linux/fs/xfs/libxfs/xfs_ag.c
Darrick J. Wong 1302c6a24f xfs: report AG health via AG geometry ioctl
Use the AG geometry info ioctl to report health status too.

Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
2019-04-14 18:15:57 -07:00

518 lines
14 KiB
C

/* SPDX-License-Identifier: GPL-2.0 */
/*
* Copyright (c) 2000-2005 Silicon Graphics, Inc.
* Copyright (c) 2018 Red Hat, Inc.
* All rights reserved.
*/
#include "xfs.h"
#include "xfs_fs.h"
#include "xfs_shared.h"
#include "xfs_format.h"
#include "xfs_trans_resv.h"
#include "xfs_sb.h"
#include "xfs_mount.h"
#include "xfs_btree.h"
#include "xfs_alloc_btree.h"
#include "xfs_rmap_btree.h"
#include "xfs_alloc.h"
#include "xfs_ialloc.h"
#include "xfs_rmap.h"
#include "xfs_ag.h"
#include "xfs_ag_resv.h"
#include "xfs_health.h"
static struct xfs_buf *
xfs_get_aghdr_buf(
struct xfs_mount *mp,
xfs_daddr_t blkno,
size_t numblks,
int flags,
const struct xfs_buf_ops *ops)
{
struct xfs_buf *bp;
bp = xfs_buf_get_uncached(mp->m_ddev_targp, numblks, flags);
if (!bp)
return NULL;
xfs_buf_zero(bp, 0, BBTOB(bp->b_length));
bp->b_bn = blkno;
bp->b_maps[0].bm_bn = blkno;
bp->b_ops = ops;
return bp;
}
/*
* Generic btree root block init function
*/
static void
xfs_btroot_init(
struct xfs_mount *mp,
struct xfs_buf *bp,
struct aghdr_init_data *id)
{
xfs_btree_init_block(mp, bp, id->type, 0, 0, id->agno, 0);
}
/*
* Alloc btree root block init functions
*/
static void
xfs_bnoroot_init(
struct xfs_mount *mp,
struct xfs_buf *bp,
struct aghdr_init_data *id)
{
struct xfs_alloc_rec *arec;
xfs_btree_init_block(mp, bp, XFS_BTNUM_BNO, 0, 1, id->agno, 0);
arec = XFS_ALLOC_REC_ADDR(mp, XFS_BUF_TO_BLOCK(bp), 1);
arec->ar_startblock = cpu_to_be32(mp->m_ag_prealloc_blocks);
arec->ar_blockcount = cpu_to_be32(id->agsize -
be32_to_cpu(arec->ar_startblock));
}
static void
xfs_cntroot_init(
struct xfs_mount *mp,
struct xfs_buf *bp,
struct aghdr_init_data *id)
{
struct xfs_alloc_rec *arec;
xfs_btree_init_block(mp, bp, XFS_BTNUM_CNT, 0, 1, id->agno, 0);
arec = XFS_ALLOC_REC_ADDR(mp, XFS_BUF_TO_BLOCK(bp), 1);
arec->ar_startblock = cpu_to_be32(mp->m_ag_prealloc_blocks);
arec->ar_blockcount = cpu_to_be32(id->agsize -
be32_to_cpu(arec->ar_startblock));
}
/*
* Reverse map root block init
*/
static void
xfs_rmaproot_init(
struct xfs_mount *mp,
struct xfs_buf *bp,
struct aghdr_init_data *id)
{
struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
struct xfs_rmap_rec *rrec;
xfs_btree_init_block(mp, bp, XFS_BTNUM_RMAP, 0, 4, id->agno, 0);
/*
* mark the AG header regions as static metadata The BNO
* btree block is the first block after the headers, so
* it's location defines the size of region the static
* metadata consumes.
*
* Note: unlike mkfs, we never have to account for log
* space when growing the data regions
*/
rrec = XFS_RMAP_REC_ADDR(block, 1);
rrec->rm_startblock = 0;
rrec->rm_blockcount = cpu_to_be32(XFS_BNO_BLOCK(mp));
rrec->rm_owner = cpu_to_be64(XFS_RMAP_OWN_FS);
rrec->rm_offset = 0;
/* account freespace btree root blocks */
rrec = XFS_RMAP_REC_ADDR(block, 2);
rrec->rm_startblock = cpu_to_be32(XFS_BNO_BLOCK(mp));
rrec->rm_blockcount = cpu_to_be32(2);
rrec->rm_owner = cpu_to_be64(XFS_RMAP_OWN_AG);
rrec->rm_offset = 0;
/* account inode btree root blocks */
rrec = XFS_RMAP_REC_ADDR(block, 3);
rrec->rm_startblock = cpu_to_be32(XFS_IBT_BLOCK(mp));
rrec->rm_blockcount = cpu_to_be32(XFS_RMAP_BLOCK(mp) -
XFS_IBT_BLOCK(mp));
rrec->rm_owner = cpu_to_be64(XFS_RMAP_OWN_INOBT);
rrec->rm_offset = 0;
/* account for rmap btree root */
rrec = XFS_RMAP_REC_ADDR(block, 4);
rrec->rm_startblock = cpu_to_be32(XFS_RMAP_BLOCK(mp));
rrec->rm_blockcount = cpu_to_be32(1);
rrec->rm_owner = cpu_to_be64(XFS_RMAP_OWN_AG);
rrec->rm_offset = 0;
/* account for refc btree root */
if (xfs_sb_version_hasreflink(&mp->m_sb)) {
rrec = XFS_RMAP_REC_ADDR(block, 5);
rrec->rm_startblock = cpu_to_be32(xfs_refc_block(mp));
rrec->rm_blockcount = cpu_to_be32(1);
rrec->rm_owner = cpu_to_be64(XFS_RMAP_OWN_REFC);
rrec->rm_offset = 0;
be16_add_cpu(&block->bb_numrecs, 1);
}
}
/*
* Initialise new secondary superblocks with the pre-grow geometry, but mark
* them as "in progress" so we know they haven't yet been activated. This will
* get cleared when the update with the new geometry information is done after
* changes to the primary are committed. This isn't strictly necessary, but we
* get it for free with the delayed buffer write lists and it means we can tell
* if a grow operation didn't complete properly after the fact.
*/
static void
xfs_sbblock_init(
struct xfs_mount *mp,
struct xfs_buf *bp,
struct aghdr_init_data *id)
{
struct xfs_dsb *dsb = XFS_BUF_TO_SBP(bp);
xfs_sb_to_disk(dsb, &mp->m_sb);
dsb->sb_inprogress = 1;
}
static void
xfs_agfblock_init(
struct xfs_mount *mp,
struct xfs_buf *bp,
struct aghdr_init_data *id)
{
struct xfs_agf *agf = XFS_BUF_TO_AGF(bp);
xfs_extlen_t tmpsize;
agf->agf_magicnum = cpu_to_be32(XFS_AGF_MAGIC);
agf->agf_versionnum = cpu_to_be32(XFS_AGF_VERSION);
agf->agf_seqno = cpu_to_be32(id->agno);
agf->agf_length = cpu_to_be32(id->agsize);
agf->agf_roots[XFS_BTNUM_BNOi] = cpu_to_be32(XFS_BNO_BLOCK(mp));
agf->agf_roots[XFS_BTNUM_CNTi] = cpu_to_be32(XFS_CNT_BLOCK(mp));
agf->agf_levels[XFS_BTNUM_BNOi] = cpu_to_be32(1);
agf->agf_levels[XFS_BTNUM_CNTi] = cpu_to_be32(1);
if (xfs_sb_version_hasrmapbt(&mp->m_sb)) {
agf->agf_roots[XFS_BTNUM_RMAPi] =
cpu_to_be32(XFS_RMAP_BLOCK(mp));
agf->agf_levels[XFS_BTNUM_RMAPi] = cpu_to_be32(1);
agf->agf_rmap_blocks = cpu_to_be32(1);
}
agf->agf_flfirst = cpu_to_be32(1);
agf->agf_fllast = 0;
agf->agf_flcount = 0;
tmpsize = id->agsize - mp->m_ag_prealloc_blocks;
agf->agf_freeblks = cpu_to_be32(tmpsize);
agf->agf_longest = cpu_to_be32(tmpsize);
if (xfs_sb_version_hascrc(&mp->m_sb))
uuid_copy(&agf->agf_uuid, &mp->m_sb.sb_meta_uuid);
if (xfs_sb_version_hasreflink(&mp->m_sb)) {
agf->agf_refcount_root = cpu_to_be32(
xfs_refc_block(mp));
agf->agf_refcount_level = cpu_to_be32(1);
agf->agf_refcount_blocks = cpu_to_be32(1);
}
}
static void
xfs_agflblock_init(
struct xfs_mount *mp,
struct xfs_buf *bp,
struct aghdr_init_data *id)
{
struct xfs_agfl *agfl = XFS_BUF_TO_AGFL(bp);
__be32 *agfl_bno;
int bucket;
if (xfs_sb_version_hascrc(&mp->m_sb)) {
agfl->agfl_magicnum = cpu_to_be32(XFS_AGFL_MAGIC);
agfl->agfl_seqno = cpu_to_be32(id->agno);
uuid_copy(&agfl->agfl_uuid, &mp->m_sb.sb_meta_uuid);
}
agfl_bno = XFS_BUF_TO_AGFL_BNO(mp, bp);
for (bucket = 0; bucket < xfs_agfl_size(mp); bucket++)
agfl_bno[bucket] = cpu_to_be32(NULLAGBLOCK);
}
static void
xfs_agiblock_init(
struct xfs_mount *mp,
struct xfs_buf *bp,
struct aghdr_init_data *id)
{
struct xfs_agi *agi = XFS_BUF_TO_AGI(bp);
int bucket;
agi->agi_magicnum = cpu_to_be32(XFS_AGI_MAGIC);
agi->agi_versionnum = cpu_to_be32(XFS_AGI_VERSION);
agi->agi_seqno = cpu_to_be32(id->agno);
agi->agi_length = cpu_to_be32(id->agsize);
agi->agi_count = 0;
agi->agi_root = cpu_to_be32(XFS_IBT_BLOCK(mp));
agi->agi_level = cpu_to_be32(1);
agi->agi_freecount = 0;
agi->agi_newino = cpu_to_be32(NULLAGINO);
agi->agi_dirino = cpu_to_be32(NULLAGINO);
if (xfs_sb_version_hascrc(&mp->m_sb))
uuid_copy(&agi->agi_uuid, &mp->m_sb.sb_meta_uuid);
if (xfs_sb_version_hasfinobt(&mp->m_sb)) {
agi->agi_free_root = cpu_to_be32(XFS_FIBT_BLOCK(mp));
agi->agi_free_level = cpu_to_be32(1);
}
for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++)
agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO);
}
typedef void (*aghdr_init_work_f)(struct xfs_mount *mp, struct xfs_buf *bp,
struct aghdr_init_data *id);
static int
xfs_ag_init_hdr(
struct xfs_mount *mp,
struct aghdr_init_data *id,
aghdr_init_work_f work,
const struct xfs_buf_ops *ops)
{
struct xfs_buf *bp;
bp = xfs_get_aghdr_buf(mp, id->daddr, id->numblks, 0, ops);
if (!bp)
return -ENOMEM;
(*work)(mp, bp, id);
xfs_buf_delwri_queue(bp, &id->buffer_list);
xfs_buf_relse(bp);
return 0;
}
struct xfs_aghdr_grow_data {
xfs_daddr_t daddr;
size_t numblks;
const struct xfs_buf_ops *ops;
aghdr_init_work_f work;
xfs_btnum_t type;
bool need_init;
};
/*
* Prepare new AG headers to be written to disk. We use uncached buffers here,
* as it is assumed these new AG headers are currently beyond the currently
* valid filesystem address space. Using cached buffers would trip over EOFS
* corruption detection alogrithms in the buffer cache lookup routines.
*
* This is a non-transactional function, but the prepared buffers are added to a
* delayed write buffer list supplied by the caller so they can submit them to
* disk and wait on them as required.
*/
int
xfs_ag_init_headers(
struct xfs_mount *mp,
struct aghdr_init_data *id)
{
struct xfs_aghdr_grow_data aghdr_data[] = {
{ /* SB */
.daddr = XFS_AG_DADDR(mp, id->agno, XFS_SB_DADDR),
.numblks = XFS_FSS_TO_BB(mp, 1),
.ops = &xfs_sb_buf_ops,
.work = &xfs_sbblock_init,
.need_init = true
},
{ /* AGF */
.daddr = XFS_AG_DADDR(mp, id->agno, XFS_AGF_DADDR(mp)),
.numblks = XFS_FSS_TO_BB(mp, 1),
.ops = &xfs_agf_buf_ops,
.work = &xfs_agfblock_init,
.need_init = true
},
{ /* AGFL */
.daddr = XFS_AG_DADDR(mp, id->agno, XFS_AGFL_DADDR(mp)),
.numblks = XFS_FSS_TO_BB(mp, 1),
.ops = &xfs_agfl_buf_ops,
.work = &xfs_agflblock_init,
.need_init = true
},
{ /* AGI */
.daddr = XFS_AG_DADDR(mp, id->agno, XFS_AGI_DADDR(mp)),
.numblks = XFS_FSS_TO_BB(mp, 1),
.ops = &xfs_agi_buf_ops,
.work = &xfs_agiblock_init,
.need_init = true
},
{ /* BNO root block */
.daddr = XFS_AGB_TO_DADDR(mp, id->agno, XFS_BNO_BLOCK(mp)),
.numblks = BTOBB(mp->m_sb.sb_blocksize),
.ops = &xfs_bnobt_buf_ops,
.work = &xfs_bnoroot_init,
.need_init = true
},
{ /* CNT root block */
.daddr = XFS_AGB_TO_DADDR(mp, id->agno, XFS_CNT_BLOCK(mp)),
.numblks = BTOBB(mp->m_sb.sb_blocksize),
.ops = &xfs_cntbt_buf_ops,
.work = &xfs_cntroot_init,
.need_init = true
},
{ /* INO root block */
.daddr = XFS_AGB_TO_DADDR(mp, id->agno, XFS_IBT_BLOCK(mp)),
.numblks = BTOBB(mp->m_sb.sb_blocksize),
.ops = &xfs_inobt_buf_ops,
.work = &xfs_btroot_init,
.type = XFS_BTNUM_INO,
.need_init = true
},
{ /* FINO root block */
.daddr = XFS_AGB_TO_DADDR(mp, id->agno, XFS_FIBT_BLOCK(mp)),
.numblks = BTOBB(mp->m_sb.sb_blocksize),
.ops = &xfs_finobt_buf_ops,
.work = &xfs_btroot_init,
.type = XFS_BTNUM_FINO,
.need_init = xfs_sb_version_hasfinobt(&mp->m_sb)
},
{ /* RMAP root block */
.daddr = XFS_AGB_TO_DADDR(mp, id->agno, XFS_RMAP_BLOCK(mp)),
.numblks = BTOBB(mp->m_sb.sb_blocksize),
.ops = &xfs_rmapbt_buf_ops,
.work = &xfs_rmaproot_init,
.need_init = xfs_sb_version_hasrmapbt(&mp->m_sb)
},
{ /* REFC root block */
.daddr = XFS_AGB_TO_DADDR(mp, id->agno, xfs_refc_block(mp)),
.numblks = BTOBB(mp->m_sb.sb_blocksize),
.ops = &xfs_refcountbt_buf_ops,
.work = &xfs_btroot_init,
.type = XFS_BTNUM_REFC,
.need_init = xfs_sb_version_hasreflink(&mp->m_sb)
},
{ /* NULL terminating block */
.daddr = XFS_BUF_DADDR_NULL,
}
};
struct xfs_aghdr_grow_data *dp;
int error = 0;
/* Account for AG free space in new AG */
id->nfree += id->agsize - mp->m_ag_prealloc_blocks;
for (dp = &aghdr_data[0]; dp->daddr != XFS_BUF_DADDR_NULL; dp++) {
if (!dp->need_init)
continue;
id->daddr = dp->daddr;
id->numblks = dp->numblks;
id->type = dp->type;
error = xfs_ag_init_hdr(mp, id, dp->work, dp->ops);
if (error)
break;
}
return error;
}
/*
* Extent the AG indicated by the @id by the length passed in
*/
int
xfs_ag_extend_space(
struct xfs_mount *mp,
struct xfs_trans *tp,
struct aghdr_init_data *id,
xfs_extlen_t len)
{
struct xfs_buf *bp;
struct xfs_agi *agi;
struct xfs_agf *agf;
int error;
/*
* Change the agi length.
*/
error = xfs_ialloc_read_agi(mp, tp, id->agno, &bp);
if (error)
return error;
agi = XFS_BUF_TO_AGI(bp);
be32_add_cpu(&agi->agi_length, len);
ASSERT(id->agno == mp->m_sb.sb_agcount - 1 ||
be32_to_cpu(agi->agi_length) == mp->m_sb.sb_agblocks);
xfs_ialloc_log_agi(tp, bp, XFS_AGI_LENGTH);
/*
* Change agf length.
*/
error = xfs_alloc_read_agf(mp, tp, id->agno, 0, &bp);
if (error)
return error;
agf = XFS_BUF_TO_AGF(bp);
be32_add_cpu(&agf->agf_length, len);
ASSERT(agf->agf_length == agi->agi_length);
xfs_alloc_log_agf(tp, bp, XFS_AGF_LENGTH);
/*
* Free the new space.
*
* XFS_RMAP_OINFO_SKIP_UPDATE is used here to tell the rmap btree that
* this doesn't actually exist in the rmap btree.
*/
error = xfs_rmap_free(tp, bp, id->agno,
be32_to_cpu(agf->agf_length) - len,
len, &XFS_RMAP_OINFO_SKIP_UPDATE);
if (error)
return error;
return xfs_free_extent(tp, XFS_AGB_TO_FSB(mp, id->agno,
be32_to_cpu(agf->agf_length) - len),
len, &XFS_RMAP_OINFO_SKIP_UPDATE,
XFS_AG_RESV_NONE);
}
/* Retrieve AG geometry. */
int
xfs_ag_get_geometry(
struct xfs_mount *mp,
xfs_agnumber_t agno,
struct xfs_ag_geometry *ageo)
{
struct xfs_buf *agi_bp;
struct xfs_buf *agf_bp;
struct xfs_agi *agi;
struct xfs_agf *agf;
struct xfs_perag *pag;
unsigned int freeblks;
int error;
if (agno >= mp->m_sb.sb_agcount)
return -EINVAL;
/* Lock the AG headers. */
error = xfs_ialloc_read_agi(mp, NULL, agno, &agi_bp);
if (error)
return error;
error = xfs_alloc_read_agf(mp, NULL, agno, 0, &agf_bp);
if (error)
goto out_agi;
pag = xfs_perag_get(mp, agno);
/* Fill out form. */
memset(ageo, 0, sizeof(*ageo));
ageo->ag_number = agno;
agi = XFS_BUF_TO_AGI(agi_bp);
ageo->ag_icount = be32_to_cpu(agi->agi_count);
ageo->ag_ifree = be32_to_cpu(agi->agi_freecount);
agf = XFS_BUF_TO_AGF(agf_bp);
ageo->ag_length = be32_to_cpu(agf->agf_length);
freeblks = pag->pagf_freeblks +
pag->pagf_flcount +
pag->pagf_btreeblks -
xfs_ag_resv_needed(pag, XFS_AG_RESV_NONE);
ageo->ag_freeblks = freeblks;
xfs_ag_geom_health(pag, ageo);
/* Release resources. */
xfs_perag_put(pag);
xfs_buf_relse(agf_bp);
out_agi:
xfs_buf_relse(agi_bp);
return error;
}