37f00ab4a0
Updates for SoC specific drivers include a few subsystems that have their own maintainers but send them through the soc tree: TEE/OP-TEE: - Add tracepoints around calls to secure world Memory controller drivers: - Minor fixes for Renesas, Exynos, Mediatek and Tegra platforms - Add debug statistics to Tegra20 memory controller - Update Tegra bindings and convert to dtschema ARM SCMI Firmware: - Support for modular SCMI protocols and vendor specific extensions - New SCMI IIO driver - Per-cpu DVFS The other driver changes are all from the platform maintainers directly and reflect the drivers that don't fit into any other subsystem as well as treewide changes for a particular platform. SoCFPGA: - Various cleanups contributed by Krzysztof Kozlowski Mediatek: - add MT8183 support to mutex driver - MMSYS: use per SoC array to describe the possible routing - add MMSYS support for MT8183 and MT8167 - add support for PMIC wrapper with integrated arbiter - add support for MT8192/MT6873 Tegra: - Bug fixes to PMC and clock drivers NXP/i.MX: - Update SCU power domain driver to keep console domain power on. - Add missing ADC1 power domain to SCU power domain driver. - Update comments for single global power domain in SCU power domain driver. - Add i.MX51/i.MX53 unique id support to i.MX SoC driver. NXP/FSL SoC driver updates for v5.13 - Add ACPI support for RCPM driver - Use generic io{read,write} for QE drivers after performance optimized for PowerPC - Fix QBMAN probe to cleanup HW states correctly for kexec - Various cleanup and style fix for QBMAN/QE/GUTS drivers OMAP: - Preparation to use devicetree for genpd - ti-sysc needs iorange check improved when the interconnect target module has no control registers listed - ti-sysc needs to probe l4_wkup and l4_cfg interconnects first to avoid issues with missing resources and unnecessary deferred probe - ti-sysc debug option can now detect more devices - ti-sysc now warns if an old incomplete devicetree data is found as we now rely on it being complete for am3 and 4 - soc init code needs to check for prcm and prm nodes for omap4/5 and dra7 - omap-prm driver needs to enable autoidle retention support for omap4 - omap5 clocks are missing gpmc and ocmc clock registers - pci-dra7xx now needs to use builtin_platform_driver instead of using builtin_platform_driver_probe for deferred probe to work Raspberry Pi: - Fix-up all RPi firmware drivers so as for unbind to happen in an orderly fashion - Support for RPi's PoE hat PWM bus Qualcomm - Improved detection for SCM calling conventions - Support for OEM specific wifi firmware path - Added drivers for SC7280/SM8350: RPMH, LLCC< AOSS QMP Signed-off-by: Arnd Bergmann <arnd@arndb.de> -----BEGIN PGP SIGNATURE----- iQIzBAABCgAdFiEEo6/YBQwIrVS28WGKmmx57+YAGNkFAmCC2JwACgkQmmx57+YA GNkgRg//cBtq2NyDbjiNABxFSkmGCfcc0w0C2wjVzr4cfg6BLTbuvvlpZxI912pu P1G2sbsdfQJ8sSeIyZos+PilWK0zHrqlaGZfKI19US45dMjpteDBgsPd7wNZwBjQ jbops3YLjztZK1HpY4dIdvMnfxt7yRqhBWaTbPuCwQ35c5KsOM8NHB3cP3BUINWK x1uuBCv9svppzwdDiPxneV93WKEzabOUo+WBMPyh5vnyvmW17Iif4BA/VKQxzymm mWUi8HHpKBpvntJOKwAD2hnLAdpR3SwX20SLOpyLhnJMotbzNUEqq3LdRxDNPdHk ry+rarJ78JGlYfpcfegf2bLf5ITNMfOyRGkjtzeYpcZIXPjufOg9DA9YtAy37k0u L0T/9gQ+tQ01WGMca77OyUtIqJKdblZrQMfuH/yGlR99bqFQMV7rNc7GNlX1MXp/ zw4aOYrRWGtGEeAjx5JJWcYydvMSJpCrqxTz3YhgeJECHB2iA6YkV3NROR4TLW// tfxaKqxR/KmSqE6hoVOAuuQ0BLXNlql/+4EE6MKsAOBiKPJclvmJg4CyuY8G21ev 9Su0zJnXMzai7gNu32v1pizGj26+AOhxCEgAG0mGgk2jlQSn24CKgm5e7kCUewcF j/1XksNPT95v/K8MsLpXe5xGvF3jhA1BlFfvjJNZOrcZywBXRxg= =iidq -----END PGP SIGNATURE----- Merge tag 'arm-drivers-5.13' of git://git.kernel.org/pub/scm/linux/kernel/git/soc/soc Pull ARM SoC driver updates from Arnd Bergmann: "Updates for SoC specific drivers include a few subsystems that have their own maintainers but send them through the soc tree: TEE/OP-TEE: - Add tracepoints around calls to secure world Memory controller drivers: - Minor fixes for Renesas, Exynos, Mediatek and Tegra platforms - Add debug statistics to Tegra20 memory controller - Update Tegra bindings and convert to dtschema ARM SCMI Firmware: - Support for modular SCMI protocols and vendor specific extensions - New SCMI IIO driver - Per-cpu DVFS The other driver changes are all from the platform maintainers directly and reflect the drivers that don't fit into any other subsystem as well as treewide changes for a particular platform. SoCFPGA: - Various cleanups contributed by Krzysztof Kozlowski Mediatek: - add MT8183 support to mutex driver - MMSYS: use per SoC array to describe the possible routing - add MMSYS support for MT8183 and MT8167 - add support for PMIC wrapper with integrated arbiter - add support for MT8192/MT6873 Tegra: - Bug fixes to PMC and clock drivers NXP/i.MX: - Update SCU power domain driver to keep console domain power on. - Add missing ADC1 power domain to SCU power domain driver. - Update comments for single global power domain in SCU power domain driver. - Add i.MX51/i.MX53 unique id support to i.MX SoC driver. NXP/FSL SoC driver updates for v5.13 - Add ACPI support for RCPM driver - Use generic io{read,write} for QE drivers after performance optimized for PowerPC - Fix QBMAN probe to cleanup HW states correctly for kexec - Various cleanup and style fix for QBMAN/QE/GUTS drivers OMAP: - Preparation to use devicetree for genpd - ti-sysc needs iorange check improved when the interconnect target module has no control registers listed - ti-sysc needs to probe l4_wkup and l4_cfg interconnects first to avoid issues with missing resources and unnecessary deferred probe - ti-sysc debug option can now detect more devices - ti-sysc now warns if an old incomplete devicetree data is found as we now rely on it being complete for am3 and 4 - soc init code needs to check for prcm and prm nodes for omap4/5 and dra7 - omap-prm driver needs to enable autoidle retention support for omap4 - omap5 clocks are missing gpmc and ocmc clock registers - pci-dra7xx now needs to use builtin_platform_driver instead of using builtin_platform_driver_probe for deferred probe to work Raspberry Pi: - Fix-up all RPi firmware drivers so as for unbind to happen in an orderly fashion - Support for RPi's PoE hat PWM bus Qualcomm - Improved detection for SCM calling conventions - Support for OEM specific wifi firmware path - Added drivers for SC7280/SM8350: RPMH, LLCC< AOSS QMP" * tag 'arm-drivers-5.13' of git://git.kernel.org/pub/scm/linux/kernel/git/soc/soc: (165 commits) soc: aspeed: fix a ternary sign expansion bug memory: mtk-smi: Add device-link between smi-larb and smi-common memory: samsung: exynos5422-dmc: handle clk_set_parent() failure memory: renesas-rpc-if: fix possible NULL pointer dereference of resource clk: socfpga: fix iomem pointer cast on 64-bit soc: aspeed: Adapt to new LPC device tree layout pinctrl: aspeed-g5: Adapt to new LPC device tree layout ipmi: kcs: aspeed: Adapt to new LPC DTS layout ARM: dts: Remove LPC BMC and Host partitions dt-bindings: aspeed-lpc: Remove LPC partitioning soc: fsl: enable acpi support in RCPM driver soc: qcom: mdt_loader: Detect truncated read of segments soc: qcom: mdt_loader: Validate that p_filesz < p_memsz soc: qcom: pdr: Fix error return code in pdr_register_listener firmware: qcom_scm: Fix kernel-doc function names to match firmware: qcom_scm: Suppress sysfs bind attributes firmware: qcom_scm: Workaround lack of "is available" call on SC7180 firmware: qcom_scm: Reduce locking section for __get_convention() firmware: qcom_scm: Make __qcom_scm_is_call_available() return bool Revert "soc: fsl: qe: introduce qe_io{read,write}* wrappers" ...
310 lines
11 KiB
Plaintext
310 lines
11 KiB
Plaintext
# SPDX-License-Identifier: GPL-2.0-only
|
|
#
|
|
# For a description of the syntax of this configuration file,
|
|
# see Documentation/kbuild/kconfig-language.rst.
|
|
#
|
|
|
|
menu "Firmware Drivers"
|
|
|
|
config ARM_SCMI_PROTOCOL
|
|
tristate "ARM System Control and Management Interface (SCMI) Message Protocol"
|
|
depends on ARM || ARM64 || COMPILE_TEST
|
|
depends on MAILBOX
|
|
help
|
|
ARM System Control and Management Interface (SCMI) protocol is a
|
|
set of operating system-independent software interfaces that are
|
|
used in system management. SCMI is extensible and currently provides
|
|
interfaces for: Discovery and self-description of the interfaces
|
|
it supports, Power domain management which is the ability to place
|
|
a given device or domain into the various power-saving states that
|
|
it supports, Performance management which is the ability to control
|
|
the performance of a domain that is composed of compute engines
|
|
such as application processors and other accelerators, Clock
|
|
management which is the ability to set and inquire rates on platform
|
|
managed clocks and Sensor management which is the ability to read
|
|
sensor data, and be notified of sensor value.
|
|
|
|
This protocol library provides interface for all the client drivers
|
|
making use of the features offered by the SCMI.
|
|
|
|
config ARM_SCMI_POWER_DOMAIN
|
|
tristate "SCMI power domain driver"
|
|
depends on ARM_SCMI_PROTOCOL || (COMPILE_TEST && OF)
|
|
default y
|
|
select PM_GENERIC_DOMAINS if PM
|
|
help
|
|
This enables support for the SCMI power domains which can be
|
|
enabled or disabled via the SCP firmware
|
|
|
|
This driver can also be built as a module. If so, the module
|
|
will be called scmi_pm_domain. Note this may needed early in boot
|
|
before rootfs may be available.
|
|
|
|
config ARM_SCPI_PROTOCOL
|
|
tristate "ARM System Control and Power Interface (SCPI) Message Protocol"
|
|
depends on ARM || ARM64 || COMPILE_TEST
|
|
depends on MAILBOX
|
|
help
|
|
System Control and Power Interface (SCPI) Message Protocol is
|
|
defined for the purpose of communication between the Application
|
|
Cores(AP) and the System Control Processor(SCP). The MHU peripheral
|
|
provides a mechanism for inter-processor communication between SCP
|
|
and AP.
|
|
|
|
SCP controls most of the power management on the Application
|
|
Processors. It offers control and management of: the core/cluster
|
|
power states, various power domain DVFS including the core/cluster,
|
|
certain system clocks configuration, thermal sensors and many
|
|
others.
|
|
|
|
This protocol library provides interface for all the client drivers
|
|
making use of the features offered by the SCP.
|
|
|
|
config ARM_SCPI_POWER_DOMAIN
|
|
tristate "SCPI power domain driver"
|
|
depends on ARM_SCPI_PROTOCOL || (COMPILE_TEST && OF)
|
|
default y
|
|
select PM_GENERIC_DOMAINS if PM
|
|
help
|
|
This enables support for the SCPI power domains which can be
|
|
enabled or disabled via the SCP firmware
|
|
|
|
config ARM_SDE_INTERFACE
|
|
bool "ARM Software Delegated Exception Interface (SDEI)"
|
|
depends on ARM64
|
|
help
|
|
The Software Delegated Exception Interface (SDEI) is an ARM
|
|
standard for registering callbacks from the platform firmware
|
|
into the OS. This is typically used to implement RAS notifications.
|
|
|
|
config EDD
|
|
tristate "BIOS Enhanced Disk Drive calls determine boot disk"
|
|
depends on X86
|
|
help
|
|
Say Y or M here if you want to enable BIOS Enhanced Disk Drive
|
|
Services real mode BIOS calls to determine which disk
|
|
BIOS tries boot from. This information is then exported via sysfs.
|
|
|
|
This option is experimental and is known to fail to boot on some
|
|
obscure configurations. Most disk controller BIOS vendors do
|
|
not yet implement this feature.
|
|
|
|
config EDD_OFF
|
|
bool "Sets default behavior for EDD detection to off"
|
|
depends on EDD
|
|
default n
|
|
help
|
|
Say Y if you want EDD disabled by default, even though it is compiled into the
|
|
kernel. Say N if you want EDD enabled by default. EDD can be dynamically set
|
|
using the kernel parameter 'edd={on|skipmbr|off}'.
|
|
|
|
config FIRMWARE_MEMMAP
|
|
bool "Add firmware-provided memory map to sysfs" if EXPERT
|
|
default X86
|
|
help
|
|
Add the firmware-provided (unmodified) memory map to /sys/firmware/memmap.
|
|
That memory map is used for example by kexec to set up parameter area
|
|
for the next kernel, but can also be used for debugging purposes.
|
|
|
|
See also Documentation/ABI/testing/sysfs-firmware-memmap.
|
|
|
|
config EFI_PCDP
|
|
bool "Console device selection via EFI PCDP or HCDP table"
|
|
depends on ACPI && EFI && IA64
|
|
default y if IA64
|
|
help
|
|
If your firmware supplies the PCDP table, and you want to
|
|
automatically use the primary console device it describes
|
|
as the Linux console, say Y here.
|
|
|
|
If your firmware supplies the HCDP table, and you want to
|
|
use the first serial port it describes as the Linux console,
|
|
say Y here. If your EFI ConOut path contains only a UART
|
|
device, it will become the console automatically. Otherwise,
|
|
you must specify the "console=hcdp" kernel boot argument.
|
|
|
|
Neither the PCDP nor the HCDP affects naming of serial devices,
|
|
so a serial console may be /dev/ttyS0, /dev/ttyS1, etc, depending
|
|
on how the driver discovers devices.
|
|
|
|
You must also enable the appropriate drivers (serial, VGA, etc.)
|
|
|
|
See DIG64_HCDPv20_042804.pdf available from
|
|
<http://www.dig64.org/specifications/>
|
|
|
|
config DMIID
|
|
bool "Export DMI identification via sysfs to userspace"
|
|
depends on DMI
|
|
default y
|
|
help
|
|
Say Y here if you want to query SMBIOS/DMI system identification
|
|
information from userspace through /sys/class/dmi/id/ or if you want
|
|
DMI-based module auto-loading.
|
|
|
|
config DMI_SYSFS
|
|
tristate "DMI table support in sysfs"
|
|
depends on SYSFS && DMI
|
|
default n
|
|
help
|
|
Say Y or M here to enable the exporting of the raw DMI table
|
|
data via sysfs. This is useful for consuming the data without
|
|
requiring any access to /dev/mem at all. Tables are found
|
|
under /sys/firmware/dmi when this option is enabled and
|
|
loaded.
|
|
|
|
config DMI_SCAN_MACHINE_NON_EFI_FALLBACK
|
|
bool
|
|
|
|
config ISCSI_IBFT_FIND
|
|
bool "iSCSI Boot Firmware Table Attributes"
|
|
depends on X86 && ISCSI_IBFT
|
|
default n
|
|
help
|
|
This option enables the kernel to find the region of memory
|
|
in which the ISCSI Boot Firmware Table (iBFT) resides. This
|
|
is necessary for iSCSI Boot Firmware Table Attributes module to work
|
|
properly.
|
|
|
|
config ISCSI_IBFT
|
|
tristate "iSCSI Boot Firmware Table Attributes module"
|
|
select ISCSI_BOOT_SYSFS
|
|
select ISCSI_IBFT_FIND if X86
|
|
depends on ACPI && SCSI && SCSI_LOWLEVEL
|
|
default n
|
|
help
|
|
This option enables support for detection and exposing of iSCSI
|
|
Boot Firmware Table (iBFT) via sysfs to userspace. If you wish to
|
|
detect iSCSI boot parameters dynamically during system boot, say Y.
|
|
Otherwise, say N.
|
|
|
|
config RASPBERRYPI_FIRMWARE
|
|
tristate "Raspberry Pi Firmware Driver"
|
|
depends on BCM2835_MBOX
|
|
help
|
|
This option enables support for communicating with the firmware on the
|
|
Raspberry Pi.
|
|
|
|
config FW_CFG_SYSFS
|
|
tristate "QEMU fw_cfg device support in sysfs"
|
|
depends on SYSFS && (ARM || ARM64 || PARISC || PPC_PMAC || SPARC || X86)
|
|
depends on HAS_IOPORT_MAP
|
|
default n
|
|
help
|
|
Say Y or M here to enable the exporting of the QEMU firmware
|
|
configuration (fw_cfg) file entries via sysfs. Entries are
|
|
found under /sys/firmware/fw_cfg when this option is enabled
|
|
and loaded.
|
|
|
|
config FW_CFG_SYSFS_CMDLINE
|
|
bool "QEMU fw_cfg device parameter parsing"
|
|
depends on FW_CFG_SYSFS
|
|
help
|
|
Allow the qemu_fw_cfg device to be initialized via the kernel
|
|
command line or using a module parameter.
|
|
WARNING: Using incorrect parameters (base address in particular)
|
|
may crash your system.
|
|
|
|
config INTEL_STRATIX10_SERVICE
|
|
tristate "Intel Stratix10 Service Layer"
|
|
depends on ARCH_INTEL_SOCFPGA && ARM64 && HAVE_ARM_SMCCC
|
|
default n
|
|
help
|
|
Intel Stratix10 service layer runs at privileged exception level,
|
|
interfaces with the service providers (FPGA manager is one of them)
|
|
and manages secure monitor call to communicate with secure monitor
|
|
software at secure monitor exception level.
|
|
|
|
Say Y here if you want Stratix10 service layer support.
|
|
|
|
config INTEL_STRATIX10_RSU
|
|
tristate "Intel Stratix10 Remote System Update"
|
|
depends on INTEL_STRATIX10_SERVICE
|
|
help
|
|
The Intel Remote System Update (RSU) driver exposes interfaces
|
|
access through the Intel Service Layer to user space via sysfs
|
|
device attribute nodes. The RSU interfaces report/control some of
|
|
the optional RSU features of the Stratix 10 SoC FPGA.
|
|
|
|
The RSU provides a way for customers to update the boot
|
|
configuration of a Stratix 10 SoC device with significantly reduced
|
|
risk of corrupting the bitstream storage and bricking the system.
|
|
|
|
Enable RSU support if you are using an Intel SoC FPGA with the RSU
|
|
feature enabled and you want Linux user space control.
|
|
|
|
Say Y here if you want Intel RSU support.
|
|
|
|
config QCOM_SCM
|
|
bool
|
|
depends on ARM || ARM64
|
|
depends on HAVE_ARM_SMCCC
|
|
select RESET_CONTROLLER
|
|
|
|
config QCOM_SCM_DOWNLOAD_MODE_DEFAULT
|
|
bool "Qualcomm download mode enabled by default"
|
|
depends on QCOM_SCM
|
|
help
|
|
A device with "download mode" enabled will upon an unexpected
|
|
warm-restart enter a special debug mode that allows the user to
|
|
"download" memory content over USB for offline postmortem analysis.
|
|
The feature can be enabled/disabled on the kernel command line.
|
|
|
|
Say Y here to enable "download mode" by default.
|
|
|
|
config TI_SCI_PROTOCOL
|
|
tristate "TI System Control Interface (TISCI) Message Protocol"
|
|
depends on TI_MESSAGE_MANAGER
|
|
help
|
|
TI System Control Interface (TISCI) Message Protocol is used to manage
|
|
compute systems such as ARM, DSP etc with the system controller in
|
|
complex System on Chip(SoC) such as those found on certain keystone
|
|
generation SoC from TI.
|
|
|
|
System controller provides various facilities including power
|
|
management function support.
|
|
|
|
This protocol library is used by client drivers to use the features
|
|
provided by the system controller.
|
|
|
|
config TRUSTED_FOUNDATIONS
|
|
bool "Trusted Foundations secure monitor support"
|
|
depends on ARM && CPU_V7
|
|
help
|
|
Some devices (including most early Tegra-based consumer devices on
|
|
the market) are booted with the Trusted Foundations secure monitor
|
|
active, requiring some core operations to be performed by the secure
|
|
monitor instead of the kernel.
|
|
|
|
This option allows the kernel to invoke the secure monitor whenever
|
|
required on devices using Trusted Foundations. See the functions and
|
|
comments in linux/firmware/trusted_foundations.h or the device tree
|
|
bindings for "tlm,trusted-foundations" for details on how to use it.
|
|
|
|
Choose N if you don't know what this is about.
|
|
|
|
config TURRIS_MOX_RWTM
|
|
tristate "Turris Mox rWTM secure firmware driver"
|
|
depends on ARCH_MVEBU || COMPILE_TEST
|
|
depends on HAS_DMA && OF
|
|
depends on MAILBOX
|
|
select HW_RANDOM
|
|
select ARMADA_37XX_RWTM_MBOX
|
|
help
|
|
This driver communicates with the firmware on the Cortex-M3 secure
|
|
processor of the Turris Mox router. Enable if you are building for
|
|
Turris Mox, and you will be able to read the device serial number and
|
|
other manufacturing data and also utilize the Entropy Bit Generator
|
|
for hardware random number generation.
|
|
|
|
source "drivers/firmware/broadcom/Kconfig"
|
|
source "drivers/firmware/google/Kconfig"
|
|
source "drivers/firmware/efi/Kconfig"
|
|
source "drivers/firmware/imx/Kconfig"
|
|
source "drivers/firmware/meson/Kconfig"
|
|
source "drivers/firmware/psci/Kconfig"
|
|
source "drivers/firmware/smccc/Kconfig"
|
|
source "drivers/firmware/tegra/Kconfig"
|
|
source "drivers/firmware/xilinx/Kconfig"
|
|
|
|
endmenu
|