linux/arch/hexagon/include/asm/pgtable.h
Johannes Weiner 00f3ca2c2d mm: memcontrol: per-lruvec stats infrastructure
lruvecs are at the intersection of the NUMA node and memcg, which is the
scope for most paging activity.

Introduce a convenient accounting infrastructure that maintains
statistics per node, per memcg, and the lruvec itself.

Then convert over accounting sites for statistics that are already
tracked in both nodes and memcgs and can be easily switched.

[hannes@cmpxchg.org: fix crash in the new cgroup stat keeping code]
  Link: http://lkml.kernel.org/r/20170531171450.GA10481@cmpxchg.org
[hannes@cmpxchg.org: don't track uncharged pages at all
  Link: http://lkml.kernel.org/r/20170605175254.GA8547@cmpxchg.org
[hannes@cmpxchg.org: add missing free_percpu()]
  Link: http://lkml.kernel.org/r/20170605175354.GB8547@cmpxchg.org
[linux@roeck-us.net: hexagon: fix build error caused by include file order]
  Link: http://lkml.kernel.org/r/20170617153721.GA4382@roeck-us.net
Link: http://lkml.kernel.org/r/20170530181724.27197-6-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Guenter Roeck <linux@roeck-us.net>
Acked-by: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Josef Bacik <josef@toxicpanda.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-06 16:24:35 -07:00

487 lines
14 KiB
C

/*
* Page table support for the Hexagon architecture
*
* Copyright (c) 2010-2011, The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
* 02110-1301, USA.
*/
#ifndef _ASM_PGTABLE_H
#define _ASM_PGTABLE_H
/*
* Page table definitions for Qualcomm Hexagon processor.
*/
#include <asm/page.h>
#define __ARCH_USE_5LEVEL_HACK
#include <asm-generic/pgtable-nopmd.h>
/* A handy thing to have if one has the RAM. Declared in head.S */
extern unsigned long empty_zero_page;
extern unsigned long zero_page_mask;
/*
* The PTE model described here is that of the Hexagon Virtual Machine,
* which autonomously walks 2-level page tables. At a lower level, we
* also describe the RISCish software-loaded TLB entry structure of
* the underlying Hexagon processor. A kernel built to run on the
* virtual machine has no need to know about the underlying hardware.
*/
#include <asm/vm_mmu.h>
/*
* To maximize the comfort level for the PTE manipulation macros,
* define the "well known" architecture-specific bits.
*/
#define _PAGE_READ __HVM_PTE_R
#define _PAGE_WRITE __HVM_PTE_W
#define _PAGE_EXECUTE __HVM_PTE_X
#define _PAGE_USER __HVM_PTE_U
/*
* We have a total of 4 "soft" bits available in the abstract PTE.
* The two mandatory software bits are Dirty and Accessed.
* To make nonlinear swap work according to the more recent
* model, we want a low order "Present" bit to indicate whether
* the PTE describes MMU programming or swap space.
*/
#define _PAGE_PRESENT (1<<0)
#define _PAGE_DIRTY (1<<1)
#define _PAGE_ACCESSED (1<<2)
/*
* For now, let's say that Valid and Present are the same thing.
* Alternatively, we could say that it's the "or" of R, W, and X
* permissions.
*/
#define _PAGE_VALID _PAGE_PRESENT
/*
* We're not defining _PAGE_GLOBAL here, since there's no concept
* of global pages or ASIDs exposed to the Hexagon Virtual Machine,
* and we want to use the same page table structures and macros in
* the native kernel as we do in the virtual machine kernel.
* So we'll put up with a bit of inefficiency for now...
*/
/*
* Top "FOURTH" level (pgd), which for the Hexagon VM is really
* only the second from the bottom, pgd and pud both being collapsed.
* Each entry represents 4MB of virtual address space, 4K of table
* thus maps the full 4GB.
*/
#define PGDIR_SHIFT 22
#define PTRS_PER_PGD 1024
#define PGDIR_SIZE (1UL << PGDIR_SHIFT)
#define PGDIR_MASK (~(PGDIR_SIZE-1))
#ifdef CONFIG_PAGE_SIZE_4KB
#define PTRS_PER_PTE 1024
#endif
#ifdef CONFIG_PAGE_SIZE_16KB
#define PTRS_PER_PTE 256
#endif
#ifdef CONFIG_PAGE_SIZE_64KB
#define PTRS_PER_PTE 64
#endif
#ifdef CONFIG_PAGE_SIZE_256KB
#define PTRS_PER_PTE 16
#endif
#ifdef CONFIG_PAGE_SIZE_1MB
#define PTRS_PER_PTE 4
#endif
/* Any bigger and the PTE disappears. */
#define pgd_ERROR(e) \
printk(KERN_ERR "%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__,\
pgd_val(e))
/*
* Page Protection Constants. Includes (in this variant) cache attributes.
*/
extern unsigned long _dflt_cache_att;
#define PAGE_NONE __pgprot(_PAGE_PRESENT | _PAGE_USER | \
_dflt_cache_att)
#define PAGE_READONLY __pgprot(_PAGE_PRESENT | _PAGE_USER | \
_PAGE_READ | _PAGE_EXECUTE | _dflt_cache_att)
#define PAGE_COPY PAGE_READONLY
#define PAGE_EXEC __pgprot(_PAGE_PRESENT | _PAGE_USER | \
_PAGE_READ | _PAGE_EXECUTE | _dflt_cache_att)
#define PAGE_COPY_EXEC PAGE_EXEC
#define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | \
_PAGE_EXECUTE | _PAGE_WRITE | _dflt_cache_att)
#define PAGE_KERNEL __pgprot(_PAGE_PRESENT | _PAGE_READ | \
_PAGE_WRITE | _PAGE_EXECUTE | _dflt_cache_att)
/*
* Aliases for mapping mmap() protection bits to page protections.
* These get used for static initialization, so using the _dflt_cache_att
* variable for the default cache attribute isn't workable. If the
* default gets changed at boot time, the boot option code has to
* update data structures like the protaction_map[] array.
*/
#define CACHEDEF (CACHE_DEFAULT << 6)
/* Private (copy-on-write) page protections. */
#define __P000 __pgprot(_PAGE_PRESENT | _PAGE_USER | CACHEDEF)
#define __P001 __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | CACHEDEF)
#define __P010 __P000 /* Write-only copy-on-write */
#define __P011 __P001 /* Read/Write copy-on-write */
#define __P100 __pgprot(_PAGE_PRESENT | _PAGE_USER | \
_PAGE_EXECUTE | CACHEDEF)
#define __P101 __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_EXECUTE | \
_PAGE_READ | CACHEDEF)
#define __P110 __P100 /* Write/execute copy-on-write */
#define __P111 __P101 /* Read/Write/Execute, copy-on-write */
/* Shared page protections. */
#define __S000 __P000
#define __S001 __P001
#define __S010 __pgprot(_PAGE_PRESENT | _PAGE_USER | \
_PAGE_WRITE | CACHEDEF)
#define __S011 __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | \
_PAGE_WRITE | CACHEDEF)
#define __S100 __pgprot(_PAGE_PRESENT | _PAGE_USER | \
_PAGE_EXECUTE | CACHEDEF)
#define __S101 __P101
#define __S110 __pgprot(_PAGE_PRESENT | _PAGE_USER | \
_PAGE_EXECUTE | _PAGE_WRITE | CACHEDEF)
#define __S111 __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | \
_PAGE_EXECUTE | _PAGE_WRITE | CACHEDEF)
extern pgd_t swapper_pg_dir[PTRS_PER_PGD]; /* located in head.S */
/* Seems to be zero even in architectures where the zero page is firewalled? */
#define FIRST_USER_ADDRESS 0UL
#define pte_special(pte) 0
#define pte_mkspecial(pte) (pte)
/* HUGETLB not working currently */
#ifdef CONFIG_HUGETLB_PAGE
#define pte_mkhuge(pte) __pte((pte_val(pte) & ~0x3) | HVM_HUGEPAGE_SIZE)
#endif
/*
* For now, assume that higher-level code will do TLB/MMU invalidations
* and don't insert that overhead into this low-level function.
*/
extern void sync_icache_dcache(pte_t pte);
#define pte_present_exec_user(pte) \
((pte_val(pte) & (_PAGE_EXECUTE | _PAGE_USER)) == \
(_PAGE_EXECUTE | _PAGE_USER))
static inline void set_pte(pte_t *ptep, pte_t pteval)
{
/* should really be using pte_exec, if it weren't declared later. */
if (pte_present_exec_user(pteval))
sync_icache_dcache(pteval);
*ptep = pteval;
}
/*
* For the Hexagon Virtual Machine MMU (or its emulation), a null/invalid
* L1 PTE (PMD/PGD) has 7 in the least significant bits. For the L2 PTE
* (Linux PTE), the key is to have bits 11..9 all zero. We'd use 0x7
* as a universal null entry, but some of those least significant bits
* are interpreted by software.
*/
#define _NULL_PMD 0x7
#define _NULL_PTE 0x0
static inline void pmd_clear(pmd_t *pmd_entry_ptr)
{
pmd_val(*pmd_entry_ptr) = _NULL_PMD;
}
/*
* Conveniently, a null PTE value is invalid.
*/
static inline void pte_clear(struct mm_struct *mm, unsigned long addr,
pte_t *ptep)
{
pte_val(*ptep) = _NULL_PTE;
}
#ifdef NEED_PMD_INDEX_DESPITE_BEING_2_LEVEL
/**
* pmd_index - returns the index of the entry in the PMD page
* which would control the given virtual address
*/
#define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
#endif
/**
* pgd_index - returns the index of the entry in the PGD page
* which would control the given virtual address
*
* This returns the *index* for the address in the pgd_t
*/
#define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
/*
* pgd_offset - find an offset in a page-table-directory
*/
#define pgd_offset(mm, addr) ((mm)->pgd + pgd_index(addr))
/*
* pgd_offset_k - get kernel (init_mm) pgd entry pointer for addr
*/
#define pgd_offset_k(address) pgd_offset(&init_mm, address)
/**
* pmd_none - check if pmd_entry is mapped
* @pmd_entry: pmd entry
*
* MIPS checks it against that "invalid pte table" thing.
*/
static inline int pmd_none(pmd_t pmd)
{
return pmd_val(pmd) == _NULL_PMD;
}
/**
* pmd_present - is there a page table behind this?
* Essentially the inverse of pmd_none. We maybe
* save an inline instruction by defining it this
* way, instead of simply "!pmd_none".
*/
static inline int pmd_present(pmd_t pmd)
{
return pmd_val(pmd) != (unsigned long)_NULL_PMD;
}
/**
* pmd_bad - check if a PMD entry is "bad". That might mean swapped out.
* As we have no known cause of badness, it's null, as it is for many
* architectures.
*/
static inline int pmd_bad(pmd_t pmd)
{
return 0;
}
/*
* pmd_page - converts a PMD entry to a page pointer
*/
#define pmd_page(pmd) (pfn_to_page(pmd_val(pmd) >> PAGE_SHIFT))
#define pmd_pgtable(pmd) pmd_page(pmd)
/**
* pte_none - check if pte is mapped
* @pte: pte_t entry
*/
static inline int pte_none(pte_t pte)
{
return pte_val(pte) == _NULL_PTE;
};
/*
* pte_present - check if page is present
*/
static inline int pte_present(pte_t pte)
{
return pte_val(pte) & _PAGE_PRESENT;
}
/* mk_pte - make a PTE out of a page pointer and protection bits */
#define mk_pte(page, pgprot) pfn_pte(page_to_pfn(page), (pgprot))
/* pte_page - returns a page (frame pointer/descriptor?) based on a PTE */
#define pte_page(x) pfn_to_page(pte_pfn(x))
/* pte_mkold - mark PTE as not recently accessed */
static inline pte_t pte_mkold(pte_t pte)
{
pte_val(pte) &= ~_PAGE_ACCESSED;
return pte;
}
/* pte_mkyoung - mark PTE as recently accessed */
static inline pte_t pte_mkyoung(pte_t pte)
{
pte_val(pte) |= _PAGE_ACCESSED;
return pte;
}
/* pte_mkclean - mark page as in sync with backing store */
static inline pte_t pte_mkclean(pte_t pte)
{
pte_val(pte) &= ~_PAGE_DIRTY;
return pte;
}
/* pte_mkdirty - mark page as modified */
static inline pte_t pte_mkdirty(pte_t pte)
{
pte_val(pte) |= _PAGE_DIRTY;
return pte;
}
/* pte_young - "is PTE marked as accessed"? */
static inline int pte_young(pte_t pte)
{
return pte_val(pte) & _PAGE_ACCESSED;
}
/* pte_dirty - "is PTE dirty?" */
static inline int pte_dirty(pte_t pte)
{
return pte_val(pte) & _PAGE_DIRTY;
}
/* pte_modify - set protection bits on PTE */
static inline pte_t pte_modify(pte_t pte, pgprot_t prot)
{
pte_val(pte) &= PAGE_MASK;
pte_val(pte) |= pgprot_val(prot);
return pte;
}
/* pte_wrprotect - mark page as not writable */
static inline pte_t pte_wrprotect(pte_t pte)
{
pte_val(pte) &= ~_PAGE_WRITE;
return pte;
}
/* pte_mkwrite - mark page as writable */
static inline pte_t pte_mkwrite(pte_t pte)
{
pte_val(pte) |= _PAGE_WRITE;
return pte;
}
/* pte_mkexec - mark PTE as executable */
static inline pte_t pte_mkexec(pte_t pte)
{
pte_val(pte) |= _PAGE_EXECUTE;
return pte;
}
/* pte_read - "is PTE marked as readable?" */
static inline int pte_read(pte_t pte)
{
return pte_val(pte) & _PAGE_READ;
}
/* pte_write - "is PTE marked as writable?" */
static inline int pte_write(pte_t pte)
{
return pte_val(pte) & _PAGE_WRITE;
}
/* pte_exec - "is PTE marked as executable?" */
static inline int pte_exec(pte_t pte)
{
return pte_val(pte) & _PAGE_EXECUTE;
}
/* __pte_to_swp_entry - extract swap entry from PTE */
#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
/* __swp_entry_to_pte - extract PTE from swap entry */
#define __swp_entry_to_pte(x) ((pte_t) { (x).val })
/* pfn_pte - convert page number and protection value to page table entry */
#define pfn_pte(pfn, pgprot) __pte((pfn << PAGE_SHIFT) | pgprot_val(pgprot))
/* pte_pfn - convert pte to page frame number */
#define pte_pfn(pte) (pte_val(pte) >> PAGE_SHIFT)
#define set_pmd(pmdptr, pmdval) (*(pmdptr) = (pmdval))
/*
* set_pte_at - update page table and do whatever magic may be
* necessary to make the underlying hardware/firmware take note.
*
* VM may require a virtual instruction to alert the MMU.
*/
#define set_pte_at(mm, addr, ptep, pte) set_pte(ptep, pte)
/*
* May need to invoke the virtual machine as well...
*/
#define pte_unmap(pte) do { } while (0)
#define pte_unmap_nested(pte) do { } while (0)
/*
* pte_offset_map - returns the linear address of the page table entry
* corresponding to an address
*/
#define pte_offset_map(dir, address) \
((pte_t *)page_address(pmd_page(*(dir))) + __pte_offset(address))
#define pte_offset_map_nested(pmd, addr) pte_offset_map(pmd, addr)
/* pte_offset_kernel - kernel version of pte_offset */
#define pte_offset_kernel(dir, address) \
((pte_t *) (unsigned long) __va(pmd_val(*dir) & PAGE_MASK) \
+ __pte_offset(address))
/* ZERO_PAGE - returns the globally shared zero page */
#define ZERO_PAGE(vaddr) (virt_to_page(&empty_zero_page))
#define __pte_offset(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
/* I think this is in case we have page table caches; needed by init/main.c */
#define pgtable_cache_init() do { } while (0)
/*
* Swap/file PTE definitions. If _PAGE_PRESENT is zero, the rest of the PTE is
* interpreted as swap information. The remaining free bits are interpreted as
* swap type/offset tuple. Rather than have the TLB fill handler test
* _PAGE_PRESENT, we're going to reserve the permissions bits and set them to
* all zeros for swap entries, which speeds up the miss handler at the cost of
* 3 bits of offset. That trade-off can be revisited if necessary, but Hexagon
* processor architecture and target applications suggest a lot of TLB misses
* and not much swap space.
*
* Format of swap PTE:
* bit 0: Present (zero)
* bits 1-5: swap type (arch independent layer uses 5 bits max)
* bits 6-9: bits 3:0 of offset
* bits 10-12: effectively _PAGE_PROTNONE (all zero)
* bits 13-31: bits 22:4 of swap offset
*
* The split offset makes some of the following macros a little gnarly,
* but there's plenty of precedent for this sort of thing.
*/
/* Used for swap PTEs */
#define __swp_type(swp_pte) (((swp_pte).val >> 1) & 0x1f)
#define __swp_offset(swp_pte) \
((((swp_pte).val >> 6) & 0xf) | (((swp_pte).val >> 9) & 0x7ffff0))
#define __swp_entry(type, offset) \
((swp_entry_t) { \
((type << 1) | \
((offset & 0x7ffff0) << 9) | ((offset & 0xf) << 6)) })
/* Oh boy. There are a lot of possible arch overrides found in this file. */
#include <asm-generic/pgtable.h>
#endif