mb], 16)
| ATH9K_POW_SM(ratesArray[rate36mb], 8)
| ATH9K_POW_SM(ratesArray[rate24mb], 0));
if (IS_CHAN_2GHZ(chan)) {
REG_WRITE(ah, AR_PHY_POWER_TX_RATE3,
ATH9K_POW_SM(ratesArray[rate2s], 24)
| ATH9K_POW_SM(ratesArray[rate2l], 16)
| ATH9K_POW_SM(ratesArray[rateXr], 8)
| ATH9K_POW_SM(ratesArray[rate1l], 0));
REG_WRITE(ah, AR_PHY_POWER_TX_RATE4,
ATH9K_POW_SM(ratesArray[rate11s], 24)
| ATH9K_POW_SM(ratesArray[rate11l], 16)
| ATH9K_POW_SM(ratesArray[rate5_5s], 8)
| ATH9K_POW_SM(ratesArray[rate5_5l], 0));
}
REG_WRITE(ah, AR_PHY_POWER_TX_RATE5,
ATH9K_POW_SM(ratesArray[rateHt20_3], 24)
| ATH9K_POW_SM(ratesArray[rateHt20_2], 16)
| ATH9K_POW_SM(ratesArray[rateHt20_1], 8)
| ATH9K_POW_SM(ratesArray[rateHt20_0], 0));
REG_WRITE(ah, AR_PHY_POWER_TX_RATE6,
ATH9K_POW_SM(ratesArray[rateHt20_7], 24)
| ATH9K_POW_SM(ratesArray[rateHt20_6], 16)
| ATH9K_POW_SM(ratesArray[rateHt20_5], 8)
| ATH9K_POW_SM(ratesArray[rateHt20_4], 0));
if (IS_CHAN_HT40(chan)) {
REG_WRITE(ah, AR_PHY_POWER_TX_RATE7,
ATH9K_POW_SM(ratesArray[rateHt40_3] +
ht40PowerIncForPdadc, 24)
| ATH9K_POW_SM(ratesArray[rateHt40_2] +
ht40PowerIncForPdadc, 16)
| ATH9K_POW_SM(ratesArray[rateHt40_1] +
ht40PowerIncForPdadc, 8)
| ATH9K_POW_SM(ratesArray[rateHt40_0] +
ht40PowerIncForPdadc, 0));
REG_WRITE(ah, AR_PHY_POWER_TX_RATE8,
ATH9K_POW_SM(ratesArray[rateHt40_7] +
ht40PowerIncForPdadc, 24)
| ATH9K_POW_SM(ratesArray[rateHt40_6] +
ht40PowerIncForPdadc, 16)
| ATH9K_POW_SM(ratesArray[rateHt40_5] +
ht40PowerIncForPdadc, 8)
| ATH9K_POW_SM(ratesArray[rateHt40_4] +
ht40PowerIncForPdadc, 0));
REG_WRITE(ah, AR_PHY_POWER_TX_RATE9,
ATH9K_POW_SM(ratesArray[rateExtOfdm], 24)
| ATH9K_POW_SM(ratesArray[rateExtCck], 16)
| ATH9K_POW_SM(ratesArray[rateDupOfdm], 8)
| ATH9K_POW_SM(ratesArray[rateDupCck], 0));
}
i = rate6mb;
if (IS_CHAN_HT40(chan))
i = rateHt40_0;
else if (IS_CHAN_HT20(chan))
i = rateHt20_0;
if (AR_SREV_9280_10_OR_LATER(ah))
ah->ah_maxPowerLevel =
ratesArray[i] + AR5416_PWR_TABLE_OFFSET * 2;
else
ah->ah_maxPowerLevel = ratesArray[i];
return 0;
}
static int (*ath9k_set_txpower[]) (struct ath_hal *,
struct ath9k_channel *,
u16, u8, u8, u8) = {
ath9k_hw_def_set_txpower,
ath9k_hw_4k_set_txpower
};
int ath9k_hw_set_txpower(struct ath_hal *ah,
struct ath9k_channel *chan,
u16 cfgCtl,
u8 twiceAntennaReduction,
u8 twiceMaxRegulatoryPower,
u8 powerLimit)
{
struct ath_hal_5416 *ahp = AH5416(ah);
return ath9k_set_txpower[ahp->ah_eep_map](ah, chan, cfgCtl,
twiceAntennaReduction, twiceMaxRegulatoryPower,
powerLimit);
}
static void ath9k_hw_set_def_addac(struct ath_hal *ah,
struct ath9k_channel *chan)
{
#define XPA_LVL_FREQ(cnt) (pModal->xpaBiasLvlFreq[cnt])
struct modal_eep_header *pModal;
struct ath_hal_5416 *ahp = AH5416(ah);
struct ar5416_eeprom_def *eep = &ahp->ah_eeprom.def;
u8 biaslevel;
if (ah->ah_macVersion != AR_SREV_VERSION_9160)
return;
if (ar5416_get_eep_rev(ahp) < AR5416_EEP_MINOR_VER_7)
return;
pModal = &(eep->modalHeader[IS_CHAN_2GHZ(chan)]);
if (pModal->xpaBiasLvl != 0xff) {
biaslevel = pModal->xpaBiasLvl;
} else {
u16 resetFreqBin, freqBin, freqCount = 0;
struct chan_centers centers;
ath9k_hw_get_channel_centers(ah, chan, &centers);
resetFreqBin = FREQ2FBIN(centers.synth_center,
IS_CHAN_2GHZ(chan));
freqBin = XPA_LVL_FREQ(0) & 0xff;
biaslevel = (u8) (XPA_LVL_FREQ(0) >> 14);
freqCount++;
while (freqCount < 3) {
if (XPA_LVL_FREQ(freqCount) == 0x0)
break;
freqBin = XPA_LVL_FREQ(freqCount) & 0xff;
if (resetFreqBin >= freqBin)
biaslevel = (u8)(XPA_LVL_FREQ(freqCount) >> 14);
else
break;
freqCount++;
}
}
if (IS_CHAN_2GHZ(chan)) {
INI_RA(&ahp->ah_iniAddac, 7, 1) = (INI_RA(&ahp->ah_iniAddac,
7, 1) & (~0x18)) | biaslevel << 3;
} else {
INI_RA(&ahp->ah_iniAddac, 6, 1) = (INI_RA(&ahp->ah_iniAddac,
6, 1) & (~0xc0)) | biaslevel << 6;
}
#undef XPA_LVL_FREQ
}
static void ath9k_hw_set_4k_addac(struct ath_hal *ah,
struct ath9k_channel *chan)
{
struct modal_eep_4k_header *pModal;
struct ath_hal_5416 *ahp = AH5416(ah);
struct ar5416_eeprom_4k *eep = &ahp->ah_eeprom.map4k;
u8 biaslevel;
if (ah->ah_macVersion != AR_SREV_VERSION_9160)
return;
if (ar5416_get_eep_rev(ahp) < AR5416_EEP_MINOR_VER_7)
return;
pModal = &eep->modalHeader;
if (pModal->xpaBiasLvl != 0xff) {
biaslevel = pModal->xpaBiasLvl;
INI_RA(&ahp->ah_iniAddac, 7, 1) =
(INI_RA(&ahp->ah_iniAddac, 7, 1) & (~0x18)) | biaslevel << 3;
}
}
static void (*ath9k_set_addac[]) (struct ath_hal *, struct ath9k_channel *) = {
ath9k_hw_set_def_addac,
ath9k_hw_set_4k_addac
};
void ath9k_hw_set_addac(struct ath_hal *ah, struct ath9k_channel *chan)
{
struct ath_hal_5416 *ahp = AH5416(ah);
ath9k_set_addac[ahp->ah_eep_map](ah, chan);
}
/* XXX: Clean me up, make me more legible */
static bool ath9k_hw_eeprom_set_def_board_values(struct ath_hal *ah,
struct ath9k_channel *chan)
{
#define AR5416_VER_MASK (eep->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK)
struct modal_eep_header *pModal;
struct ath_hal_5416 *ahp = AH5416(ah);
struct ar5416_eeprom_def *eep = &ahp->ah_eeprom.def;
int i, regChainOffset;
u8 txRxAttenLocal;
pModal = &(eep->modalHeader[IS_CHAN_2GHZ(chan)]);
txRxAttenLocal = IS_CHAN_2GHZ(chan) ? 23 : 44;
REG_WRITE(ah, AR_PHY_SWITCH_COM,
ath9k_hw_get_eeprom_antenna_cfg(ah, chan));
for (i = 0; i < AR5416_MAX_CHAINS; i++) {
if (AR_SREV_9280(ah)) {
if (i >= 2)
break;
}
if (AR_SREV_5416_V20_OR_LATER(ah) &&
(ahp->ah_rxchainmask == 5 || ahp->ah_txchainmask == 5)
&& (i != 0))
regChainOffset = (i == 1) ? 0x2000 : 0x1000;
else
regChainOffset = i * 0x1000;
REG_WRITE(ah, AR_PHY_SWITCH_CHAIN_0 + regChainOffset,
pModal->antCtrlChain[i]);
REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0) + regChainOffset,
(REG_READ(ah,
AR_PHY_TIMING_CTRL4(0) +
regChainOffset) &
~(AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF |
AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF)) |
SM(pModal->iqCalICh[i],
AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF) |
SM(pModal->iqCalQCh[i],
AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF));
if ((i == 0) || AR_SREV_5416_V20_OR_LATER(ah)) {
if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_3) {
txRxAttenLocal = pModal->txRxAttenCh[i];
if (AR_SREV_9280_10_OR_LATER(ah)) {
REG_RMW_FIELD(ah,
AR_PHY_GAIN_2GHZ +
regChainOffset,
AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN,
pModal->
bswMargin[i]);
REG_RMW_FIELD(ah,
AR_PHY_GAIN_2GHZ +
regChainOffset,
AR_PHY_GAIN_2GHZ_XATTEN1_DB,
pModal->
bswAtten[i]);
REG_RMW_FIELD(ah,
AR_PHY_GAIN_2GHZ +
regChainOffset,
AR_PHY_GAIN_2GHZ_XATTEN2_MARGIN,
pModal->
xatten2Margin[i]);
REG_RMW_FIELD(ah,
AR_PHY_GAIN_2GHZ +
regChainOffset,
AR_PHY_GAIN_2GHZ_XATTEN2_DB,
pModal->
xatten2Db[i]);
} else {
REG_WRITE(ah,
AR_PHY_GAIN_2GHZ +
regChainOffset,
(REG_READ(ah,
AR_PHY_GAIN_2GHZ +
regChainOffset) &
~AR_PHY_GAIN_2GHZ_BSW_MARGIN)
| SM(pModal->
bswMargin[i],
AR_PHY_GAIN_2GHZ_BSW_MARGIN));
REG_WRITE(ah,
AR_PHY_GAIN_2GHZ +
regChainOffset,
(REG_READ(ah,
AR_PHY_GAIN_2GHZ +
regChainOffset) &
~AR_PHY_GAIN_2GHZ_BSW_ATTEN)
| SM(pModal->bswAtten[i],
AR_PHY_GAIN_2GHZ_BSW_ATTEN));
}
}
if (AR_SREV_9280_10_OR_LATER(ah)) {
REG_RMW_FIELD(ah,
AR_PHY_RXGAIN +
regChainOffset,
AR9280_PHY_RXGAIN_TXRX_ATTEN,
txRxAttenLocal);
REG_RMW_FIELD(ah,
AR_PHY_RXGAIN +
regChainOffset,
AR9280_PHY_RXGAIN_TXRX_MARGIN,
pModal->rxTxMarginCh[i]);
} else {
REG_WRITE(ah,
AR_PHY_RXGAIN + regChainOffset,
(REG_READ(ah,
AR_PHY_RXGAIN +
regChainOffset) &
~AR_PHY_RXGAIN_TXRX_ATTEN) |
SM(txRxAttenLocal,
AR_PHY_RXGAIN_TXRX_ATTEN));
REG_WRITE(ah,
AR_PHY_GAIN_2GHZ +
regChainOffset,
(REG_READ(ah,
AR_PHY_GAIN_2GHZ +
regChainOffset) &
~AR_PHY_GAIN_2GHZ_RXTX_MARGIN) |
SM(pModal->rxTxMarginCh[i],
AR_PHY_GAIN_2GHZ_RXTX_MARGIN));
}
}
}
if (AR_SREV_9280_10_OR_LATER(ah)) {
if (IS_CHAN_2GHZ(chan)) {
ath9k_hw_analog_shift_rmw(ah, AR_AN_RF2G1_CH0,
AR_AN_RF2G1_CH0_OB,
AR_AN_RF2G1_CH0_OB_S,
pModal->ob);
ath9k_hw_analog_shift_rmw(ah, AR_AN_RF2G1_CH0,
AR_AN_RF2G1_CH0_DB,
AR_AN_RF2G1_CH0_DB_S,
pModal->db);
ath9k_hw_analog_shift_rmw(ah, AR_AN_RF2G1_CH1,
AR_AN_RF2G1_CH1_OB,
AR_AN_RF2G1_CH1_OB_S,
pModal->ob_ch1);
ath9k_hw_analog_shift_rmw(ah, AR_AN_RF2G1_CH1,
AR_AN_RF2G1_CH1_DB,
AR_AN_RF2G1_CH1_DB_S,
pModal->db_ch1);
} else {
ath9k_hw_analog_shift_rmw(ah, AR_AN_RF5G1_CH0,
AR_AN_RF5G1_CH0_OB5,
AR_AN_RF5G1_CH0_OB5_S,
pModal->ob);
ath9k_hw_analog_shift_rmw(ah, AR_AN_RF5G1_CH0,
AR_AN_RF5G1_CH0_DB5,
AR_AN_RF5G1_CH0_DB5_S,
pModal->db);
ath9k_hw_analog_shift_rmw(ah, AR_AN_RF5G1_CH1,
AR_AN_RF5G1_CH1_OB5,
AR_AN_RF5G1_CH1_OB5_S,
pModal->ob_ch1);
ath9k_hw_analog_shift_rmw(ah, AR_AN_RF5G1_CH1,
AR_AN_RF5G1_CH1_DB5,
AR_AN_RF5G1_CH1_DB5_S,
pModal->db_ch1);
}
ath9k_hw_analog_shift_rmw(ah, AR_AN_TOP2,
AR_AN_TOP2_XPABIAS_LVL,
AR_AN_TOP2_XPABIAS_LVL_S,
pModal->xpaBiasLvl);
ath9k_hw_analog_shift_rmw(ah, AR_AN_TOP2,
AR_AN_TOP2_LOCALBIAS,
AR_AN_TOP2_LOCALBIAS_S,
pModal->local_bias);
DPRINTF(ah->ah_sc, ATH_DBG_EEPROM, "ForceXPAon: %d\n",
pModal->force_xpaon);
REG_RMW_FIELD(ah, AR_PHY_XPA_CFG, AR_PHY_FORCE_XPA_CFG,
pModal->force_xpaon);
}
REG_RMW_FIELD(ah, AR_PHY_SETTLING, AR_PHY_SETTLING_SWITCH,
pModal->switchSettling);
REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ, AR_PHY_DESIRED_SZ_ADC,
pModal->adcDesiredSize);
if (!AR_SREV_9280_10_OR_LATER(ah))
REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ,
AR_PHY_DESIRED_SZ_PGA,
pModal->pgaDesiredSize);
REG_WRITE(ah, AR_PHY_RF_CTL4,
SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAA_OFF)
| SM(pModal->txEndToXpaOff,
AR_PHY_RF_CTL4_TX_END_XPAB_OFF)
| SM(pModal->txFrameToXpaOn,
AR_PHY_RF_CTL4_FRAME_XPAA_ON)
| SM(pModal->txFrameToXpaOn,
AR_PHY_RF_CTL4_FRAME_XPAB_ON));
REG_RMW_FIELD(ah, AR_PHY_RF_CTL3, AR_PHY_TX_END_TO_A2_RX_ON,
pModal->txEndToRxOn);
if (AR_SREV_9280_10_OR_LATER(ah)) {
REG_RMW_FIELD(ah, AR_PHY_CCA, AR9280_PHY_CCA_THRESH62,
pModal->thresh62);
REG_RMW_FIELD(ah, AR_PHY_EXT_CCA0,
AR_PHY_EXT_CCA0_THRESH62,
pModal->thresh62);
} else {
REG_RMW_FIELD(ah, AR_PHY_CCA, AR_PHY_CCA_THRESH62,
pModal->thresh62);
REG_RMW_FIELD(ah, AR_PHY_EXT_CCA,
AR_PHY_EXT_CCA_THRESH62,
pModal->thresh62);
}
if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_2) {
REG_RMW_FIELD(ah, AR_PHY_RF_CTL2,
AR_PHY_TX_END_DATA_START,
pModal->txFrameToDataStart);
REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_END_PA_ON,
pModal->txFrameToPaOn);
}
if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_3) {
if (IS_CHAN_HT40(chan))
REG_RMW_FIELD(ah, AR_PHY_SETTLING,
AR_PHY_SETTLING_SWITCH,
pModal->swSettleHt40);
}
if (AR_SREV_9280_20(ah) && AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_20) {
if (IS_CHAN_HT20(chan))
REG_RMW_FIELD(ah, AR_AN_TOP1, AR_AN_TOP1_DACIPMODE,
eep->baseEepHeader.dacLpMode);
else if (eep->baseEepHeader.dacHiPwrMode_5G)
REG_RMW_FIELD(ah, AR_AN_TOP1, AR_AN_TOP1_DACIPMODE, 0);
else
REG_RMW_FIELD(ah, AR_AN_TOP1, AR_AN_TOP1_DACIPMODE,
eep->baseEepHeader.dacLpMode);
REG_RMW_FIELD(ah, AR_PHY_FRAME_CTL, AR_PHY_FRAME_CTL_TX_CLIP,
pModal->miscBits >> 2);
}
return true;
#undef AR5416_VER_MASK
}
static bool ath9k_hw_eeprom_set_4k_board_values(struct ath_hal *ah,
struct ath9k_channel *chan)
{
struct modal_eep_4k_header *pModal;
struct ath_hal_5416 *ahp = AH5416(ah);
struct ar5416_eeprom_4k *eep = &ahp->ah_eeprom.map4k;
int regChainOffset;
u8 txRxAttenLocal;
u8 ob[5], db1[5], db2[5];
u8 ant_div_control1, ant_div_control2;
u32 regVal;
pModal = &eep->modalHeader;
txRxAttenLocal = 23;
REG_WRITE(ah, AR_PHY_SWITCH_COM,
ath9k_hw_get_eeprom_antenna_cfg(ah, chan));
regChainOffset = 0;
REG_WRITE(ah, AR_PHY_SWITCH_CHAIN_0 + regChainOffset,
pModal->antCtrlChain[0]);
REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0) + regChainOffset,
(REG_READ(ah, AR_PHY_TIMING_CTRL4(0) + regChainOffset) &
~(AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF |
AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF)) |
SM(pModal->iqCalICh[0], AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF) |
SM(pModal->iqCalQCh[0], AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF));
if ((eep->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
AR5416_EEP_MINOR_VER_3) {
txRxAttenLocal = pModal->txRxAttenCh[0];
REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN, pModal->bswMargin[0]);
REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
AR_PHY_GAIN_2GHZ_XATTEN1_DB, pModal->bswAtten[0]);
REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
AR_PHY_GAIN_2GHZ_XATTEN2_MARGIN,
pModal->xatten2Margin[0]);
REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
AR_PHY_GAIN_2GHZ_XATTEN2_DB, pModal->xatten2Db[0]);
}
REG_RMW_FIELD(ah, AR_PHY_RXGAIN + regChainOffset,
AR9280_PHY_RXGAIN_TXRX_ATTEN, txRxAttenLocal);
REG_RMW_FIELD(ah, AR_PHY_RXGAIN + regChainOffset,
AR9280_PHY_RXGAIN_TXRX_MARGIN, pModal->rxTxMarginCh[0]);
if (AR_SREV_9285_11(ah))
REG_WRITE(ah, AR9285_AN_TOP4, (AR9285_AN_TOP4_DEFAULT | 0x14));
/* Initialize Ant Diversity settings from EEPROM */
if (pModal->version == 3) {
ant_div_control1 = ((pModal->ob_234 >> 12) & 0xf);
ant_div_control2 = ((pModal->db1_234 >> 12) & 0xf);
regVal = REG_READ(ah, 0x99ac);
regVal &= (~(0x7f000000));
regVal |= ((ant_div_control1 & 0x1) << 24);
regVal |= (((ant_div_control1 >> 1) & 0x1) << 29);
regVal |= (((ant_div_control1 >> 2) & 0x1) << 30);
regVal |= ((ant_div_control2 & 0x3) << 25);
regVal |= (((ant_div_control2 >> 2) & 0x3) << 27);
REG_WRITE(ah, 0x99ac, regVal);
regVal = REG_READ(ah, 0x99ac);
regVal = REG_READ(ah, 0xa208);
regVal &= (~(0x1 << 13));
regVal |= (((ant_div_control1 >> 3) & 0x1) << 13);
REG_WRITE(ah, 0xa208, regVal);
regVal = REG_READ(ah, 0xa208);
}
if (pModal->version >= 2) {
ob[0] = (pModal->ob_01 & 0xf);
ob[1] = (pModal->ob_01 >> 4) & 0xf;
ob[2] = (pModal->ob_234 & 0xf);
ob[3] = ((pModal->ob_234 >> 4) & 0xf);
ob[4] = ((pModal->ob_234 >> 8) & 0xf);
db1[0] = (pModal->db1_01 & 0xf);
db1[1] = ((pModal->db1_01 >> 4) & 0xf);
db1[2] = (pModal->db1_234 & 0xf);
db1[3] = ((pModal->db1_234 >> 4) & 0xf);
db1[4] = ((pModal->db1_234 >> 8) & 0xf);
db2[0] = (pModal->db2_01 & 0xf);
db2[1] = ((pModal->db2_01 >> 4) & 0xf);
db2[2] = (pModal->db2_234 & 0xf);
db2[3] = ((pModal->db2_234 >> 4) & 0xf);
db2[4] = ((pModal->db2_234 >> 8) & 0xf);
} else if (pModal->version == 1) {
DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
"EEPROM Model version is set to 1 \n");
ob[0] = (pModal->ob_01 & 0xf);
ob[1] = ob[2] = ob[3] = ob[4] = (pModal->ob_01 >> 4) & 0xf;
db1[0] = (pModal->db1_01 & 0xf);
db1[1] = db1[2] = db1[3] =
db1[4] = ((pModal->db1_01 >> 4) & 0xf);
db2[0] = (pModal->db2_01 & 0xf);
db2[1] = db2[2] = db2[3] =
db2[4] = ((pModal->db2_01 >> 4) & 0xf);
} else {
int i;
for (i = 0; i < 5; i++) {
ob[i] = pModal->ob_01;
db1[i] = pModal->db1_01;
db2[i] = pModal->db1_01;
}
}
ath9k_hw_analog_shift_rmw(ah, AR9285_AN_RF2G3,
AR9285_AN_RF2G3_OB_0, AR9285_AN_RF2G3_OB_0_S, ob[0]);
ath9k_hw_analog_shift_rmw(ah, AR9285_AN_RF2G3,
AR9285_AN_RF2G3_OB_1, AR9285_AN_RF2G3_OB_1_S, ob[1]);
ath9k_hw_analog_shift_rmw(ah, AR9285_AN_RF2G3,
AR9285_AN_RF2G3_OB_2, AR9285_AN_RF2G3_OB_2_S, ob[2]);
ath9k_hw_analog_shift_rmw(ah, AR9285_AN_RF2G3,
AR9285_AN_RF2G3_OB_3, AR9285_AN_RF2G3_OB_3_S, ob[3]);
ath9k_hw_analog_shift_rmw(ah, AR9285_AN_RF2G3,
AR9285_AN_RF2G3_OB_4, AR9285_AN_RF2G3_OB_4_S, ob[4]);
ath9k_hw_analog_shift_rmw(ah, AR9285_AN_RF2G3,
AR9285_AN_RF2G3_DB1_0, AR9285_AN_RF2G3_DB1_0_S, db1[0]);
ath9k_hw_analog_shift_rmw(ah, AR9285_AN_RF2G3,
AR9285_AN_RF2G3_DB1_1, AR9285_AN_RF2G3_DB1_1_S, db1[1]);
ath9k_hw_analog_shift_rmw(ah, AR9285_AN_RF2G3,
AR9285_AN_RF2G3_DB1_2, AR9285_AN_RF2G3_DB1_2_S, db1[2]);
ath9k_hw_analog_shift_rmw(ah, AR9285_AN_RF2G4,
AR9285_AN_RF2G4_DB1_3, AR9285_AN_RF2G4_DB1_3_S, db1[3]);
ath9k_hw_analog_shift_rmw(ah, AR9285_AN_RF2G4,
AR9285_AN_RF2G4_DB1_4, AR9285_AN_RF2G4_DB1_4_S, db1[4]);
ath9k_hw_analog_shift_rmw(ah, AR9285_AN_RF2G4,
AR9285_AN_RF2G4_DB2_0, AR9285_AN_RF2G4_DB2_0_S, db2[0]);
ath9k_hw_analog_shift_rmw(ah, AR9285_AN_RF2G4,
AR9285_AN_RF2G4_DB2_1, AR9285_AN_RF2G4_DB2_1_S, db2[1]);
ath9k_hw_analog_shift_rmw(ah, AR9285_AN_RF2G4,
AR9285_AN_RF2G4_DB2_2, AR9285_AN_RF2G4_DB2_2_S, db2[2]);
ath9k_hw_analog_shift_rmw(ah, AR9285_AN_RF2G4,
AR9285_AN_RF2G4_DB2_3, AR9285_AN_RF2G4_DB2_3_S, db2[3]);
ath9k_hw_analog_shift_rmw(ah, AR9285_AN_RF2G4,
AR9285_AN_RF2G4_DB2_4, AR9285_AN_RF2G4_DB2_4_S, db2[4]);
if (AR_SREV_9285_11(ah))
REG_WRITE(ah, AR9285_AN_TOP4, AR9285_AN_TOP4_DEFAULT);
REG_RMW_FIELD(ah, AR_PHY_SETTLING, AR_PHY_SETTLING_SWITCH,
pModal->switchSettling);
REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ, AR_PHY_DESIRED_SZ_ADC,
pModal->adcDesiredSize);
REG_WRITE(ah, AR_PHY_RF_CTL4,
SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAA_OFF) |
SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAB_OFF) |
SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAA_ON) |
SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAB_ON));
REG_RMW_FIELD(ah, AR_PHY_RF_CTL3, AR_PHY_TX_END_TO_A2_RX_ON,
pModal->txEndToRxOn);
REG_RMW_FIELD(ah, AR_PHY_CCA, AR9280_PHY_CCA_THRESH62,
pModal->thresh62);
REG_RMW_FIELD(ah, AR_PHY_EXT_CCA0, AR_PHY_EXT_CCA0_THRESH62,
pModal->thresh62);
if ((eep->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
AR5416_EEP_MINOR_VER_2) {
REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_END_DATA_START,
pModal->txFrameToDataStart);
REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_END_PA_ON,
pModal->txFrameToPaOn);
}
if ((eep->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
AR5416_EEP_MINOR_VER_3) {
if (IS_CHAN_HT40(chan))
REG_RMW_FIELD(ah, AR_PHY_SETTLING,
AR_PHY_SETTLING_SWITCH,
pModal->swSettleHt40);
}
return true;
}
static bool (*ath9k_eeprom_set_board_values[])(struct ath_hal *,
struct ath9k_channel *) = {
ath9k_hw_eeprom_set_def_board_values,
ath9k_hw_eeprom_set_4k_board_values
};
bool ath9k_hw_eeprom_set_board_values(struct ath_hal *ah,
struct ath9k_channel *chan)
{
struct ath_hal_5416 *ahp = AH5416(ah);
return ath9k_eeprom_set_board_values[ahp->ah_eep_map](ah, chan);
}
static u16 ath9k_hw_get_def_eeprom_antenna_cfg(struct ath_hal *ah,
struct ath9k_channel *chan)
{
struct ath_hal_5416 *ahp = AH5416(ah);
struct ar5416_eeprom_def *eep = &ahp->ah_eeprom.def;
struct modal_eep_header *pModal =
&(eep->modalHeader[IS_CHAN_2GHZ(chan)]);
return pModal->antCtrlCommon & 0xFFFF;
}
static u16 ath9k_hw_get_4k_eeprom_antenna_cfg(struct ath_hal *ah,
struct ath9k_channel *chan)
{
struct ath_hal_5416 *ahp = AH5416(ah);
struct ar5416_eeprom_4k *eep = &ahp->ah_eeprom.map4k;
struct modal_eep_4k_header *pModal = &eep->modalHeader;
return pModal->antCtrlCommon & 0xFFFF;
}
static u16 (*ath9k_get_eeprom_antenna_cfg[])(struct ath_hal *,
struct ath9k_channel *) = {
ath9k_hw_get_def_eeprom_antenna_cfg,
ath9k_hw_get_4k_eeprom_antenna_cfg
};
u16 ath9k_hw_get_eeprom_antenna_cfg(struct ath_hal *ah,
struct ath9k_channel *chan)
{
struct ath_hal_5416 *ahp = AH5416(ah);
return ath9k_get_eeprom_antenna_cfg[ahp->ah_eep_map](ah, chan);
}
static u8 ath9k_hw_get_4k_num_ant_config(struct ath_hal *ah,
enum ieee80211_band freq_band)
{
return 1;
}
static u8 ath9k_hw_get_def_num_ant_config(struct ath_hal *ah,
enum ieee80211_band freq_band)
{
struct ath_hal_5416 *ahp = AH5416(ah);
struct ar5416_eeprom_def *eep = &ahp->ah_eeprom.def;
struct modal_eep_header *pModal =
&(eep->modalHeader[ATH9K_HAL_FREQ_BAND_2GHZ == freq_band]);
struct base_eep_header *pBase = &eep->baseEepHeader;
u8 num_ant_config;
num_ant_config = 1;
if (pBase->version >= 0x0E0D)
if (pModal->useAnt1)
num_ant_config += 1;
return num_ant_config;
}
static u8 (*ath9k_get_num_ant_config[])(struct ath_hal *,
enum ieee80211_band) = {
ath9k_hw_get_def_num_ant_config,
ath9k_hw_get_4k_num_ant_config
};
u8 ath9k_hw_get_num_ant_config(struct ath_hal *ah,
enum ieee80211_band freq_band)
{
struct ath_hal_5416 *ahp = AH5416(ah);
return ath9k_get_num_ant_config[ahp->ah_eep_map](ah, freq_band);
}
u16 ath9k_hw_eeprom_get_spur_chan(struct ath_hal *ah, u16 i, bool is2GHz)
{
#define EEP_MAP4K_SPURCHAN \
(ahp->ah_eeprom.map4k.modalHeader.spurChans[i].spurChan)
#define EEP_DEF_SPURCHAN \
(ahp->ah_eeprom.def.modalHeader[is2GHz].spurChans[i].spurChan)
struct ath_hal_5416 *ahp = AH5416(ah);
u16 spur_val = AR_NO_SPUR;
DPRINTF(ah->ah_sc, ATH_DBG_ANI,
"Getting spur idx %d is2Ghz. %d val %x\n",
i, is2GHz, ah->ah_config.spurchans[i][is2GHz]);
switch (ah->ah_config.spurmode) {
case SPUR_DISABLE:
break;
case SPUR_ENABLE_IOCTL:
spur_val = ah->ah_config.spurchans[i][is2GHz];
DPRINTF(ah->ah_sc, ATH_DBG_ANI,
"Getting spur val from new loc. %d\n", spur_val);
break;
case SPUR_ENABLE_EEPROM:
if (ahp->ah_eep_map == EEP_MAP_4KBITS)
spur_val = EEP_MAP4K_SPURCHAN;
else
spur_val = EEP_DEF_SPURCHAN;
break;
}
return spur_val;
#undef EEP_DEF_SPURCHAN
#undef EEP_MAP4K_SPURCHAN
}
static u32 ath9k_hw_get_eeprom_4k(struct ath_hal *ah,
enum eeprom_param param)
{
struct ath_hal_5416 *ahp = AH5416(ah);
struct ar5416_eeprom_4k *eep = &ahp->ah_eeprom.map4k;
struct modal_eep_4k_header *pModal = &eep->modalHeader;
struct base_eep_header_4k *pBase = &eep->baseEepHeader;
switch (param) {
case EEP_NFTHRESH_2:
return pModal[1].noiseFloorThreshCh[0];
case AR_EEPROM_MAC(0):
return pBase->macAddr[0] << 8 | pBase->macAddr[1];
case AR_EEPROM_MAC(1):
return pBase->macAddr[2] << 8 | pBase->macAddr[3];
case AR_EEPROM_MAC(2):
return pBase->macAddr[4] << 8 | pBase->macAddr[5];
case EEP_REG_0:
return pBase->regDmn[0];
case EEP_REG_1:
return pBase->regDmn[1];
case EEP_OP_CAP:
return pBase->deviceCap;
case EEP_OP_MODE:
return pBase->opCapFlags;
case EEP_RF_SILENT:
return pBase->rfSilent;
case EEP_OB_2:
return pModal->ob_01;
case EEP_DB_2:
return pModal->db1_01;
case EEP_MINOR_REV:
return pBase->version & AR5416_EEP_VER_MINOR_MASK;
case EEP_TX_MASK:
return pBase->txMask;
case EEP_RX_MASK:
return pBase->rxMask;
default:
return 0;
}
}
static u32 ath9k_hw_get_eeprom_def(struct ath_hal *ah,
enum eeprom_param param)
{
#define AR5416_VER_MASK (pBase->version & AR5416_EEP_VER_MINOR_MASK)
struct ath_hal_5416 *ahp = AH5416(ah);
struct ar5416_eeprom_def *eep = &ahp->ah_eeprom.def;
struct modal_eep_header *pModal = eep->modalHeader;
struct base_eep_header *pBase = &eep->baseEepHeader;
switch (param) {
case EEP_NFTHRESH_5:
return pModal[0].noiseFloorThreshCh[0];
case EEP_NFTHRESH_2:
return pModal[1].noiseFloorThreshCh[0];
case AR_EEPROM_MAC(0):
return pBase->macAddr[0] << 8 | pBase->macAddr[1];
case AR_EEPROM_MAC(1):
return pBase->macAddr[2] << 8 | pBase->macAddr[3];
case AR_EEPROM_MAC(2):
return pBase->macAddr[4] << 8 | pBase->macAddr[5];
case EEP_REG_0:
return pBase->regDmn[0];
case EEP_REG_1:
return pBase->regDmn[1];
case EEP_OP_CAP:
return pBase->deviceCap;
case EEP_OP_MODE:
return pBase->opCapFlags;
case EEP_RF_SILENT:
return pBase->rfSilent;
case EEP_OB_5:
return pModal[0].ob;
case EEP_DB_5:
return pModal[0].db;
case EEP_OB_2:
return pModal[1].ob;
case EEP_DB_2:
return pModal[1].db;
case EEP_MINOR_REV:
return AR5416_VER_MASK;
case EEP_TX_MASK:
return pBase->txMask;
case EEP_RX_MASK:
return pBase->rxMask;
case EEP_RXGAIN_TYPE:
return pBase->rxGainType;
case EEP_TXGAIN_TYPE:
return pBase->txGainType;
case EEP_DAC_HPWR_5G:
if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_20)
return pBase->dacHiPwrMode_5G;
else
return 0;
default:
return 0;
}
#undef AR5416_VER_MASK
}
static u32 (*ath9k_get_eeprom[])(struct ath_hal *, enum eeprom_param) = {
ath9k_hw_get_eeprom_def,
ath9k_hw_get_eeprom_4k
};
u32 ath9k_hw_get_eeprom(struct ath_hal *ah,
enum eeprom_param param)
{
struct ath_hal_5416 *ahp = AH5416(ah);
return ath9k_get_eeprom[ahp->ah_eep_map](ah, param);
}
int ath9k_hw_eeprom_attach(struct ath_hal *ah)
{
int status;
struct ath_hal_5416 *ahp = AH5416(ah);
if (AR_SREV_9285(ah))
ahp->ah_eep_map = EEP_MAP_4KBITS;
else
ahp->ah_eep_map = EEP_MAP_DEFAULT;
if (!ath9k_hw_fill_eeprom(ah))
return -EIO;
status = ath9k_hw_check_eeprom(ah);
return status;
}