forked from Minki/linux
4a33c525f0
Merged states and substates into one state machine, as we always unconditionally transitioned to the substate machine it was straightforward to enter that substate from the starting state. Reported-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Adam Gruchala <adam.gruchala@intel.com> [fixed construction, starting_state_enter, and starting check] Signed-off-by: Dan Williams <dan.j.williams@intel.com>
3244 lines
101 KiB
C
3244 lines
101 KiB
C
/*
|
|
* This file is provided under a dual BSD/GPLv2 license. When using or
|
|
* redistributing this file, you may do so under either license.
|
|
*
|
|
* GPL LICENSE SUMMARY
|
|
*
|
|
* Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of version 2 of the GNU General Public License as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope that it will be useful, but
|
|
* WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
|
|
* The full GNU General Public License is included in this distribution
|
|
* in the file called LICENSE.GPL.
|
|
*
|
|
* BSD LICENSE
|
|
*
|
|
* Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* * Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in
|
|
* the documentation and/or other materials provided with the
|
|
* distribution.
|
|
* * Neither the name of Intel Corporation nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
#include <linux/device.h>
|
|
#include <scsi/sas.h>
|
|
#include "host.h"
|
|
#include "isci.h"
|
|
#include "port.h"
|
|
#include "host.h"
|
|
#include "probe_roms.h"
|
|
#include "remote_device.h"
|
|
#include "request.h"
|
|
#include "scu_completion_codes.h"
|
|
#include "scu_event_codes.h"
|
|
#include "registers.h"
|
|
#include "scu_remote_node_context.h"
|
|
#include "scu_task_context.h"
|
|
#include "scu_unsolicited_frame.h"
|
|
#include "timers.h"
|
|
|
|
#define SCU_CONTEXT_RAM_INIT_STALL_TIME 200
|
|
|
|
/**
|
|
* smu_dcc_get_max_ports() -
|
|
*
|
|
* This macro returns the maximum number of logical ports supported by the
|
|
* hardware. The caller passes in the value read from the device context
|
|
* capacity register and this macro will mash and shift the value appropriately.
|
|
*/
|
|
#define smu_dcc_get_max_ports(dcc_value) \
|
|
(\
|
|
(((dcc_value) & SMU_DEVICE_CONTEXT_CAPACITY_MAX_LP_MASK) \
|
|
>> SMU_DEVICE_CONTEXT_CAPACITY_MAX_LP_SHIFT) + 1 \
|
|
)
|
|
|
|
/**
|
|
* smu_dcc_get_max_task_context() -
|
|
*
|
|
* This macro returns the maximum number of task contexts supported by the
|
|
* hardware. The caller passes in the value read from the device context
|
|
* capacity register and this macro will mash and shift the value appropriately.
|
|
*/
|
|
#define smu_dcc_get_max_task_context(dcc_value) \
|
|
(\
|
|
(((dcc_value) & SMU_DEVICE_CONTEXT_CAPACITY_MAX_TC_MASK) \
|
|
>> SMU_DEVICE_CONTEXT_CAPACITY_MAX_TC_SHIFT) + 1 \
|
|
)
|
|
|
|
/**
|
|
* smu_dcc_get_max_remote_node_context() -
|
|
*
|
|
* This macro returns the maximum number of remote node contexts supported by
|
|
* the hardware. The caller passes in the value read from the device context
|
|
* capacity register and this macro will mash and shift the value appropriately.
|
|
*/
|
|
#define smu_dcc_get_max_remote_node_context(dcc_value) \
|
|
(\
|
|
(((dcc_value) & SMU_DEVICE_CONTEXT_CAPACITY_MAX_RNC_MASK) \
|
|
>> SMU_DEVICE_CONTEXT_CAPACITY_MAX_RNC_SHIFT) + 1 \
|
|
)
|
|
|
|
|
|
#define SCIC_SDS_CONTROLLER_MIN_TIMER_COUNT 3
|
|
#define SCIC_SDS_CONTROLLER_MAX_TIMER_COUNT 3
|
|
|
|
/**
|
|
*
|
|
*
|
|
* The number of milliseconds to wait for a phy to start.
|
|
*/
|
|
#define SCIC_SDS_CONTROLLER_PHY_START_TIMEOUT 100
|
|
|
|
/**
|
|
*
|
|
*
|
|
* The number of milliseconds to wait while a given phy is consuming power
|
|
* before allowing another set of phys to consume power. Ultimately, this will
|
|
* be specified by OEM parameter.
|
|
*/
|
|
#define SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL 500
|
|
|
|
/**
|
|
* NORMALIZE_PUT_POINTER() -
|
|
*
|
|
* This macro will normalize the completion queue put pointer so its value can
|
|
* be used as an array inde
|
|
*/
|
|
#define NORMALIZE_PUT_POINTER(x) \
|
|
((x) & SMU_COMPLETION_QUEUE_PUT_POINTER_MASK)
|
|
|
|
|
|
/**
|
|
* NORMALIZE_EVENT_POINTER() -
|
|
*
|
|
* This macro will normalize the completion queue event entry so its value can
|
|
* be used as an index.
|
|
*/
|
|
#define NORMALIZE_EVENT_POINTER(x) \
|
|
(\
|
|
((x) & SMU_COMPLETION_QUEUE_GET_EVENT_POINTER_MASK) \
|
|
>> SMU_COMPLETION_QUEUE_GET_EVENT_POINTER_SHIFT \
|
|
)
|
|
|
|
/**
|
|
* INCREMENT_COMPLETION_QUEUE_GET() -
|
|
*
|
|
* This macro will increment the controllers completion queue index value and
|
|
* possibly toggle the cycle bit if the completion queue index wraps back to 0.
|
|
*/
|
|
#define INCREMENT_COMPLETION_QUEUE_GET(controller, index, cycle) \
|
|
INCREMENT_QUEUE_GET(\
|
|
(index), \
|
|
(cycle), \
|
|
(controller)->completion_queue_entries, \
|
|
SMU_CQGR_CYCLE_BIT \
|
|
)
|
|
|
|
/**
|
|
* INCREMENT_EVENT_QUEUE_GET() -
|
|
*
|
|
* This macro will increment the controllers event queue index value and
|
|
* possibly toggle the event cycle bit if the event queue index wraps back to 0.
|
|
*/
|
|
#define INCREMENT_EVENT_QUEUE_GET(controller, index, cycle) \
|
|
INCREMENT_QUEUE_GET(\
|
|
(index), \
|
|
(cycle), \
|
|
(controller)->completion_event_entries, \
|
|
SMU_CQGR_EVENT_CYCLE_BIT \
|
|
)
|
|
|
|
|
|
/**
|
|
* NORMALIZE_GET_POINTER() -
|
|
*
|
|
* This macro will normalize the completion queue get pointer so its value can
|
|
* be used as an index into an array
|
|
*/
|
|
#define NORMALIZE_GET_POINTER(x) \
|
|
((x) & SMU_COMPLETION_QUEUE_GET_POINTER_MASK)
|
|
|
|
/**
|
|
* NORMALIZE_GET_POINTER_CYCLE_BIT() -
|
|
*
|
|
* This macro will normalize the completion queue cycle pointer so it matches
|
|
* the completion queue cycle bit
|
|
*/
|
|
#define NORMALIZE_GET_POINTER_CYCLE_BIT(x) \
|
|
((SMU_CQGR_CYCLE_BIT & (x)) << (31 - SMU_COMPLETION_QUEUE_GET_CYCLE_BIT_SHIFT))
|
|
|
|
/**
|
|
* COMPLETION_QUEUE_CYCLE_BIT() -
|
|
*
|
|
* This macro will return the cycle bit of the completion queue entry
|
|
*/
|
|
#define COMPLETION_QUEUE_CYCLE_BIT(x) ((x) & 0x80000000)
|
|
|
|
static bool scic_sds_controller_completion_queue_has_entries(
|
|
struct scic_sds_controller *scic)
|
|
{
|
|
u32 get_value = scic->completion_queue_get;
|
|
u32 get_index = get_value & SMU_COMPLETION_QUEUE_GET_POINTER_MASK;
|
|
|
|
if (NORMALIZE_GET_POINTER_CYCLE_BIT(get_value) ==
|
|
COMPLETION_QUEUE_CYCLE_BIT(scic->completion_queue[get_index]))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
static bool scic_sds_controller_isr(struct scic_sds_controller *scic)
|
|
{
|
|
if (scic_sds_controller_completion_queue_has_entries(scic)) {
|
|
return true;
|
|
} else {
|
|
/*
|
|
* we have a spurious interrupt it could be that we have already
|
|
* emptied the completion queue from a previous interrupt */
|
|
writel(SMU_ISR_COMPLETION, &scic->smu_registers->interrupt_status);
|
|
|
|
/*
|
|
* There is a race in the hardware that could cause us not to be notified
|
|
* of an interrupt completion if we do not take this step. We will mask
|
|
* then unmask the interrupts so if there is another interrupt pending
|
|
* the clearing of the interrupt source we get the next interrupt message. */
|
|
writel(0xFF000000, &scic->smu_registers->interrupt_mask);
|
|
writel(0, &scic->smu_registers->interrupt_mask);
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
irqreturn_t isci_msix_isr(int vec, void *data)
|
|
{
|
|
struct isci_host *ihost = data;
|
|
|
|
if (scic_sds_controller_isr(&ihost->sci))
|
|
tasklet_schedule(&ihost->completion_tasklet);
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
static bool scic_sds_controller_error_isr(struct scic_sds_controller *scic)
|
|
{
|
|
u32 interrupt_status;
|
|
|
|
interrupt_status =
|
|
readl(&scic->smu_registers->interrupt_status);
|
|
interrupt_status &= (SMU_ISR_QUEUE_ERROR | SMU_ISR_QUEUE_SUSPEND);
|
|
|
|
if (interrupt_status != 0) {
|
|
/*
|
|
* There is an error interrupt pending so let it through and handle
|
|
* in the callback */
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* There is a race in the hardware that could cause us not to be notified
|
|
* of an interrupt completion if we do not take this step. We will mask
|
|
* then unmask the error interrupts so if there was another interrupt
|
|
* pending we will be notified.
|
|
* Could we write the value of (SMU_ISR_QUEUE_ERROR | SMU_ISR_QUEUE_SUSPEND)? */
|
|
writel(0xff, &scic->smu_registers->interrupt_mask);
|
|
writel(0, &scic->smu_registers->interrupt_mask);
|
|
|
|
return false;
|
|
}
|
|
|
|
static void scic_sds_controller_task_completion(struct scic_sds_controller *scic,
|
|
u32 completion_entry)
|
|
{
|
|
u32 index;
|
|
struct scic_sds_request *io_request;
|
|
|
|
index = SCU_GET_COMPLETION_INDEX(completion_entry);
|
|
io_request = scic->io_request_table[index];
|
|
|
|
/* Make sure that we really want to process this IO request */
|
|
if (
|
|
(io_request != NULL)
|
|
&& (io_request->io_tag != SCI_CONTROLLER_INVALID_IO_TAG)
|
|
&& (
|
|
scic_sds_io_tag_get_sequence(io_request->io_tag)
|
|
== scic->io_request_sequence[index]
|
|
)
|
|
) {
|
|
/* Yep this is a valid io request pass it along to the io request handler */
|
|
scic_sds_io_request_tc_completion(io_request, completion_entry);
|
|
}
|
|
}
|
|
|
|
static void scic_sds_controller_sdma_completion(struct scic_sds_controller *scic,
|
|
u32 completion_entry)
|
|
{
|
|
u32 index;
|
|
struct scic_sds_request *io_request;
|
|
struct scic_sds_remote_device *device;
|
|
|
|
index = SCU_GET_COMPLETION_INDEX(completion_entry);
|
|
|
|
switch (scu_get_command_request_type(completion_entry)) {
|
|
case SCU_CONTEXT_COMMAND_REQUEST_TYPE_POST_TC:
|
|
case SCU_CONTEXT_COMMAND_REQUEST_TYPE_DUMP_TC:
|
|
io_request = scic->io_request_table[index];
|
|
dev_warn(scic_to_dev(scic),
|
|
"%s: SCIC SDS Completion type SDMA %x for io request "
|
|
"%p\n",
|
|
__func__,
|
|
completion_entry,
|
|
io_request);
|
|
/* @todo For a post TC operation we need to fail the IO
|
|
* request
|
|
*/
|
|
break;
|
|
|
|
case SCU_CONTEXT_COMMAND_REQUEST_TYPE_DUMP_RNC:
|
|
case SCU_CONTEXT_COMMAND_REQUEST_TYPE_OTHER_RNC:
|
|
case SCU_CONTEXT_COMMAND_REQUEST_TYPE_POST_RNC:
|
|
device = scic->device_table[index];
|
|
dev_warn(scic_to_dev(scic),
|
|
"%s: SCIC SDS Completion type SDMA %x for remote "
|
|
"device %p\n",
|
|
__func__,
|
|
completion_entry,
|
|
device);
|
|
/* @todo For a port RNC operation we need to fail the
|
|
* device
|
|
*/
|
|
break;
|
|
|
|
default:
|
|
dev_warn(scic_to_dev(scic),
|
|
"%s: SCIC SDS Completion unknown SDMA completion "
|
|
"type %x\n",
|
|
__func__,
|
|
completion_entry);
|
|
break;
|
|
|
|
}
|
|
}
|
|
|
|
static void scic_sds_controller_unsolicited_frame(struct scic_sds_controller *scic,
|
|
u32 completion_entry)
|
|
{
|
|
u32 index;
|
|
u32 frame_index;
|
|
|
|
struct isci_host *ihost = scic_to_ihost(scic);
|
|
struct scu_unsolicited_frame_header *frame_header;
|
|
struct scic_sds_phy *phy;
|
|
struct scic_sds_remote_device *device;
|
|
|
|
enum sci_status result = SCI_FAILURE;
|
|
|
|
frame_index = SCU_GET_FRAME_INDEX(completion_entry);
|
|
|
|
frame_header = scic->uf_control.buffers.array[frame_index].header;
|
|
scic->uf_control.buffers.array[frame_index].state = UNSOLICITED_FRAME_IN_USE;
|
|
|
|
if (SCU_GET_FRAME_ERROR(completion_entry)) {
|
|
/*
|
|
* / @todo If the IAF frame or SIGNATURE FIS frame has an error will
|
|
* / this cause a problem? We expect the phy initialization will
|
|
* / fail if there is an error in the frame. */
|
|
scic_sds_controller_release_frame(scic, frame_index);
|
|
return;
|
|
}
|
|
|
|
if (frame_header->is_address_frame) {
|
|
index = SCU_GET_PROTOCOL_ENGINE_INDEX(completion_entry);
|
|
phy = &ihost->phys[index].sci;
|
|
result = scic_sds_phy_frame_handler(phy, frame_index);
|
|
} else {
|
|
|
|
index = SCU_GET_COMPLETION_INDEX(completion_entry);
|
|
|
|
if (index == SCIC_SDS_REMOTE_NODE_CONTEXT_INVALID_INDEX) {
|
|
/*
|
|
* This is a signature fis or a frame from a direct attached SATA
|
|
* device that has not yet been created. In either case forwared
|
|
* the frame to the PE and let it take care of the frame data. */
|
|
index = SCU_GET_PROTOCOL_ENGINE_INDEX(completion_entry);
|
|
phy = &ihost->phys[index].sci;
|
|
result = scic_sds_phy_frame_handler(phy, frame_index);
|
|
} else {
|
|
if (index < scic->remote_node_entries)
|
|
device = scic->device_table[index];
|
|
else
|
|
device = NULL;
|
|
|
|
if (device != NULL)
|
|
result = scic_sds_remote_device_frame_handler(device, frame_index);
|
|
else
|
|
scic_sds_controller_release_frame(scic, frame_index);
|
|
}
|
|
}
|
|
|
|
if (result != SCI_SUCCESS) {
|
|
/*
|
|
* / @todo Is there any reason to report some additional error message
|
|
* / when we get this failure notifiction? */
|
|
}
|
|
}
|
|
|
|
static void scic_sds_controller_event_completion(struct scic_sds_controller *scic,
|
|
u32 completion_entry)
|
|
{
|
|
struct isci_host *ihost = scic_to_ihost(scic);
|
|
struct scic_sds_request *io_request;
|
|
struct scic_sds_remote_device *device;
|
|
struct scic_sds_phy *phy;
|
|
u32 index;
|
|
|
|
index = SCU_GET_COMPLETION_INDEX(completion_entry);
|
|
|
|
switch (scu_get_event_type(completion_entry)) {
|
|
case SCU_EVENT_TYPE_SMU_COMMAND_ERROR:
|
|
/* / @todo The driver did something wrong and we need to fix the condtion. */
|
|
dev_err(scic_to_dev(scic),
|
|
"%s: SCIC Controller 0x%p received SMU command error "
|
|
"0x%x\n",
|
|
__func__,
|
|
scic,
|
|
completion_entry);
|
|
break;
|
|
|
|
case SCU_EVENT_TYPE_SMU_PCQ_ERROR:
|
|
case SCU_EVENT_TYPE_SMU_ERROR:
|
|
case SCU_EVENT_TYPE_FATAL_MEMORY_ERROR:
|
|
/*
|
|
* / @todo This is a hardware failure and its likely that we want to
|
|
* / reset the controller. */
|
|
dev_err(scic_to_dev(scic),
|
|
"%s: SCIC Controller 0x%p received fatal controller "
|
|
"event 0x%x\n",
|
|
__func__,
|
|
scic,
|
|
completion_entry);
|
|
break;
|
|
|
|
case SCU_EVENT_TYPE_TRANSPORT_ERROR:
|
|
io_request = scic->io_request_table[index];
|
|
scic_sds_io_request_event_handler(io_request, completion_entry);
|
|
break;
|
|
|
|
case SCU_EVENT_TYPE_PTX_SCHEDULE_EVENT:
|
|
switch (scu_get_event_specifier(completion_entry)) {
|
|
case SCU_EVENT_SPECIFIC_SMP_RESPONSE_NO_PE:
|
|
case SCU_EVENT_SPECIFIC_TASK_TIMEOUT:
|
|
io_request = scic->io_request_table[index];
|
|
if (io_request != NULL)
|
|
scic_sds_io_request_event_handler(io_request, completion_entry);
|
|
else
|
|
dev_warn(scic_to_dev(scic),
|
|
"%s: SCIC Controller 0x%p received "
|
|
"event 0x%x for io request object "
|
|
"that doesnt exist.\n",
|
|
__func__,
|
|
scic,
|
|
completion_entry);
|
|
|
|
break;
|
|
|
|
case SCU_EVENT_SPECIFIC_IT_NEXUS_TIMEOUT:
|
|
device = scic->device_table[index];
|
|
if (device != NULL)
|
|
scic_sds_remote_device_event_handler(device, completion_entry);
|
|
else
|
|
dev_warn(scic_to_dev(scic),
|
|
"%s: SCIC Controller 0x%p received "
|
|
"event 0x%x for remote device object "
|
|
"that doesnt exist.\n",
|
|
__func__,
|
|
scic,
|
|
completion_entry);
|
|
|
|
break;
|
|
}
|
|
break;
|
|
|
|
case SCU_EVENT_TYPE_BROADCAST_CHANGE:
|
|
/*
|
|
* direct the broadcast change event to the phy first and then let
|
|
* the phy redirect the broadcast change to the port object */
|
|
case SCU_EVENT_TYPE_ERR_CNT_EVENT:
|
|
/*
|
|
* direct error counter event to the phy object since that is where
|
|
* we get the event notification. This is a type 4 event. */
|
|
case SCU_EVENT_TYPE_OSSP_EVENT:
|
|
index = SCU_GET_PROTOCOL_ENGINE_INDEX(completion_entry);
|
|
phy = &ihost->phys[index].sci;
|
|
scic_sds_phy_event_handler(phy, completion_entry);
|
|
break;
|
|
|
|
case SCU_EVENT_TYPE_RNC_SUSPEND_TX:
|
|
case SCU_EVENT_TYPE_RNC_SUSPEND_TX_RX:
|
|
case SCU_EVENT_TYPE_RNC_OPS_MISC:
|
|
if (index < scic->remote_node_entries) {
|
|
device = scic->device_table[index];
|
|
|
|
if (device != NULL)
|
|
scic_sds_remote_device_event_handler(device, completion_entry);
|
|
} else
|
|
dev_err(scic_to_dev(scic),
|
|
"%s: SCIC Controller 0x%p received event 0x%x "
|
|
"for remote device object 0x%0x that doesnt "
|
|
"exist.\n",
|
|
__func__,
|
|
scic,
|
|
completion_entry,
|
|
index);
|
|
|
|
break;
|
|
|
|
default:
|
|
dev_warn(scic_to_dev(scic),
|
|
"%s: SCIC Controller received unknown event code %x\n",
|
|
__func__,
|
|
completion_entry);
|
|
break;
|
|
}
|
|
}
|
|
|
|
|
|
|
|
static void scic_sds_controller_process_completions(struct scic_sds_controller *scic)
|
|
{
|
|
u32 completion_count = 0;
|
|
u32 completion_entry;
|
|
u32 get_index;
|
|
u32 get_cycle;
|
|
u32 event_index;
|
|
u32 event_cycle;
|
|
|
|
dev_dbg(scic_to_dev(scic),
|
|
"%s: completion queue begining get:0x%08x\n",
|
|
__func__,
|
|
scic->completion_queue_get);
|
|
|
|
/* Get the component parts of the completion queue */
|
|
get_index = NORMALIZE_GET_POINTER(scic->completion_queue_get);
|
|
get_cycle = SMU_CQGR_CYCLE_BIT & scic->completion_queue_get;
|
|
|
|
event_index = NORMALIZE_EVENT_POINTER(scic->completion_queue_get);
|
|
event_cycle = SMU_CQGR_EVENT_CYCLE_BIT & scic->completion_queue_get;
|
|
|
|
while (
|
|
NORMALIZE_GET_POINTER_CYCLE_BIT(get_cycle)
|
|
== COMPLETION_QUEUE_CYCLE_BIT(scic->completion_queue[get_index])
|
|
) {
|
|
completion_count++;
|
|
|
|
completion_entry = scic->completion_queue[get_index];
|
|
INCREMENT_COMPLETION_QUEUE_GET(scic, get_index, get_cycle);
|
|
|
|
dev_dbg(scic_to_dev(scic),
|
|
"%s: completion queue entry:0x%08x\n",
|
|
__func__,
|
|
completion_entry);
|
|
|
|
switch (SCU_GET_COMPLETION_TYPE(completion_entry)) {
|
|
case SCU_COMPLETION_TYPE_TASK:
|
|
scic_sds_controller_task_completion(scic, completion_entry);
|
|
break;
|
|
|
|
case SCU_COMPLETION_TYPE_SDMA:
|
|
scic_sds_controller_sdma_completion(scic, completion_entry);
|
|
break;
|
|
|
|
case SCU_COMPLETION_TYPE_UFI:
|
|
scic_sds_controller_unsolicited_frame(scic, completion_entry);
|
|
break;
|
|
|
|
case SCU_COMPLETION_TYPE_EVENT:
|
|
INCREMENT_EVENT_QUEUE_GET(scic, event_index, event_cycle);
|
|
scic_sds_controller_event_completion(scic, completion_entry);
|
|
break;
|
|
|
|
case SCU_COMPLETION_TYPE_NOTIFY:
|
|
/*
|
|
* Presently we do the same thing with a notify event that we do with the
|
|
* other event codes. */
|
|
INCREMENT_EVENT_QUEUE_GET(scic, event_index, event_cycle);
|
|
scic_sds_controller_event_completion(scic, completion_entry);
|
|
break;
|
|
|
|
default:
|
|
dev_warn(scic_to_dev(scic),
|
|
"%s: SCIC Controller received unknown "
|
|
"completion type %x\n",
|
|
__func__,
|
|
completion_entry);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Update the get register if we completed one or more entries */
|
|
if (completion_count > 0) {
|
|
scic->completion_queue_get =
|
|
SMU_CQGR_GEN_BIT(ENABLE) |
|
|
SMU_CQGR_GEN_BIT(EVENT_ENABLE) |
|
|
event_cycle |
|
|
SMU_CQGR_GEN_VAL(EVENT_POINTER, event_index) |
|
|
get_cycle |
|
|
SMU_CQGR_GEN_VAL(POINTER, get_index);
|
|
|
|
writel(scic->completion_queue_get,
|
|
&scic->smu_registers->completion_queue_get);
|
|
|
|
}
|
|
|
|
dev_dbg(scic_to_dev(scic),
|
|
"%s: completion queue ending get:0x%08x\n",
|
|
__func__,
|
|
scic->completion_queue_get);
|
|
|
|
}
|
|
|
|
static void scic_sds_controller_error_handler(struct scic_sds_controller *scic)
|
|
{
|
|
u32 interrupt_status;
|
|
|
|
interrupt_status =
|
|
readl(&scic->smu_registers->interrupt_status);
|
|
|
|
if ((interrupt_status & SMU_ISR_QUEUE_SUSPEND) &&
|
|
scic_sds_controller_completion_queue_has_entries(scic)) {
|
|
|
|
scic_sds_controller_process_completions(scic);
|
|
writel(SMU_ISR_QUEUE_SUSPEND, &scic->smu_registers->interrupt_status);
|
|
} else {
|
|
dev_err(scic_to_dev(scic), "%s: status: %#x\n", __func__,
|
|
interrupt_status);
|
|
|
|
sci_base_state_machine_change_state(&scic->state_machine,
|
|
SCI_BASE_CONTROLLER_STATE_FAILED);
|
|
|
|
return;
|
|
}
|
|
|
|
/* If we dont process any completions I am not sure that we want to do this.
|
|
* We are in the middle of a hardware fault and should probably be reset.
|
|
*/
|
|
writel(0, &scic->smu_registers->interrupt_mask);
|
|
}
|
|
|
|
irqreturn_t isci_intx_isr(int vec, void *data)
|
|
{
|
|
irqreturn_t ret = IRQ_NONE;
|
|
struct isci_host *ihost = data;
|
|
struct scic_sds_controller *scic = &ihost->sci;
|
|
|
|
if (scic_sds_controller_isr(scic)) {
|
|
writel(SMU_ISR_COMPLETION, &scic->smu_registers->interrupt_status);
|
|
tasklet_schedule(&ihost->completion_tasklet);
|
|
ret = IRQ_HANDLED;
|
|
} else if (scic_sds_controller_error_isr(scic)) {
|
|
spin_lock(&ihost->scic_lock);
|
|
scic_sds_controller_error_handler(scic);
|
|
spin_unlock(&ihost->scic_lock);
|
|
ret = IRQ_HANDLED;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
irqreturn_t isci_error_isr(int vec, void *data)
|
|
{
|
|
struct isci_host *ihost = data;
|
|
|
|
if (scic_sds_controller_error_isr(&ihost->sci))
|
|
scic_sds_controller_error_handler(&ihost->sci);
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
/**
|
|
* isci_host_start_complete() - This function is called by the core library,
|
|
* through the ISCI Module, to indicate controller start status.
|
|
* @isci_host: This parameter specifies the ISCI host object
|
|
* @completion_status: This parameter specifies the completion status from the
|
|
* core library.
|
|
*
|
|
*/
|
|
static void isci_host_start_complete(struct isci_host *ihost, enum sci_status completion_status)
|
|
{
|
|
if (completion_status != SCI_SUCCESS)
|
|
dev_info(&ihost->pdev->dev,
|
|
"controller start timed out, continuing...\n");
|
|
isci_host_change_state(ihost, isci_ready);
|
|
clear_bit(IHOST_START_PENDING, &ihost->flags);
|
|
wake_up(&ihost->eventq);
|
|
}
|
|
|
|
int isci_host_scan_finished(struct Scsi_Host *shost, unsigned long time)
|
|
{
|
|
struct isci_host *ihost = SHOST_TO_SAS_HA(shost)->lldd_ha;
|
|
|
|
if (test_bit(IHOST_START_PENDING, &ihost->flags))
|
|
return 0;
|
|
|
|
/* todo: use sas_flush_discovery once it is upstream */
|
|
scsi_flush_work(shost);
|
|
|
|
scsi_flush_work(shost);
|
|
|
|
dev_dbg(&ihost->pdev->dev,
|
|
"%s: ihost->status = %d, time = %ld\n",
|
|
__func__, isci_host_get_state(ihost), time);
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
/**
|
|
* scic_controller_get_suggested_start_timeout() - This method returns the
|
|
* suggested scic_controller_start() timeout amount. The user is free to
|
|
* use any timeout value, but this method provides the suggested minimum
|
|
* start timeout value. The returned value is based upon empirical
|
|
* information determined as a result of interoperability testing.
|
|
* @controller: the handle to the controller object for which to return the
|
|
* suggested start timeout.
|
|
*
|
|
* This method returns the number of milliseconds for the suggested start
|
|
* operation timeout.
|
|
*/
|
|
static u32 scic_controller_get_suggested_start_timeout(
|
|
struct scic_sds_controller *sc)
|
|
{
|
|
/* Validate the user supplied parameters. */
|
|
if (sc == NULL)
|
|
return 0;
|
|
|
|
/*
|
|
* The suggested minimum timeout value for a controller start operation:
|
|
*
|
|
* Signature FIS Timeout
|
|
* + Phy Start Timeout
|
|
* + Number of Phy Spin Up Intervals
|
|
* ---------------------------------
|
|
* Number of milliseconds for the controller start operation.
|
|
*
|
|
* NOTE: The number of phy spin up intervals will be equivalent
|
|
* to the number of phys divided by the number phys allowed
|
|
* per interval - 1 (once OEM parameters are supported).
|
|
* Currently we assume only 1 phy per interval. */
|
|
|
|
return SCIC_SDS_SIGNATURE_FIS_TIMEOUT
|
|
+ SCIC_SDS_CONTROLLER_PHY_START_TIMEOUT
|
|
+ ((SCI_MAX_PHYS - 1) * SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL);
|
|
}
|
|
|
|
static void scic_controller_enable_interrupts(
|
|
struct scic_sds_controller *scic)
|
|
{
|
|
BUG_ON(scic->smu_registers == NULL);
|
|
writel(0, &scic->smu_registers->interrupt_mask);
|
|
}
|
|
|
|
void scic_controller_disable_interrupts(
|
|
struct scic_sds_controller *scic)
|
|
{
|
|
BUG_ON(scic->smu_registers == NULL);
|
|
writel(0xffffffff, &scic->smu_registers->interrupt_mask);
|
|
}
|
|
|
|
static void scic_sds_controller_enable_port_task_scheduler(
|
|
struct scic_sds_controller *scic)
|
|
{
|
|
u32 port_task_scheduler_value;
|
|
|
|
port_task_scheduler_value =
|
|
readl(&scic->scu_registers->peg0.ptsg.control);
|
|
port_task_scheduler_value |=
|
|
(SCU_PTSGCR_GEN_BIT(ETM_ENABLE) |
|
|
SCU_PTSGCR_GEN_BIT(PTSG_ENABLE));
|
|
writel(port_task_scheduler_value,
|
|
&scic->scu_registers->peg0.ptsg.control);
|
|
}
|
|
|
|
static void scic_sds_controller_assign_task_entries(struct scic_sds_controller *scic)
|
|
{
|
|
u32 task_assignment;
|
|
|
|
/*
|
|
* Assign all the TCs to function 0
|
|
* TODO: Do we actually need to read this register to write it back?
|
|
*/
|
|
|
|
task_assignment =
|
|
readl(&scic->smu_registers->task_context_assignment[0]);
|
|
|
|
task_assignment |= (SMU_TCA_GEN_VAL(STARTING, 0)) |
|
|
(SMU_TCA_GEN_VAL(ENDING, scic->task_context_entries - 1)) |
|
|
(SMU_TCA_GEN_BIT(RANGE_CHECK_ENABLE));
|
|
|
|
writel(task_assignment,
|
|
&scic->smu_registers->task_context_assignment[0]);
|
|
|
|
}
|
|
|
|
static void scic_sds_controller_initialize_completion_queue(struct scic_sds_controller *scic)
|
|
{
|
|
u32 index;
|
|
u32 completion_queue_control_value;
|
|
u32 completion_queue_get_value;
|
|
u32 completion_queue_put_value;
|
|
|
|
scic->completion_queue_get = 0;
|
|
|
|
completion_queue_control_value = (
|
|
SMU_CQC_QUEUE_LIMIT_SET(scic->completion_queue_entries - 1)
|
|
| SMU_CQC_EVENT_LIMIT_SET(scic->completion_event_entries - 1)
|
|
);
|
|
|
|
writel(completion_queue_control_value,
|
|
&scic->smu_registers->completion_queue_control);
|
|
|
|
|
|
/* Set the completion queue get pointer and enable the queue */
|
|
completion_queue_get_value = (
|
|
(SMU_CQGR_GEN_VAL(POINTER, 0))
|
|
| (SMU_CQGR_GEN_VAL(EVENT_POINTER, 0))
|
|
| (SMU_CQGR_GEN_BIT(ENABLE))
|
|
| (SMU_CQGR_GEN_BIT(EVENT_ENABLE))
|
|
);
|
|
|
|
writel(completion_queue_get_value,
|
|
&scic->smu_registers->completion_queue_get);
|
|
|
|
/* Set the completion queue put pointer */
|
|
completion_queue_put_value = (
|
|
(SMU_CQPR_GEN_VAL(POINTER, 0))
|
|
| (SMU_CQPR_GEN_VAL(EVENT_POINTER, 0))
|
|
);
|
|
|
|
writel(completion_queue_put_value,
|
|
&scic->smu_registers->completion_queue_put);
|
|
|
|
/* Initialize the cycle bit of the completion queue entries */
|
|
for (index = 0; index < scic->completion_queue_entries; index++) {
|
|
/*
|
|
* If get.cycle_bit != completion_queue.cycle_bit
|
|
* its not a valid completion queue entry
|
|
* so at system start all entries are invalid */
|
|
scic->completion_queue[index] = 0x80000000;
|
|
}
|
|
}
|
|
|
|
static void scic_sds_controller_initialize_unsolicited_frame_queue(struct scic_sds_controller *scic)
|
|
{
|
|
u32 frame_queue_control_value;
|
|
u32 frame_queue_get_value;
|
|
u32 frame_queue_put_value;
|
|
|
|
/* Write the queue size */
|
|
frame_queue_control_value =
|
|
SCU_UFQC_GEN_VAL(QUEUE_SIZE,
|
|
scic->uf_control.address_table.count);
|
|
|
|
writel(frame_queue_control_value,
|
|
&scic->scu_registers->sdma.unsolicited_frame_queue_control);
|
|
|
|
/* Setup the get pointer for the unsolicited frame queue */
|
|
frame_queue_get_value = (
|
|
SCU_UFQGP_GEN_VAL(POINTER, 0)
|
|
| SCU_UFQGP_GEN_BIT(ENABLE_BIT)
|
|
);
|
|
|
|
writel(frame_queue_get_value,
|
|
&scic->scu_registers->sdma.unsolicited_frame_get_pointer);
|
|
/* Setup the put pointer for the unsolicited frame queue */
|
|
frame_queue_put_value = SCU_UFQPP_GEN_VAL(POINTER, 0);
|
|
writel(frame_queue_put_value,
|
|
&scic->scu_registers->sdma.unsolicited_frame_put_pointer);
|
|
}
|
|
|
|
/**
|
|
* This method will attempt to transition into the ready state for the
|
|
* controller and indicate that the controller start operation has completed
|
|
* if all criteria are met.
|
|
* @scic: This parameter indicates the controller object for which
|
|
* to transition to ready.
|
|
* @status: This parameter indicates the status value to be pass into the call
|
|
* to scic_cb_controller_start_complete().
|
|
*
|
|
* none.
|
|
*/
|
|
static void scic_sds_controller_transition_to_ready(
|
|
struct scic_sds_controller *scic,
|
|
enum sci_status status)
|
|
{
|
|
struct isci_host *ihost = scic_to_ihost(scic);
|
|
|
|
if (scic->state_machine.current_state_id ==
|
|
SCI_BASE_CONTROLLER_STATE_STARTING) {
|
|
/*
|
|
* We move into the ready state, because some of the phys/ports
|
|
* may be up and operational.
|
|
*/
|
|
sci_base_state_machine_change_state(&scic->state_machine,
|
|
SCI_BASE_CONTROLLER_STATE_READY);
|
|
|
|
isci_host_start_complete(ihost, status);
|
|
}
|
|
}
|
|
|
|
static void scic_sds_controller_phy_timer_stop(struct scic_sds_controller *scic)
|
|
{
|
|
isci_timer_stop(scic->phy_startup_timer);
|
|
|
|
scic->phy_startup_timer_pending = false;
|
|
}
|
|
|
|
static void scic_sds_controller_phy_timer_start(struct scic_sds_controller *scic)
|
|
{
|
|
isci_timer_start(scic->phy_startup_timer,
|
|
SCIC_SDS_CONTROLLER_PHY_START_TIMEOUT);
|
|
|
|
scic->phy_startup_timer_pending = true;
|
|
}
|
|
|
|
static bool is_phy_starting(struct scic_sds_phy *sci_phy)
|
|
{
|
|
enum scic_sds_phy_states state;
|
|
|
|
state = sci_phy->state_machine.current_state_id;
|
|
switch (state) {
|
|
case SCI_BASE_PHY_STATE_STARTING:
|
|
case SCIC_SDS_PHY_STARTING_SUBSTATE_INITIAL:
|
|
case SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SAS_SPEED_EN:
|
|
case SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_IAF_UF:
|
|
case SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SAS_POWER:
|
|
case SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SATA_POWER:
|
|
case SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SATA_PHY_EN:
|
|
case SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SATA_SPEED_EN:
|
|
case SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SIG_FIS_UF:
|
|
case SCIC_SDS_PHY_STARTING_SUBSTATE_FINAL:
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* scic_sds_controller_start_next_phy - start phy
|
|
* @scic: controller
|
|
*
|
|
* If all the phys have been started, then attempt to transition the
|
|
* controller to the READY state and inform the user
|
|
* (scic_cb_controller_start_complete()).
|
|
*/
|
|
static enum sci_status scic_sds_controller_start_next_phy(struct scic_sds_controller *scic)
|
|
{
|
|
struct isci_host *ihost = scic_to_ihost(scic);
|
|
struct scic_sds_oem_params *oem = &scic->oem_parameters.sds1;
|
|
struct scic_sds_phy *sci_phy;
|
|
enum sci_status status;
|
|
|
|
status = SCI_SUCCESS;
|
|
|
|
if (scic->phy_startup_timer_pending)
|
|
return status;
|
|
|
|
if (scic->next_phy_to_start >= SCI_MAX_PHYS) {
|
|
bool is_controller_start_complete = true;
|
|
u32 state;
|
|
u8 index;
|
|
|
|
for (index = 0; index < SCI_MAX_PHYS; index++) {
|
|
sci_phy = &ihost->phys[index].sci;
|
|
state = sci_phy->state_machine.current_state_id;
|
|
|
|
if (!scic_sds_phy_get_port(sci_phy))
|
|
continue;
|
|
|
|
/* The controller start operation is complete iff:
|
|
* - all links have been given an opportunity to start
|
|
* - have no indication of a connected device
|
|
* - have an indication of a connected device and it has
|
|
* finished the link training process.
|
|
*/
|
|
if ((sci_phy->is_in_link_training == false &&
|
|
state == SCI_BASE_PHY_STATE_INITIAL) ||
|
|
(sci_phy->is_in_link_training == false &&
|
|
state == SCI_BASE_PHY_STATE_STOPPED) ||
|
|
(sci_phy->is_in_link_training == true &&
|
|
is_phy_starting(sci_phy))) {
|
|
is_controller_start_complete = false;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* The controller has successfully finished the start process.
|
|
* Inform the SCI Core user and transition to the READY state. */
|
|
if (is_controller_start_complete == true) {
|
|
scic_sds_controller_transition_to_ready(scic, SCI_SUCCESS);
|
|
scic_sds_controller_phy_timer_stop(scic);
|
|
}
|
|
} else {
|
|
sci_phy = &ihost->phys[scic->next_phy_to_start].sci;
|
|
|
|
if (oem->controller.mode_type == SCIC_PORT_MANUAL_CONFIGURATION_MODE) {
|
|
if (scic_sds_phy_get_port(sci_phy) == NULL) {
|
|
scic->next_phy_to_start++;
|
|
|
|
/* Caution recursion ahead be forwarned
|
|
*
|
|
* The PHY was never added to a PORT in MPC mode
|
|
* so start the next phy in sequence This phy
|
|
* will never go link up and will not draw power
|
|
* the OEM parameters either configured the phy
|
|
* incorrectly for the PORT or it was never
|
|
* assigned to a PORT
|
|
*/
|
|
return scic_sds_controller_start_next_phy(scic);
|
|
}
|
|
}
|
|
|
|
status = scic_sds_phy_start(sci_phy);
|
|
|
|
if (status == SCI_SUCCESS) {
|
|
scic_sds_controller_phy_timer_start(scic);
|
|
} else {
|
|
dev_warn(scic_to_dev(scic),
|
|
"%s: Controller stop operation failed "
|
|
"to stop phy %d because of status "
|
|
"%d.\n",
|
|
__func__,
|
|
ihost->phys[scic->next_phy_to_start].sci.phy_index,
|
|
status);
|
|
}
|
|
|
|
scic->next_phy_to_start++;
|
|
}
|
|
|
|
return status;
|
|
}
|
|
|
|
static void scic_sds_controller_phy_startup_timeout_handler(void *_scic)
|
|
{
|
|
struct scic_sds_controller *scic = _scic;
|
|
enum sci_status status;
|
|
|
|
scic->phy_startup_timer_pending = false;
|
|
status = SCI_FAILURE;
|
|
while (status != SCI_SUCCESS)
|
|
status = scic_sds_controller_start_next_phy(scic);
|
|
}
|
|
|
|
static enum sci_status scic_controller_start(struct scic_sds_controller *scic,
|
|
u32 timeout)
|
|
{
|
|
struct isci_host *ihost = scic_to_ihost(scic);
|
|
enum sci_status result;
|
|
u16 index;
|
|
|
|
if (scic->state_machine.current_state_id !=
|
|
SCI_BASE_CONTROLLER_STATE_INITIALIZED) {
|
|
dev_warn(scic_to_dev(scic),
|
|
"SCIC Controller start operation requested in "
|
|
"invalid state\n");
|
|
return SCI_FAILURE_INVALID_STATE;
|
|
}
|
|
|
|
/* Build the TCi free pool */
|
|
sci_pool_initialize(scic->tci_pool);
|
|
for (index = 0; index < scic->task_context_entries; index++)
|
|
sci_pool_put(scic->tci_pool, index);
|
|
|
|
/* Build the RNi free pool */
|
|
scic_sds_remote_node_table_initialize(
|
|
&scic->available_remote_nodes,
|
|
scic->remote_node_entries);
|
|
|
|
/*
|
|
* Before anything else lets make sure we will not be
|
|
* interrupted by the hardware.
|
|
*/
|
|
scic_controller_disable_interrupts(scic);
|
|
|
|
/* Enable the port task scheduler */
|
|
scic_sds_controller_enable_port_task_scheduler(scic);
|
|
|
|
/* Assign all the task entries to scic physical function */
|
|
scic_sds_controller_assign_task_entries(scic);
|
|
|
|
/* Now initialize the completion queue */
|
|
scic_sds_controller_initialize_completion_queue(scic);
|
|
|
|
/* Initialize the unsolicited frame queue for use */
|
|
scic_sds_controller_initialize_unsolicited_frame_queue(scic);
|
|
|
|
/* Start all of the ports on this controller */
|
|
for (index = 0; index < scic->logical_port_entries; index++) {
|
|
struct scic_sds_port *sci_port = &ihost->ports[index].sci;
|
|
|
|
result = sci_port->state_handlers->start_handler(sci_port);
|
|
if (result)
|
|
return result;
|
|
}
|
|
|
|
scic_sds_controller_start_next_phy(scic);
|
|
|
|
isci_timer_start(scic->timeout_timer, timeout);
|
|
|
|
sci_base_state_machine_change_state(&scic->state_machine,
|
|
SCI_BASE_CONTROLLER_STATE_STARTING);
|
|
|
|
return SCI_SUCCESS;
|
|
}
|
|
|
|
void isci_host_scan_start(struct Scsi_Host *shost)
|
|
{
|
|
struct isci_host *ihost = SHOST_TO_SAS_HA(shost)->lldd_ha;
|
|
unsigned long tmo = scic_controller_get_suggested_start_timeout(&ihost->sci);
|
|
|
|
set_bit(IHOST_START_PENDING, &ihost->flags);
|
|
|
|
spin_lock_irq(&ihost->scic_lock);
|
|
scic_controller_start(&ihost->sci, tmo);
|
|
scic_controller_enable_interrupts(&ihost->sci);
|
|
spin_unlock_irq(&ihost->scic_lock);
|
|
}
|
|
|
|
static void isci_host_stop_complete(struct isci_host *ihost, enum sci_status completion_status)
|
|
{
|
|
isci_host_change_state(ihost, isci_stopped);
|
|
scic_controller_disable_interrupts(&ihost->sci);
|
|
clear_bit(IHOST_STOP_PENDING, &ihost->flags);
|
|
wake_up(&ihost->eventq);
|
|
}
|
|
|
|
static void scic_sds_controller_completion_handler(struct scic_sds_controller *scic)
|
|
{
|
|
/* Empty out the completion queue */
|
|
if (scic_sds_controller_completion_queue_has_entries(scic))
|
|
scic_sds_controller_process_completions(scic);
|
|
|
|
/* Clear the interrupt and enable all interrupts again */
|
|
writel(SMU_ISR_COMPLETION, &scic->smu_registers->interrupt_status);
|
|
/* Could we write the value of SMU_ISR_COMPLETION? */
|
|
writel(0xFF000000, &scic->smu_registers->interrupt_mask);
|
|
writel(0, &scic->smu_registers->interrupt_mask);
|
|
}
|
|
|
|
/**
|
|
* isci_host_completion_routine() - This function is the delayed service
|
|
* routine that calls the sci core library's completion handler. It's
|
|
* scheduled as a tasklet from the interrupt service routine when interrupts
|
|
* in use, or set as the timeout function in polled mode.
|
|
* @data: This parameter specifies the ISCI host object
|
|
*
|
|
*/
|
|
static void isci_host_completion_routine(unsigned long data)
|
|
{
|
|
struct isci_host *isci_host = (struct isci_host *)data;
|
|
struct list_head completed_request_list;
|
|
struct list_head errored_request_list;
|
|
struct list_head *current_position;
|
|
struct list_head *next_position;
|
|
struct isci_request *request;
|
|
struct isci_request *next_request;
|
|
struct sas_task *task;
|
|
|
|
INIT_LIST_HEAD(&completed_request_list);
|
|
INIT_LIST_HEAD(&errored_request_list);
|
|
|
|
spin_lock_irq(&isci_host->scic_lock);
|
|
|
|
scic_sds_controller_completion_handler(&isci_host->sci);
|
|
|
|
/* Take the lists of completed I/Os from the host. */
|
|
|
|
list_splice_init(&isci_host->requests_to_complete,
|
|
&completed_request_list);
|
|
|
|
/* Take the list of errored I/Os from the host. */
|
|
list_splice_init(&isci_host->requests_to_errorback,
|
|
&errored_request_list);
|
|
|
|
spin_unlock_irq(&isci_host->scic_lock);
|
|
|
|
/* Process any completions in the lists. */
|
|
list_for_each_safe(current_position, next_position,
|
|
&completed_request_list) {
|
|
|
|
request = list_entry(current_position, struct isci_request,
|
|
completed_node);
|
|
task = isci_request_access_task(request);
|
|
|
|
/* Normal notification (task_done) */
|
|
dev_dbg(&isci_host->pdev->dev,
|
|
"%s: Normal - request/task = %p/%p\n",
|
|
__func__,
|
|
request,
|
|
task);
|
|
|
|
/* Return the task to libsas */
|
|
if (task != NULL) {
|
|
|
|
task->lldd_task = NULL;
|
|
if (!(task->task_state_flags & SAS_TASK_STATE_ABORTED)) {
|
|
|
|
/* If the task is already in the abort path,
|
|
* the task_done callback cannot be called.
|
|
*/
|
|
task->task_done(task);
|
|
}
|
|
}
|
|
/* Free the request object. */
|
|
isci_request_free(isci_host, request);
|
|
}
|
|
list_for_each_entry_safe(request, next_request, &errored_request_list,
|
|
completed_node) {
|
|
|
|
task = isci_request_access_task(request);
|
|
|
|
/* Use sas_task_abort */
|
|
dev_warn(&isci_host->pdev->dev,
|
|
"%s: Error - request/task = %p/%p\n",
|
|
__func__,
|
|
request,
|
|
task);
|
|
|
|
if (task != NULL) {
|
|
|
|
/* Put the task into the abort path if it's not there
|
|
* already.
|
|
*/
|
|
if (!(task->task_state_flags & SAS_TASK_STATE_ABORTED))
|
|
sas_task_abort(task);
|
|
|
|
} else {
|
|
/* This is a case where the request has completed with a
|
|
* status such that it needed further target servicing,
|
|
* but the sas_task reference has already been removed
|
|
* from the request. Since it was errored, it was not
|
|
* being aborted, so there is nothing to do except free
|
|
* it.
|
|
*/
|
|
|
|
spin_lock_irq(&isci_host->scic_lock);
|
|
/* Remove the request from the remote device's list
|
|
* of pending requests.
|
|
*/
|
|
list_del_init(&request->dev_node);
|
|
spin_unlock_irq(&isci_host->scic_lock);
|
|
|
|
/* Free the request object. */
|
|
isci_request_free(isci_host, request);
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
/**
|
|
* scic_controller_stop() - This method will stop an individual controller
|
|
* object.This method will invoke the associated user callback upon
|
|
* completion. The completion callback is called when the following
|
|
* conditions are met: -# the method return status is SCI_SUCCESS. -# the
|
|
* controller has been quiesced. This method will ensure that all IO
|
|
* requests are quiesced, phys are stopped, and all additional operation by
|
|
* the hardware is halted.
|
|
* @controller: the handle to the controller object to stop.
|
|
* @timeout: This parameter specifies the number of milliseconds in which the
|
|
* stop operation should complete.
|
|
*
|
|
* The controller must be in the STARTED or STOPPED state. Indicate if the
|
|
* controller stop method succeeded or failed in some way. SCI_SUCCESS if the
|
|
* stop operation successfully began. SCI_WARNING_ALREADY_IN_STATE if the
|
|
* controller is already in the STOPPED state. SCI_FAILURE_INVALID_STATE if the
|
|
* controller is not either in the STARTED or STOPPED states.
|
|
*/
|
|
static enum sci_status scic_controller_stop(struct scic_sds_controller *scic,
|
|
u32 timeout)
|
|
{
|
|
if (scic->state_machine.current_state_id !=
|
|
SCI_BASE_CONTROLLER_STATE_READY) {
|
|
dev_warn(scic_to_dev(scic),
|
|
"SCIC Controller stop operation requested in "
|
|
"invalid state\n");
|
|
return SCI_FAILURE_INVALID_STATE;
|
|
}
|
|
|
|
isci_timer_start(scic->timeout_timer, timeout);
|
|
sci_base_state_machine_change_state(&scic->state_machine,
|
|
SCI_BASE_CONTROLLER_STATE_STOPPING);
|
|
return SCI_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
* scic_controller_reset() - This method will reset the supplied core
|
|
* controller regardless of the state of said controller. This operation is
|
|
* considered destructive. In other words, all current operations are wiped
|
|
* out. No IO completions for outstanding devices occur. Outstanding IO
|
|
* requests are not aborted or completed at the actual remote device.
|
|
* @controller: the handle to the controller object to reset.
|
|
*
|
|
* Indicate if the controller reset method succeeded or failed in some way.
|
|
* SCI_SUCCESS if the reset operation successfully started. SCI_FATAL_ERROR if
|
|
* the controller reset operation is unable to complete.
|
|
*/
|
|
static enum sci_status scic_controller_reset(struct scic_sds_controller *scic)
|
|
{
|
|
switch (scic->state_machine.current_state_id) {
|
|
case SCI_BASE_CONTROLLER_STATE_RESET:
|
|
case SCI_BASE_CONTROLLER_STATE_READY:
|
|
case SCI_BASE_CONTROLLER_STATE_STOPPED:
|
|
case SCI_BASE_CONTROLLER_STATE_FAILED:
|
|
/*
|
|
* The reset operation is not a graceful cleanup, just
|
|
* perform the state transition.
|
|
*/
|
|
sci_base_state_machine_change_state(&scic->state_machine,
|
|
SCI_BASE_CONTROLLER_STATE_RESETTING);
|
|
return SCI_SUCCESS;
|
|
default:
|
|
dev_warn(scic_to_dev(scic),
|
|
"SCIC Controller reset operation requested in "
|
|
"invalid state\n");
|
|
return SCI_FAILURE_INVALID_STATE;
|
|
}
|
|
}
|
|
|
|
void isci_host_deinit(struct isci_host *ihost)
|
|
{
|
|
int i;
|
|
|
|
isci_host_change_state(ihost, isci_stopping);
|
|
for (i = 0; i < SCI_MAX_PORTS; i++) {
|
|
struct isci_port *iport = &ihost->ports[i];
|
|
struct isci_remote_device *idev, *d;
|
|
|
|
list_for_each_entry_safe(idev, d, &iport->remote_dev_list, node) {
|
|
isci_remote_device_change_state(idev, isci_stopping);
|
|
isci_remote_device_stop(ihost, idev);
|
|
}
|
|
}
|
|
|
|
set_bit(IHOST_STOP_PENDING, &ihost->flags);
|
|
|
|
spin_lock_irq(&ihost->scic_lock);
|
|
scic_controller_stop(&ihost->sci, SCIC_CONTROLLER_STOP_TIMEOUT);
|
|
spin_unlock_irq(&ihost->scic_lock);
|
|
|
|
wait_for_stop(ihost);
|
|
scic_controller_reset(&ihost->sci);
|
|
isci_timer_list_destroy(ihost);
|
|
}
|
|
|
|
static void __iomem *scu_base(struct isci_host *isci_host)
|
|
{
|
|
struct pci_dev *pdev = isci_host->pdev;
|
|
int id = isci_host->id;
|
|
|
|
return pcim_iomap_table(pdev)[SCI_SCU_BAR * 2] + SCI_SCU_BAR_SIZE * id;
|
|
}
|
|
|
|
static void __iomem *smu_base(struct isci_host *isci_host)
|
|
{
|
|
struct pci_dev *pdev = isci_host->pdev;
|
|
int id = isci_host->id;
|
|
|
|
return pcim_iomap_table(pdev)[SCI_SMU_BAR * 2] + SCI_SMU_BAR_SIZE * id;
|
|
}
|
|
|
|
static void isci_user_parameters_get(
|
|
struct isci_host *isci_host,
|
|
union scic_user_parameters *scic_user_params)
|
|
{
|
|
struct scic_sds_user_parameters *u = &scic_user_params->sds1;
|
|
int i;
|
|
|
|
for (i = 0; i < SCI_MAX_PHYS; i++) {
|
|
struct sci_phy_user_params *u_phy = &u->phys[i];
|
|
|
|
u_phy->max_speed_generation = phy_gen;
|
|
|
|
/* we are not exporting these for now */
|
|
u_phy->align_insertion_frequency = 0x7f;
|
|
u_phy->in_connection_align_insertion_frequency = 0xff;
|
|
u_phy->notify_enable_spin_up_insertion_frequency = 0x33;
|
|
}
|
|
|
|
u->stp_inactivity_timeout = stp_inactive_to;
|
|
u->ssp_inactivity_timeout = ssp_inactive_to;
|
|
u->stp_max_occupancy_timeout = stp_max_occ_to;
|
|
u->ssp_max_occupancy_timeout = ssp_max_occ_to;
|
|
u->no_outbound_task_timeout = no_outbound_task_to;
|
|
u->max_number_concurrent_device_spin_up = max_concurr_spinup;
|
|
}
|
|
|
|
static void scic_sds_controller_initial_state_enter(void *object)
|
|
{
|
|
struct scic_sds_controller *scic = object;
|
|
|
|
sci_base_state_machine_change_state(&scic->state_machine,
|
|
SCI_BASE_CONTROLLER_STATE_RESET);
|
|
}
|
|
|
|
static inline void scic_sds_controller_starting_state_exit(void *object)
|
|
{
|
|
struct scic_sds_controller *scic = object;
|
|
|
|
isci_timer_stop(scic->timeout_timer);
|
|
}
|
|
|
|
#define INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_LOWER_BOUND_NS 853
|
|
#define INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_UPPER_BOUND_NS 1280
|
|
#define INTERRUPT_COALESCE_TIMEOUT_MAX_US 2700000
|
|
#define INTERRUPT_COALESCE_NUMBER_MAX 256
|
|
#define INTERRUPT_COALESCE_TIMEOUT_ENCODE_MIN 7
|
|
#define INTERRUPT_COALESCE_TIMEOUT_ENCODE_MAX 28
|
|
|
|
/**
|
|
* scic_controller_set_interrupt_coalescence() - This method allows the user to
|
|
* configure the interrupt coalescence.
|
|
* @controller: This parameter represents the handle to the controller object
|
|
* for which its interrupt coalesce register is overridden.
|
|
* @coalesce_number: Used to control the number of entries in the Completion
|
|
* Queue before an interrupt is generated. If the number of entries exceed
|
|
* this number, an interrupt will be generated. The valid range of the input
|
|
* is [0, 256]. A setting of 0 results in coalescing being disabled.
|
|
* @coalesce_timeout: Timeout value in microseconds. The valid range of the
|
|
* input is [0, 2700000] . A setting of 0 is allowed and results in no
|
|
* interrupt coalescing timeout.
|
|
*
|
|
* Indicate if the user successfully set the interrupt coalesce parameters.
|
|
* SCI_SUCCESS The user successfully updated the interrutp coalescence.
|
|
* SCI_FAILURE_INVALID_PARAMETER_VALUE The user input value is out of range.
|
|
*/
|
|
static enum sci_status scic_controller_set_interrupt_coalescence(
|
|
struct scic_sds_controller *scic_controller,
|
|
u32 coalesce_number,
|
|
u32 coalesce_timeout)
|
|
{
|
|
u8 timeout_encode = 0;
|
|
u32 min = 0;
|
|
u32 max = 0;
|
|
|
|
/* Check if the input parameters fall in the range. */
|
|
if (coalesce_number > INTERRUPT_COALESCE_NUMBER_MAX)
|
|
return SCI_FAILURE_INVALID_PARAMETER_VALUE;
|
|
|
|
/*
|
|
* Defined encoding for interrupt coalescing timeout:
|
|
* Value Min Max Units
|
|
* ----- --- --- -----
|
|
* 0 - - Disabled
|
|
* 1 13.3 20.0 ns
|
|
* 2 26.7 40.0
|
|
* 3 53.3 80.0
|
|
* 4 106.7 160.0
|
|
* 5 213.3 320.0
|
|
* 6 426.7 640.0
|
|
* 7 853.3 1280.0
|
|
* 8 1.7 2.6 us
|
|
* 9 3.4 5.1
|
|
* 10 6.8 10.2
|
|
* 11 13.7 20.5
|
|
* 12 27.3 41.0
|
|
* 13 54.6 81.9
|
|
* 14 109.2 163.8
|
|
* 15 218.5 327.7
|
|
* 16 436.9 655.4
|
|
* 17 873.8 1310.7
|
|
* 18 1.7 2.6 ms
|
|
* 19 3.5 5.2
|
|
* 20 7.0 10.5
|
|
* 21 14.0 21.0
|
|
* 22 28.0 41.9
|
|
* 23 55.9 83.9
|
|
* 24 111.8 167.8
|
|
* 25 223.7 335.5
|
|
* 26 447.4 671.1
|
|
* 27 894.8 1342.2
|
|
* 28 1.8 2.7 s
|
|
* Others Undefined */
|
|
|
|
/*
|
|
* Use the table above to decide the encode of interrupt coalescing timeout
|
|
* value for register writing. */
|
|
if (coalesce_timeout == 0)
|
|
timeout_encode = 0;
|
|
else{
|
|
/* make the timeout value in unit of (10 ns). */
|
|
coalesce_timeout = coalesce_timeout * 100;
|
|
min = INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_LOWER_BOUND_NS / 10;
|
|
max = INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_UPPER_BOUND_NS / 10;
|
|
|
|
/* get the encode of timeout for register writing. */
|
|
for (timeout_encode = INTERRUPT_COALESCE_TIMEOUT_ENCODE_MIN;
|
|
timeout_encode <= INTERRUPT_COALESCE_TIMEOUT_ENCODE_MAX;
|
|
timeout_encode++) {
|
|
if (min <= coalesce_timeout && max > coalesce_timeout)
|
|
break;
|
|
else if (coalesce_timeout >= max && coalesce_timeout < min * 2
|
|
&& coalesce_timeout <= INTERRUPT_COALESCE_TIMEOUT_MAX_US * 100) {
|
|
if ((coalesce_timeout - max) < (2 * min - coalesce_timeout))
|
|
break;
|
|
else{
|
|
timeout_encode++;
|
|
break;
|
|
}
|
|
} else {
|
|
max = max * 2;
|
|
min = min * 2;
|
|
}
|
|
}
|
|
|
|
if (timeout_encode == INTERRUPT_COALESCE_TIMEOUT_ENCODE_MAX + 1)
|
|
/* the value is out of range. */
|
|
return SCI_FAILURE_INVALID_PARAMETER_VALUE;
|
|
}
|
|
|
|
writel(SMU_ICC_GEN_VAL(NUMBER, coalesce_number) |
|
|
SMU_ICC_GEN_VAL(TIMER, timeout_encode),
|
|
&scic_controller->smu_registers->interrupt_coalesce_control);
|
|
|
|
|
|
scic_controller->interrupt_coalesce_number = (u16)coalesce_number;
|
|
scic_controller->interrupt_coalesce_timeout = coalesce_timeout / 100;
|
|
|
|
return SCI_SUCCESS;
|
|
}
|
|
|
|
|
|
static void scic_sds_controller_ready_state_enter(void *object)
|
|
{
|
|
struct scic_sds_controller *scic = object;
|
|
|
|
/* set the default interrupt coalescence number and timeout value. */
|
|
scic_controller_set_interrupt_coalescence(scic, 0x10, 250);
|
|
}
|
|
|
|
static void scic_sds_controller_ready_state_exit(void *object)
|
|
{
|
|
struct scic_sds_controller *scic = object;
|
|
|
|
/* disable interrupt coalescence. */
|
|
scic_controller_set_interrupt_coalescence(scic, 0, 0);
|
|
}
|
|
|
|
static enum sci_status scic_sds_controller_stop_phys(struct scic_sds_controller *scic)
|
|
{
|
|
u32 index;
|
|
enum sci_status status;
|
|
enum sci_status phy_status;
|
|
struct isci_host *ihost = scic_to_ihost(scic);
|
|
|
|
status = SCI_SUCCESS;
|
|
|
|
for (index = 0; index < SCI_MAX_PHYS; index++) {
|
|
phy_status = scic_sds_phy_stop(&ihost->phys[index].sci);
|
|
|
|
if (phy_status != SCI_SUCCESS &&
|
|
phy_status != SCI_FAILURE_INVALID_STATE) {
|
|
status = SCI_FAILURE;
|
|
|
|
dev_warn(scic_to_dev(scic),
|
|
"%s: Controller stop operation failed to stop "
|
|
"phy %d because of status %d.\n",
|
|
__func__,
|
|
ihost->phys[index].sci.phy_index, phy_status);
|
|
}
|
|
}
|
|
|
|
return status;
|
|
}
|
|
|
|
static enum sci_status scic_sds_controller_stop_ports(struct scic_sds_controller *scic)
|
|
{
|
|
u32 index;
|
|
enum sci_status port_status;
|
|
enum sci_status status = SCI_SUCCESS;
|
|
struct isci_host *ihost = scic_to_ihost(scic);
|
|
|
|
for (index = 0; index < scic->logical_port_entries; index++) {
|
|
struct scic_sds_port *sci_port = &ihost->ports[index].sci;
|
|
scic_sds_port_handler_t stop;
|
|
|
|
stop = sci_port->state_handlers->stop_handler;
|
|
port_status = stop(sci_port);
|
|
|
|
if ((port_status != SCI_SUCCESS) &&
|
|
(port_status != SCI_FAILURE_INVALID_STATE)) {
|
|
status = SCI_FAILURE;
|
|
|
|
dev_warn(scic_to_dev(scic),
|
|
"%s: Controller stop operation failed to "
|
|
"stop port %d because of status %d.\n",
|
|
__func__,
|
|
sci_port->logical_port_index,
|
|
port_status);
|
|
}
|
|
}
|
|
|
|
return status;
|
|
}
|
|
|
|
static enum sci_status scic_sds_controller_stop_devices(struct scic_sds_controller *scic)
|
|
{
|
|
u32 index;
|
|
enum sci_status status;
|
|
enum sci_status device_status;
|
|
|
|
status = SCI_SUCCESS;
|
|
|
|
for (index = 0; index < scic->remote_node_entries; index++) {
|
|
if (scic->device_table[index] != NULL) {
|
|
/* / @todo What timeout value do we want to provide to this request? */
|
|
device_status = scic_remote_device_stop(scic->device_table[index], 0);
|
|
|
|
if ((device_status != SCI_SUCCESS) &&
|
|
(device_status != SCI_FAILURE_INVALID_STATE)) {
|
|
dev_warn(scic_to_dev(scic),
|
|
"%s: Controller stop operation failed "
|
|
"to stop device 0x%p because of "
|
|
"status %d.\n",
|
|
__func__,
|
|
scic->device_table[index], device_status);
|
|
}
|
|
}
|
|
}
|
|
|
|
return status;
|
|
}
|
|
|
|
static void scic_sds_controller_stopping_state_enter(void *object)
|
|
{
|
|
struct scic_sds_controller *scic = object;
|
|
|
|
/* Stop all of the components for this controller */
|
|
scic_sds_controller_stop_phys(scic);
|
|
scic_sds_controller_stop_ports(scic);
|
|
scic_sds_controller_stop_devices(scic);
|
|
}
|
|
|
|
static void scic_sds_controller_stopping_state_exit(void *object)
|
|
{
|
|
struct scic_sds_controller *scic = object;
|
|
|
|
isci_timer_stop(scic->timeout_timer);
|
|
}
|
|
|
|
|
|
/**
|
|
* scic_sds_controller_reset_hardware() -
|
|
*
|
|
* This method will reset the controller hardware.
|
|
*/
|
|
static void scic_sds_controller_reset_hardware(struct scic_sds_controller *scic)
|
|
{
|
|
/* Disable interrupts so we dont take any spurious interrupts */
|
|
scic_controller_disable_interrupts(scic);
|
|
|
|
/* Reset the SCU */
|
|
writel(0xFFFFFFFF, &scic->smu_registers->soft_reset_control);
|
|
|
|
/* Delay for 1ms to before clearing the CQP and UFQPR. */
|
|
udelay(1000);
|
|
|
|
/* The write to the CQGR clears the CQP */
|
|
writel(0x00000000, &scic->smu_registers->completion_queue_get);
|
|
|
|
/* The write to the UFQGP clears the UFQPR */
|
|
writel(0, &scic->scu_registers->sdma.unsolicited_frame_get_pointer);
|
|
}
|
|
|
|
static void scic_sds_controller_resetting_state_enter(void *object)
|
|
{
|
|
struct scic_sds_controller *scic = object;
|
|
|
|
scic_sds_controller_reset_hardware(scic);
|
|
sci_base_state_machine_change_state(&scic->state_machine,
|
|
SCI_BASE_CONTROLLER_STATE_RESET);
|
|
}
|
|
|
|
static const struct sci_base_state scic_sds_controller_state_table[] = {
|
|
[SCI_BASE_CONTROLLER_STATE_INITIAL] = {
|
|
.enter_state = scic_sds_controller_initial_state_enter,
|
|
},
|
|
[SCI_BASE_CONTROLLER_STATE_RESET] = {},
|
|
[SCI_BASE_CONTROLLER_STATE_INITIALIZING] = {},
|
|
[SCI_BASE_CONTROLLER_STATE_INITIALIZED] = {},
|
|
[SCI_BASE_CONTROLLER_STATE_STARTING] = {
|
|
.exit_state = scic_sds_controller_starting_state_exit,
|
|
},
|
|
[SCI_BASE_CONTROLLER_STATE_READY] = {
|
|
.enter_state = scic_sds_controller_ready_state_enter,
|
|
.exit_state = scic_sds_controller_ready_state_exit,
|
|
},
|
|
[SCI_BASE_CONTROLLER_STATE_RESETTING] = {
|
|
.enter_state = scic_sds_controller_resetting_state_enter,
|
|
},
|
|
[SCI_BASE_CONTROLLER_STATE_STOPPING] = {
|
|
.enter_state = scic_sds_controller_stopping_state_enter,
|
|
.exit_state = scic_sds_controller_stopping_state_exit,
|
|
},
|
|
[SCI_BASE_CONTROLLER_STATE_STOPPED] = {},
|
|
[SCI_BASE_CONTROLLER_STATE_FAILED] = {}
|
|
};
|
|
|
|
static void scic_sds_controller_set_default_config_parameters(struct scic_sds_controller *scic)
|
|
{
|
|
/* these defaults are overridden by the platform / firmware */
|
|
struct isci_host *ihost = scic_to_ihost(scic);
|
|
u16 index;
|
|
|
|
/* Default to APC mode. */
|
|
scic->oem_parameters.sds1.controller.mode_type = SCIC_PORT_AUTOMATIC_CONFIGURATION_MODE;
|
|
|
|
/* Default to APC mode. */
|
|
scic->oem_parameters.sds1.controller.max_concurrent_dev_spin_up = 1;
|
|
|
|
/* Default to no SSC operation. */
|
|
scic->oem_parameters.sds1.controller.do_enable_ssc = false;
|
|
|
|
/* Initialize all of the port parameter information to narrow ports. */
|
|
for (index = 0; index < SCI_MAX_PORTS; index++) {
|
|
scic->oem_parameters.sds1.ports[index].phy_mask = 0;
|
|
}
|
|
|
|
/* Initialize all of the phy parameter information. */
|
|
for (index = 0; index < SCI_MAX_PHYS; index++) {
|
|
/* Default to 6G (i.e. Gen 3) for now. */
|
|
scic->user_parameters.sds1.phys[index].max_speed_generation = 3;
|
|
|
|
/* the frequencies cannot be 0 */
|
|
scic->user_parameters.sds1.phys[index].align_insertion_frequency = 0x7f;
|
|
scic->user_parameters.sds1.phys[index].in_connection_align_insertion_frequency = 0xff;
|
|
scic->user_parameters.sds1.phys[index].notify_enable_spin_up_insertion_frequency = 0x33;
|
|
|
|
/*
|
|
* Previous Vitesse based expanders had a arbitration issue that
|
|
* is worked around by having the upper 32-bits of SAS address
|
|
* with a value greater then the Vitesse company identifier.
|
|
* Hence, usage of 0x5FCFFFFF. */
|
|
scic->oem_parameters.sds1.phys[index].sas_address.low = 0x1 + ihost->id;
|
|
scic->oem_parameters.sds1.phys[index].sas_address.high = 0x5FCFFFFF;
|
|
}
|
|
|
|
scic->user_parameters.sds1.stp_inactivity_timeout = 5;
|
|
scic->user_parameters.sds1.ssp_inactivity_timeout = 5;
|
|
scic->user_parameters.sds1.stp_max_occupancy_timeout = 5;
|
|
scic->user_parameters.sds1.ssp_max_occupancy_timeout = 20;
|
|
scic->user_parameters.sds1.no_outbound_task_timeout = 20;
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
* scic_controller_construct() - This method will attempt to construct a
|
|
* controller object utilizing the supplied parameter information.
|
|
* @c: This parameter specifies the controller to be constructed.
|
|
* @scu_base: mapped base address of the scu registers
|
|
* @smu_base: mapped base address of the smu registers
|
|
*
|
|
* Indicate if the controller was successfully constructed or if it failed in
|
|
* some way. SCI_SUCCESS This value is returned if the controller was
|
|
* successfully constructed. SCI_WARNING_TIMER_CONFLICT This value is returned
|
|
* if the interrupt coalescence timer may cause SAS compliance issues for SMP
|
|
* Target mode response processing. SCI_FAILURE_UNSUPPORTED_CONTROLLER_TYPE
|
|
* This value is returned if the controller does not support the supplied type.
|
|
* SCI_FAILURE_UNSUPPORTED_INIT_DATA_VERSION This value is returned if the
|
|
* controller does not support the supplied initialization data version.
|
|
*/
|
|
static enum sci_status scic_controller_construct(struct scic_sds_controller *scic,
|
|
void __iomem *scu_base,
|
|
void __iomem *smu_base)
|
|
{
|
|
struct isci_host *ihost = scic_to_ihost(scic);
|
|
u8 i;
|
|
|
|
sci_base_state_machine_construct(&scic->state_machine,
|
|
scic, scic_sds_controller_state_table,
|
|
SCI_BASE_CONTROLLER_STATE_INITIAL);
|
|
|
|
sci_base_state_machine_start(&scic->state_machine);
|
|
|
|
scic->scu_registers = scu_base;
|
|
scic->smu_registers = smu_base;
|
|
|
|
scic_sds_port_configuration_agent_construct(&scic->port_agent);
|
|
|
|
/* Construct the ports for this controller */
|
|
for (i = 0; i < SCI_MAX_PORTS; i++)
|
|
scic_sds_port_construct(&ihost->ports[i].sci, i, scic);
|
|
scic_sds_port_construct(&ihost->ports[i].sci, SCIC_SDS_DUMMY_PORT, scic);
|
|
|
|
/* Construct the phys for this controller */
|
|
for (i = 0; i < SCI_MAX_PHYS; i++) {
|
|
/* Add all the PHYs to the dummy port */
|
|
scic_sds_phy_construct(&ihost->phys[i].sci,
|
|
&ihost->ports[SCI_MAX_PORTS].sci, i);
|
|
}
|
|
|
|
scic->invalid_phy_mask = 0;
|
|
|
|
/* Set the default maximum values */
|
|
scic->completion_event_entries = SCU_EVENT_COUNT;
|
|
scic->completion_queue_entries = SCU_COMPLETION_QUEUE_COUNT;
|
|
scic->remote_node_entries = SCI_MAX_REMOTE_DEVICES;
|
|
scic->logical_port_entries = SCI_MAX_PORTS;
|
|
scic->task_context_entries = SCU_IO_REQUEST_COUNT;
|
|
scic->uf_control.buffers.count = SCU_UNSOLICITED_FRAME_COUNT;
|
|
scic->uf_control.address_table.count = SCU_UNSOLICITED_FRAME_COUNT;
|
|
|
|
/* Initialize the User and OEM parameters to default values. */
|
|
scic_sds_controller_set_default_config_parameters(scic);
|
|
|
|
return scic_controller_reset(scic);
|
|
}
|
|
|
|
int scic_oem_parameters_validate(struct scic_sds_oem_params *oem)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < SCI_MAX_PORTS; i++)
|
|
if (oem->ports[i].phy_mask > SCIC_SDS_PARM_PHY_MASK_MAX)
|
|
return -EINVAL;
|
|
|
|
for (i = 0; i < SCI_MAX_PHYS; i++)
|
|
if (oem->phys[i].sas_address.high == 0 &&
|
|
oem->phys[i].sas_address.low == 0)
|
|
return -EINVAL;
|
|
|
|
if (oem->controller.mode_type == SCIC_PORT_AUTOMATIC_CONFIGURATION_MODE) {
|
|
for (i = 0; i < SCI_MAX_PHYS; i++)
|
|
if (oem->ports[i].phy_mask != 0)
|
|
return -EINVAL;
|
|
} else if (oem->controller.mode_type == SCIC_PORT_MANUAL_CONFIGURATION_MODE) {
|
|
u8 phy_mask = 0;
|
|
|
|
for (i = 0; i < SCI_MAX_PHYS; i++)
|
|
phy_mask |= oem->ports[i].phy_mask;
|
|
|
|
if (phy_mask == 0)
|
|
return -EINVAL;
|
|
} else
|
|
return -EINVAL;
|
|
|
|
if (oem->controller.max_concurrent_dev_spin_up > MAX_CONCURRENT_DEVICE_SPIN_UP_COUNT)
|
|
return -EINVAL;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static enum sci_status scic_oem_parameters_set(struct scic_sds_controller *scic,
|
|
union scic_oem_parameters *scic_parms)
|
|
{
|
|
u32 state = scic->state_machine.current_state_id;
|
|
|
|
if (state == SCI_BASE_CONTROLLER_STATE_RESET ||
|
|
state == SCI_BASE_CONTROLLER_STATE_INITIALIZING ||
|
|
state == SCI_BASE_CONTROLLER_STATE_INITIALIZED) {
|
|
|
|
if (scic_oem_parameters_validate(&scic_parms->sds1))
|
|
return SCI_FAILURE_INVALID_PARAMETER_VALUE;
|
|
scic->oem_parameters.sds1 = scic_parms->sds1;
|
|
|
|
return SCI_SUCCESS;
|
|
}
|
|
|
|
return SCI_FAILURE_INVALID_STATE;
|
|
}
|
|
|
|
void scic_oem_parameters_get(
|
|
struct scic_sds_controller *scic,
|
|
union scic_oem_parameters *scic_parms)
|
|
{
|
|
memcpy(scic_parms, (&scic->oem_parameters), sizeof(*scic_parms));
|
|
}
|
|
|
|
static void scic_sds_controller_timeout_handler(void *_scic)
|
|
{
|
|
struct scic_sds_controller *scic = _scic;
|
|
struct isci_host *ihost = scic_to_ihost(scic);
|
|
struct sci_base_state_machine *sm = &scic->state_machine;
|
|
|
|
if (sm->current_state_id == SCI_BASE_CONTROLLER_STATE_STARTING)
|
|
scic_sds_controller_transition_to_ready(scic, SCI_FAILURE_TIMEOUT);
|
|
else if (sm->current_state_id == SCI_BASE_CONTROLLER_STATE_STOPPING) {
|
|
sci_base_state_machine_change_state(sm, SCI_BASE_CONTROLLER_STATE_FAILED);
|
|
isci_host_stop_complete(ihost, SCI_FAILURE_TIMEOUT);
|
|
} else /* / @todo Now what do we want to do in this case? */
|
|
dev_err(scic_to_dev(scic),
|
|
"%s: Controller timer fired when controller was not "
|
|
"in a state being timed.\n",
|
|
__func__);
|
|
}
|
|
|
|
static enum sci_status scic_sds_controller_initialize_phy_startup(struct scic_sds_controller *scic)
|
|
{
|
|
struct isci_host *ihost = scic_to_ihost(scic);
|
|
|
|
scic->phy_startup_timer = isci_timer_create(ihost,
|
|
scic,
|
|
scic_sds_controller_phy_startup_timeout_handler);
|
|
|
|
if (scic->phy_startup_timer == NULL)
|
|
return SCI_FAILURE_INSUFFICIENT_RESOURCES;
|
|
else {
|
|
scic->next_phy_to_start = 0;
|
|
scic->phy_startup_timer_pending = false;
|
|
}
|
|
|
|
return SCI_SUCCESS;
|
|
}
|
|
|
|
static void scic_sds_controller_power_control_timer_start(struct scic_sds_controller *scic)
|
|
{
|
|
isci_timer_start(scic->power_control.timer,
|
|
SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL);
|
|
|
|
scic->power_control.timer_started = true;
|
|
}
|
|
|
|
static void scic_sds_controller_power_control_timer_stop(struct scic_sds_controller *scic)
|
|
{
|
|
if (scic->power_control.timer_started) {
|
|
isci_timer_stop(scic->power_control.timer);
|
|
scic->power_control.timer_started = false;
|
|
}
|
|
}
|
|
|
|
static void scic_sds_controller_power_control_timer_restart(struct scic_sds_controller *scic)
|
|
{
|
|
scic_sds_controller_power_control_timer_stop(scic);
|
|
scic_sds_controller_power_control_timer_start(scic);
|
|
}
|
|
|
|
static void scic_sds_controller_power_control_timer_handler(
|
|
void *controller)
|
|
{
|
|
struct scic_sds_controller *scic;
|
|
|
|
scic = (struct scic_sds_controller *)controller;
|
|
|
|
scic->power_control.phys_granted_power = 0;
|
|
|
|
if (scic->power_control.phys_waiting == 0) {
|
|
scic->power_control.timer_started = false;
|
|
} else {
|
|
struct scic_sds_phy *sci_phy = NULL;
|
|
u8 i;
|
|
|
|
for (i = 0;
|
|
(i < SCI_MAX_PHYS)
|
|
&& (scic->power_control.phys_waiting != 0);
|
|
i++) {
|
|
if (scic->power_control.requesters[i] != NULL) {
|
|
if (scic->power_control.phys_granted_power <
|
|
scic->oem_parameters.sds1.controller.max_concurrent_dev_spin_up) {
|
|
sci_phy = scic->power_control.requesters[i];
|
|
scic->power_control.requesters[i] = NULL;
|
|
scic->power_control.phys_waiting--;
|
|
scic->power_control.phys_granted_power++;
|
|
scic_sds_phy_consume_power_handler(sci_phy);
|
|
} else {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* It doesn't matter if the power list is empty, we need to start the
|
|
* timer in case another phy becomes ready.
|
|
*/
|
|
scic_sds_controller_power_control_timer_start(scic);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* This method inserts the phy in the stagger spinup control queue.
|
|
* @scic:
|
|
*
|
|
*
|
|
*/
|
|
void scic_sds_controller_power_control_queue_insert(
|
|
struct scic_sds_controller *scic,
|
|
struct scic_sds_phy *sci_phy)
|
|
{
|
|
BUG_ON(sci_phy == NULL);
|
|
|
|
if (scic->power_control.phys_granted_power <
|
|
scic->oem_parameters.sds1.controller.max_concurrent_dev_spin_up) {
|
|
scic->power_control.phys_granted_power++;
|
|
scic_sds_phy_consume_power_handler(sci_phy);
|
|
|
|
/*
|
|
* stop and start the power_control timer. When the timer fires, the
|
|
* no_of_phys_granted_power will be set to 0
|
|
*/
|
|
scic_sds_controller_power_control_timer_restart(scic);
|
|
} else {
|
|
/* Add the phy in the waiting list */
|
|
scic->power_control.requesters[sci_phy->phy_index] = sci_phy;
|
|
scic->power_control.phys_waiting++;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* This method removes the phy from the stagger spinup control queue.
|
|
* @scic:
|
|
*
|
|
*
|
|
*/
|
|
void scic_sds_controller_power_control_queue_remove(
|
|
struct scic_sds_controller *scic,
|
|
struct scic_sds_phy *sci_phy)
|
|
{
|
|
BUG_ON(sci_phy == NULL);
|
|
|
|
if (scic->power_control.requesters[sci_phy->phy_index] != NULL) {
|
|
scic->power_control.phys_waiting--;
|
|
}
|
|
|
|
scic->power_control.requesters[sci_phy->phy_index] = NULL;
|
|
}
|
|
|
|
#define AFE_REGISTER_WRITE_DELAY 10
|
|
|
|
/* Initialize the AFE for this phy index. We need to read the AFE setup from
|
|
* the OEM parameters
|
|
*/
|
|
static void scic_sds_controller_afe_initialization(struct scic_sds_controller *scic)
|
|
{
|
|
const struct scic_sds_oem_params *oem = &scic->oem_parameters.sds1;
|
|
u32 afe_status;
|
|
u32 phy_id;
|
|
|
|
/* Clear DFX Status registers */
|
|
writel(0x0081000f, &scic->scu_registers->afe.afe_dfx_master_control0);
|
|
udelay(AFE_REGISTER_WRITE_DELAY);
|
|
|
|
if (is_b0()) {
|
|
/* PM Rx Equalization Save, PM SPhy Rx Acknowledgement
|
|
* Timer, PM Stagger Timer */
|
|
writel(0x0007BFFF, &scic->scu_registers->afe.afe_pmsn_master_control2);
|
|
udelay(AFE_REGISTER_WRITE_DELAY);
|
|
}
|
|
|
|
/* Configure bias currents to normal */
|
|
if (is_a0())
|
|
writel(0x00005500, &scic->scu_registers->afe.afe_bias_control);
|
|
else if (is_a2())
|
|
writel(0x00005A00, &scic->scu_registers->afe.afe_bias_control);
|
|
else if (is_b0())
|
|
writel(0x00005F00, &scic->scu_registers->afe.afe_bias_control);
|
|
|
|
udelay(AFE_REGISTER_WRITE_DELAY);
|
|
|
|
/* Enable PLL */
|
|
if (is_b0())
|
|
writel(0x80040A08, &scic->scu_registers->afe.afe_pll_control0);
|
|
else
|
|
writel(0x80040908, &scic->scu_registers->afe.afe_pll_control0);
|
|
|
|
udelay(AFE_REGISTER_WRITE_DELAY);
|
|
|
|
/* Wait for the PLL to lock */
|
|
do {
|
|
afe_status = readl(&scic->scu_registers->afe.afe_common_block_status);
|
|
udelay(AFE_REGISTER_WRITE_DELAY);
|
|
} while ((afe_status & 0x00001000) == 0);
|
|
|
|
if (is_a0() || is_a2()) {
|
|
/* Shorten SAS SNW lock time (RxLock timer value from 76 us to 50 us) */
|
|
writel(0x7bcc96ad, &scic->scu_registers->afe.afe_pmsn_master_control0);
|
|
udelay(AFE_REGISTER_WRITE_DELAY);
|
|
}
|
|
|
|
for (phy_id = 0; phy_id < SCI_MAX_PHYS; phy_id++) {
|
|
const struct sci_phy_oem_params *oem_phy = &oem->phys[phy_id];
|
|
|
|
if (is_b0()) {
|
|
/* Configure transmitter SSC parameters */
|
|
writel(0x00030000, &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_tx_ssc_control);
|
|
udelay(AFE_REGISTER_WRITE_DELAY);
|
|
} else {
|
|
/*
|
|
* All defaults, except the Receive Word Alignament/Comma Detect
|
|
* Enable....(0xe800) */
|
|
writel(0x00004512, &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_xcvr_control0);
|
|
udelay(AFE_REGISTER_WRITE_DELAY);
|
|
|
|
writel(0x0050100F, &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_xcvr_control1);
|
|
udelay(AFE_REGISTER_WRITE_DELAY);
|
|
}
|
|
|
|
/*
|
|
* Power up TX and RX out from power down (PWRDNTX and PWRDNRX)
|
|
* & increase TX int & ext bias 20%....(0xe85c) */
|
|
if (is_a0())
|
|
writel(0x000003D4, &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_channel_control);
|
|
else if (is_a2())
|
|
writel(0x000003F0, &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_channel_control);
|
|
else {
|
|
/* Power down TX and RX (PWRDNTX and PWRDNRX) */
|
|
writel(0x000003d7, &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_channel_control);
|
|
udelay(AFE_REGISTER_WRITE_DELAY);
|
|
|
|
/*
|
|
* Power up TX and RX out from power down (PWRDNTX and PWRDNRX)
|
|
* & increase TX int & ext bias 20%....(0xe85c) */
|
|
writel(0x000003d4, &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_channel_control);
|
|
}
|
|
udelay(AFE_REGISTER_WRITE_DELAY);
|
|
|
|
if (is_a0() || is_a2()) {
|
|
/* Enable TX equalization (0xe824) */
|
|
writel(0x00040000, &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_tx_control);
|
|
udelay(AFE_REGISTER_WRITE_DELAY);
|
|
}
|
|
|
|
/*
|
|
* RDPI=0x0(RX Power On), RXOOBDETPDNC=0x0, TPD=0x0(TX Power On),
|
|
* RDD=0x0(RX Detect Enabled) ....(0xe800) */
|
|
writel(0x00004100, &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_xcvr_control0);
|
|
udelay(AFE_REGISTER_WRITE_DELAY);
|
|
|
|
/* Leave DFE/FFE on */
|
|
if (is_a0())
|
|
writel(0x3F09983F, &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_rx_ssc_control0);
|
|
else if (is_a2())
|
|
writel(0x3F11103F, &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_rx_ssc_control0);
|
|
else {
|
|
writel(0x3F11103F, &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_rx_ssc_control0);
|
|
udelay(AFE_REGISTER_WRITE_DELAY);
|
|
/* Enable TX equalization (0xe824) */
|
|
writel(0x00040000, &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_tx_control);
|
|
}
|
|
udelay(AFE_REGISTER_WRITE_DELAY);
|
|
|
|
writel(oem_phy->afe_tx_amp_control0,
|
|
&scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_tx_amp_control0);
|
|
udelay(AFE_REGISTER_WRITE_DELAY);
|
|
|
|
writel(oem_phy->afe_tx_amp_control1,
|
|
&scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_tx_amp_control1);
|
|
udelay(AFE_REGISTER_WRITE_DELAY);
|
|
|
|
writel(oem_phy->afe_tx_amp_control2,
|
|
&scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_tx_amp_control2);
|
|
udelay(AFE_REGISTER_WRITE_DELAY);
|
|
|
|
writel(oem_phy->afe_tx_amp_control3,
|
|
&scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_tx_amp_control3);
|
|
udelay(AFE_REGISTER_WRITE_DELAY);
|
|
}
|
|
|
|
/* Transfer control to the PEs */
|
|
writel(0x00010f00, &scic->scu_registers->afe.afe_dfx_master_control0);
|
|
udelay(AFE_REGISTER_WRITE_DELAY);
|
|
}
|
|
|
|
static enum sci_status scic_controller_set_mode(struct scic_sds_controller *scic,
|
|
enum sci_controller_mode operating_mode)
|
|
{
|
|
enum sci_status status = SCI_SUCCESS;
|
|
|
|
if ((scic->state_machine.current_state_id ==
|
|
SCI_BASE_CONTROLLER_STATE_INITIALIZING) ||
|
|
(scic->state_machine.current_state_id ==
|
|
SCI_BASE_CONTROLLER_STATE_INITIALIZED)) {
|
|
switch (operating_mode) {
|
|
case SCI_MODE_SPEED:
|
|
scic->remote_node_entries = SCI_MAX_REMOTE_DEVICES;
|
|
scic->task_context_entries = SCU_IO_REQUEST_COUNT;
|
|
scic->uf_control.buffers.count =
|
|
SCU_UNSOLICITED_FRAME_COUNT;
|
|
scic->completion_event_entries = SCU_EVENT_COUNT;
|
|
scic->completion_queue_entries =
|
|
SCU_COMPLETION_QUEUE_COUNT;
|
|
break;
|
|
|
|
case SCI_MODE_SIZE:
|
|
scic->remote_node_entries = SCI_MIN_REMOTE_DEVICES;
|
|
scic->task_context_entries = SCI_MIN_IO_REQUESTS;
|
|
scic->uf_control.buffers.count =
|
|
SCU_MIN_UNSOLICITED_FRAMES;
|
|
scic->completion_event_entries = SCU_MIN_EVENTS;
|
|
scic->completion_queue_entries =
|
|
SCU_MIN_COMPLETION_QUEUE_ENTRIES;
|
|
break;
|
|
|
|
default:
|
|
status = SCI_FAILURE_INVALID_PARAMETER_VALUE;
|
|
break;
|
|
}
|
|
} else
|
|
status = SCI_FAILURE_INVALID_STATE;
|
|
|
|
return status;
|
|
}
|
|
|
|
static void scic_sds_controller_initialize_power_control(struct scic_sds_controller *scic)
|
|
{
|
|
struct isci_host *ihost = scic_to_ihost(scic);
|
|
scic->power_control.timer = isci_timer_create(ihost,
|
|
scic,
|
|
scic_sds_controller_power_control_timer_handler);
|
|
|
|
memset(scic->power_control.requesters, 0,
|
|
sizeof(scic->power_control.requesters));
|
|
|
|
scic->power_control.phys_waiting = 0;
|
|
scic->power_control.phys_granted_power = 0;
|
|
}
|
|
|
|
static enum sci_status scic_controller_initialize(struct scic_sds_controller *scic)
|
|
{
|
|
struct sci_base_state_machine *sm = &scic->state_machine;
|
|
enum sci_status result = SCI_SUCCESS;
|
|
struct isci_host *ihost = scic_to_ihost(scic);
|
|
u32 index, state;
|
|
|
|
if (scic->state_machine.current_state_id !=
|
|
SCI_BASE_CONTROLLER_STATE_RESET) {
|
|
dev_warn(scic_to_dev(scic),
|
|
"SCIC Controller initialize operation requested "
|
|
"in invalid state\n");
|
|
return SCI_FAILURE_INVALID_STATE;
|
|
}
|
|
|
|
sci_base_state_machine_change_state(sm, SCI_BASE_CONTROLLER_STATE_INITIALIZING);
|
|
|
|
scic->timeout_timer = isci_timer_create(ihost, scic,
|
|
scic_sds_controller_timeout_handler);
|
|
|
|
scic_sds_controller_initialize_phy_startup(scic);
|
|
|
|
scic_sds_controller_initialize_power_control(scic);
|
|
|
|
/*
|
|
* There is nothing to do here for B0 since we do not have to
|
|
* program the AFE registers.
|
|
* / @todo The AFE settings are supposed to be correct for the B0 but
|
|
* / presently they seem to be wrong. */
|
|
scic_sds_controller_afe_initialization(scic);
|
|
|
|
if (result == SCI_SUCCESS) {
|
|
u32 status;
|
|
u32 terminate_loop;
|
|
|
|
/* Take the hardware out of reset */
|
|
writel(0, &scic->smu_registers->soft_reset_control);
|
|
|
|
/*
|
|
* / @todo Provide meaningfull error code for hardware failure
|
|
* result = SCI_FAILURE_CONTROLLER_HARDWARE; */
|
|
result = SCI_FAILURE;
|
|
terminate_loop = 100;
|
|
|
|
while (terminate_loop-- && (result != SCI_SUCCESS)) {
|
|
/* Loop until the hardware reports success */
|
|
udelay(SCU_CONTEXT_RAM_INIT_STALL_TIME);
|
|
status = readl(&scic->smu_registers->control_status);
|
|
|
|
if ((status & SCU_RAM_INIT_COMPLETED) ==
|
|
SCU_RAM_INIT_COMPLETED)
|
|
result = SCI_SUCCESS;
|
|
}
|
|
}
|
|
|
|
if (result == SCI_SUCCESS) {
|
|
u32 max_supported_ports;
|
|
u32 max_supported_devices;
|
|
u32 max_supported_io_requests;
|
|
u32 device_context_capacity;
|
|
|
|
/*
|
|
* Determine what are the actaul device capacities that the
|
|
* hardware will support */
|
|
device_context_capacity =
|
|
readl(&scic->smu_registers->device_context_capacity);
|
|
|
|
|
|
max_supported_ports = smu_dcc_get_max_ports(device_context_capacity);
|
|
max_supported_devices = smu_dcc_get_max_remote_node_context(device_context_capacity);
|
|
max_supported_io_requests = smu_dcc_get_max_task_context(device_context_capacity);
|
|
|
|
/*
|
|
* Make all PEs that are unassigned match up with the
|
|
* logical ports
|
|
*/
|
|
for (index = 0; index < max_supported_ports; index++) {
|
|
struct scu_port_task_scheduler_group_registers __iomem
|
|
*ptsg = &scic->scu_registers->peg0.ptsg;
|
|
|
|
writel(index, &ptsg->protocol_engine[index]);
|
|
}
|
|
|
|
/* Record the smaller of the two capacity values */
|
|
scic->logical_port_entries =
|
|
min(max_supported_ports, scic->logical_port_entries);
|
|
|
|
scic->task_context_entries =
|
|
min(max_supported_io_requests,
|
|
scic->task_context_entries);
|
|
|
|
scic->remote_node_entries =
|
|
min(max_supported_devices, scic->remote_node_entries);
|
|
|
|
/*
|
|
* Now that we have the correct hardware reported minimum values
|
|
* build the MDL for the controller. Default to a performance
|
|
* configuration.
|
|
*/
|
|
scic_controller_set_mode(scic, SCI_MODE_SPEED);
|
|
}
|
|
|
|
/* Initialize hardware PCI Relaxed ordering in DMA engines */
|
|
if (result == SCI_SUCCESS) {
|
|
u32 dma_configuration;
|
|
|
|
/* Configure the payload DMA */
|
|
dma_configuration =
|
|
readl(&scic->scu_registers->sdma.pdma_configuration);
|
|
dma_configuration |=
|
|
SCU_PDMACR_GEN_BIT(PCI_RELAXED_ORDERING_ENABLE);
|
|
writel(dma_configuration,
|
|
&scic->scu_registers->sdma.pdma_configuration);
|
|
|
|
/* Configure the control DMA */
|
|
dma_configuration =
|
|
readl(&scic->scu_registers->sdma.cdma_configuration);
|
|
dma_configuration |=
|
|
SCU_CDMACR_GEN_BIT(PCI_RELAXED_ORDERING_ENABLE);
|
|
writel(dma_configuration,
|
|
&scic->scu_registers->sdma.cdma_configuration);
|
|
}
|
|
|
|
/*
|
|
* Initialize the PHYs before the PORTs because the PHY registers
|
|
* are accessed during the port initialization.
|
|
*/
|
|
if (result == SCI_SUCCESS) {
|
|
/* Initialize the phys */
|
|
for (index = 0;
|
|
(result == SCI_SUCCESS) && (index < SCI_MAX_PHYS);
|
|
index++) {
|
|
result = scic_sds_phy_initialize(
|
|
&ihost->phys[index].sci,
|
|
&scic->scu_registers->peg0.pe[index].tl,
|
|
&scic->scu_registers->peg0.pe[index].ll);
|
|
}
|
|
}
|
|
|
|
if (result == SCI_SUCCESS) {
|
|
/* Initialize the logical ports */
|
|
for (index = 0;
|
|
(index < scic->logical_port_entries) &&
|
|
(result == SCI_SUCCESS);
|
|
index++) {
|
|
result = scic_sds_port_initialize(
|
|
&ihost->ports[index].sci,
|
|
&scic->scu_registers->peg0.ptsg.port[index],
|
|
&scic->scu_registers->peg0.ptsg.protocol_engine,
|
|
&scic->scu_registers->peg0.viit[index]);
|
|
}
|
|
}
|
|
|
|
if (result == SCI_SUCCESS)
|
|
result = scic_sds_port_configuration_agent_initialize(
|
|
scic,
|
|
&scic->port_agent);
|
|
|
|
/* Advance the controller state machine */
|
|
if (result == SCI_SUCCESS)
|
|
state = SCI_BASE_CONTROLLER_STATE_INITIALIZED;
|
|
else
|
|
state = SCI_BASE_CONTROLLER_STATE_FAILED;
|
|
sci_base_state_machine_change_state(sm, state);
|
|
|
|
return result;
|
|
}
|
|
|
|
static enum sci_status scic_user_parameters_set(
|
|
struct scic_sds_controller *scic,
|
|
union scic_user_parameters *scic_parms)
|
|
{
|
|
u32 state = scic->state_machine.current_state_id;
|
|
|
|
if (state == SCI_BASE_CONTROLLER_STATE_RESET ||
|
|
state == SCI_BASE_CONTROLLER_STATE_INITIALIZING ||
|
|
state == SCI_BASE_CONTROLLER_STATE_INITIALIZED) {
|
|
u16 index;
|
|
|
|
/*
|
|
* Validate the user parameters. If they are not legal, then
|
|
* return a failure.
|
|
*/
|
|
for (index = 0; index < SCI_MAX_PHYS; index++) {
|
|
struct sci_phy_user_params *user_phy;
|
|
|
|
user_phy = &scic_parms->sds1.phys[index];
|
|
|
|
if (!((user_phy->max_speed_generation <=
|
|
SCIC_SDS_PARM_MAX_SPEED) &&
|
|
(user_phy->max_speed_generation >
|
|
SCIC_SDS_PARM_NO_SPEED)))
|
|
return SCI_FAILURE_INVALID_PARAMETER_VALUE;
|
|
|
|
if (user_phy->in_connection_align_insertion_frequency <
|
|
3)
|
|
return SCI_FAILURE_INVALID_PARAMETER_VALUE;
|
|
|
|
if ((user_phy->in_connection_align_insertion_frequency <
|
|
3) ||
|
|
(user_phy->align_insertion_frequency == 0) ||
|
|
(user_phy->
|
|
notify_enable_spin_up_insertion_frequency ==
|
|
0))
|
|
return SCI_FAILURE_INVALID_PARAMETER_VALUE;
|
|
}
|
|
|
|
if ((scic_parms->sds1.stp_inactivity_timeout == 0) ||
|
|
(scic_parms->sds1.ssp_inactivity_timeout == 0) ||
|
|
(scic_parms->sds1.stp_max_occupancy_timeout == 0) ||
|
|
(scic_parms->sds1.ssp_max_occupancy_timeout == 0) ||
|
|
(scic_parms->sds1.no_outbound_task_timeout == 0))
|
|
return SCI_FAILURE_INVALID_PARAMETER_VALUE;
|
|
|
|
memcpy(&scic->user_parameters, scic_parms, sizeof(*scic_parms));
|
|
|
|
return SCI_SUCCESS;
|
|
}
|
|
|
|
return SCI_FAILURE_INVALID_STATE;
|
|
}
|
|
|
|
static int scic_controller_mem_init(struct scic_sds_controller *scic)
|
|
{
|
|
struct device *dev = scic_to_dev(scic);
|
|
dma_addr_t dma_handle;
|
|
enum sci_status result;
|
|
|
|
scic->completion_queue = dmam_alloc_coherent(dev,
|
|
scic->completion_queue_entries * sizeof(u32),
|
|
&dma_handle, GFP_KERNEL);
|
|
if (!scic->completion_queue)
|
|
return -ENOMEM;
|
|
|
|
writel(lower_32_bits(dma_handle),
|
|
&scic->smu_registers->completion_queue_lower);
|
|
writel(upper_32_bits(dma_handle),
|
|
&scic->smu_registers->completion_queue_upper);
|
|
|
|
scic->remote_node_context_table = dmam_alloc_coherent(dev,
|
|
scic->remote_node_entries *
|
|
sizeof(union scu_remote_node_context),
|
|
&dma_handle, GFP_KERNEL);
|
|
if (!scic->remote_node_context_table)
|
|
return -ENOMEM;
|
|
|
|
writel(lower_32_bits(dma_handle),
|
|
&scic->smu_registers->remote_node_context_lower);
|
|
writel(upper_32_bits(dma_handle),
|
|
&scic->smu_registers->remote_node_context_upper);
|
|
|
|
scic->task_context_table = dmam_alloc_coherent(dev,
|
|
scic->task_context_entries *
|
|
sizeof(struct scu_task_context),
|
|
&dma_handle, GFP_KERNEL);
|
|
if (!scic->task_context_table)
|
|
return -ENOMEM;
|
|
|
|
writel(lower_32_bits(dma_handle),
|
|
&scic->smu_registers->host_task_table_lower);
|
|
writel(upper_32_bits(dma_handle),
|
|
&scic->smu_registers->host_task_table_upper);
|
|
|
|
result = scic_sds_unsolicited_frame_control_construct(scic);
|
|
if (result)
|
|
return result;
|
|
|
|
/*
|
|
* Inform the silicon as to the location of the UF headers and
|
|
* address table.
|
|
*/
|
|
writel(lower_32_bits(scic->uf_control.headers.physical_address),
|
|
&scic->scu_registers->sdma.uf_header_base_address_lower);
|
|
writel(upper_32_bits(scic->uf_control.headers.physical_address),
|
|
&scic->scu_registers->sdma.uf_header_base_address_upper);
|
|
|
|
writel(lower_32_bits(scic->uf_control.address_table.physical_address),
|
|
&scic->scu_registers->sdma.uf_address_table_lower);
|
|
writel(upper_32_bits(scic->uf_control.address_table.physical_address),
|
|
&scic->scu_registers->sdma.uf_address_table_upper);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int isci_host_init(struct isci_host *isci_host)
|
|
{
|
|
int err = 0, i;
|
|
enum sci_status status;
|
|
union scic_oem_parameters oem;
|
|
union scic_user_parameters scic_user_params;
|
|
struct isci_pci_info *pci_info = to_pci_info(isci_host->pdev);
|
|
|
|
isci_timer_list_construct(isci_host);
|
|
|
|
spin_lock_init(&isci_host->state_lock);
|
|
spin_lock_init(&isci_host->scic_lock);
|
|
spin_lock_init(&isci_host->queue_lock);
|
|
init_waitqueue_head(&isci_host->eventq);
|
|
|
|
isci_host_change_state(isci_host, isci_starting);
|
|
isci_host->can_queue = ISCI_CAN_QUEUE_VAL;
|
|
|
|
status = scic_controller_construct(&isci_host->sci, scu_base(isci_host),
|
|
smu_base(isci_host));
|
|
|
|
if (status != SCI_SUCCESS) {
|
|
dev_err(&isci_host->pdev->dev,
|
|
"%s: scic_controller_construct failed - status = %x\n",
|
|
__func__,
|
|
status);
|
|
return -ENODEV;
|
|
}
|
|
|
|
isci_host->sas_ha.dev = &isci_host->pdev->dev;
|
|
isci_host->sas_ha.lldd_ha = isci_host;
|
|
|
|
/*
|
|
* grab initial values stored in the controller object for OEM and USER
|
|
* parameters
|
|
*/
|
|
isci_user_parameters_get(isci_host, &scic_user_params);
|
|
status = scic_user_parameters_set(&isci_host->sci,
|
|
&scic_user_params);
|
|
if (status != SCI_SUCCESS) {
|
|
dev_warn(&isci_host->pdev->dev,
|
|
"%s: scic_user_parameters_set failed\n",
|
|
__func__);
|
|
return -ENODEV;
|
|
}
|
|
|
|
scic_oem_parameters_get(&isci_host->sci, &oem);
|
|
|
|
/* grab any OEM parameters specified in orom */
|
|
if (pci_info->orom) {
|
|
status = isci_parse_oem_parameters(&oem,
|
|
pci_info->orom,
|
|
isci_host->id);
|
|
if (status != SCI_SUCCESS) {
|
|
dev_warn(&isci_host->pdev->dev,
|
|
"parsing firmware oem parameters failed\n");
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
status = scic_oem_parameters_set(&isci_host->sci, &oem);
|
|
if (status != SCI_SUCCESS) {
|
|
dev_warn(&isci_host->pdev->dev,
|
|
"%s: scic_oem_parameters_set failed\n",
|
|
__func__);
|
|
return -ENODEV;
|
|
}
|
|
|
|
tasklet_init(&isci_host->completion_tasklet,
|
|
isci_host_completion_routine, (unsigned long)isci_host);
|
|
|
|
INIT_LIST_HEAD(&isci_host->requests_to_complete);
|
|
INIT_LIST_HEAD(&isci_host->requests_to_errorback);
|
|
|
|
spin_lock_irq(&isci_host->scic_lock);
|
|
status = scic_controller_initialize(&isci_host->sci);
|
|
spin_unlock_irq(&isci_host->scic_lock);
|
|
if (status != SCI_SUCCESS) {
|
|
dev_warn(&isci_host->pdev->dev,
|
|
"%s: scic_controller_initialize failed -"
|
|
" status = 0x%x\n",
|
|
__func__, status);
|
|
return -ENODEV;
|
|
}
|
|
|
|
err = scic_controller_mem_init(&isci_host->sci);
|
|
if (err)
|
|
return err;
|
|
|
|
isci_host->dma_pool = dmam_pool_create(DRV_NAME, &isci_host->pdev->dev,
|
|
sizeof(struct isci_request),
|
|
SLAB_HWCACHE_ALIGN, 0);
|
|
|
|
if (!isci_host->dma_pool)
|
|
return -ENOMEM;
|
|
|
|
for (i = 0; i < SCI_MAX_PORTS; i++)
|
|
isci_port_init(&isci_host->ports[i], isci_host, i);
|
|
|
|
for (i = 0; i < SCI_MAX_PHYS; i++)
|
|
isci_phy_init(&isci_host->phys[i], isci_host, i);
|
|
|
|
for (i = 0; i < SCI_MAX_REMOTE_DEVICES; i++) {
|
|
struct isci_remote_device *idev = &isci_host->devices[i];
|
|
|
|
INIT_LIST_HEAD(&idev->reqs_in_process);
|
|
INIT_LIST_HEAD(&idev->node);
|
|
spin_lock_init(&idev->state_lock);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
void scic_sds_controller_link_up(struct scic_sds_controller *scic,
|
|
struct scic_sds_port *port, struct scic_sds_phy *phy)
|
|
{
|
|
switch (scic->state_machine.current_state_id) {
|
|
case SCI_BASE_CONTROLLER_STATE_STARTING:
|
|
scic_sds_controller_phy_timer_stop(scic);
|
|
scic->port_agent.link_up_handler(scic, &scic->port_agent,
|
|
port, phy);
|
|
scic_sds_controller_start_next_phy(scic);
|
|
break;
|
|
case SCI_BASE_CONTROLLER_STATE_READY:
|
|
scic->port_agent.link_up_handler(scic, &scic->port_agent,
|
|
port, phy);
|
|
break;
|
|
default:
|
|
dev_dbg(scic_to_dev(scic),
|
|
"%s: SCIC Controller linkup event from phy %d in "
|
|
"unexpected state %d\n", __func__, phy->phy_index,
|
|
scic->state_machine.current_state_id);
|
|
}
|
|
}
|
|
|
|
void scic_sds_controller_link_down(struct scic_sds_controller *scic,
|
|
struct scic_sds_port *port, struct scic_sds_phy *phy)
|
|
{
|
|
switch (scic->state_machine.current_state_id) {
|
|
case SCI_BASE_CONTROLLER_STATE_STARTING:
|
|
case SCI_BASE_CONTROLLER_STATE_READY:
|
|
scic->port_agent.link_down_handler(scic, &scic->port_agent,
|
|
port, phy);
|
|
break;
|
|
default:
|
|
dev_dbg(scic_to_dev(scic),
|
|
"%s: SCIC Controller linkdown event from phy %d in "
|
|
"unexpected state %d\n",
|
|
__func__,
|
|
phy->phy_index,
|
|
scic->state_machine.current_state_id);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* This is a helper method to determine if any remote devices on this
|
|
* controller are still in the stopping state.
|
|
*
|
|
*/
|
|
static bool scic_sds_controller_has_remote_devices_stopping(
|
|
struct scic_sds_controller *controller)
|
|
{
|
|
u32 index;
|
|
|
|
for (index = 0; index < controller->remote_node_entries; index++) {
|
|
if ((controller->device_table[index] != NULL) &&
|
|
(controller->device_table[index]->state_machine.current_state_id
|
|
== SCI_BASE_REMOTE_DEVICE_STATE_STOPPING))
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/**
|
|
* This method is called by the remote device to inform the controller
|
|
* object that the remote device has stopped.
|
|
*/
|
|
void scic_sds_controller_remote_device_stopped(struct scic_sds_controller *scic,
|
|
struct scic_sds_remote_device *sci_dev)
|
|
{
|
|
if (scic->state_machine.current_state_id !=
|
|
SCI_BASE_CONTROLLER_STATE_STOPPING) {
|
|
dev_dbg(scic_to_dev(scic),
|
|
"SCIC Controller 0x%p remote device stopped event "
|
|
"from device 0x%p in unexpected state %d\n",
|
|
scic, sci_dev,
|
|
scic->state_machine.current_state_id);
|
|
return;
|
|
}
|
|
|
|
if (!scic_sds_controller_has_remote_devices_stopping(scic)) {
|
|
sci_base_state_machine_change_state(&scic->state_machine,
|
|
SCI_BASE_CONTROLLER_STATE_STOPPED);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* This method will write to the SCU PCP register the request value. The method
|
|
* is used to suspend/resume ports, devices, and phys.
|
|
* @scic:
|
|
*
|
|
*
|
|
*/
|
|
void scic_sds_controller_post_request(
|
|
struct scic_sds_controller *scic,
|
|
u32 request)
|
|
{
|
|
dev_dbg(scic_to_dev(scic),
|
|
"%s: SCIC Controller 0x%p post request 0x%08x\n",
|
|
__func__,
|
|
scic,
|
|
request);
|
|
|
|
writel(request, &scic->smu_registers->post_context_port);
|
|
}
|
|
|
|
/**
|
|
* This method will copy the soft copy of the task context into the physical
|
|
* memory accessible by the controller.
|
|
* @scic: This parameter specifies the controller for which to copy
|
|
* the task context.
|
|
* @sci_req: This parameter specifies the request for which the task
|
|
* context is being copied.
|
|
*
|
|
* After this call is made the SCIC_SDS_IO_REQUEST object will always point to
|
|
* the physical memory version of the task context. Thus, all subsequent
|
|
* updates to the task context are performed in the TC table (i.e. DMAable
|
|
* memory). none
|
|
*/
|
|
void scic_sds_controller_copy_task_context(
|
|
struct scic_sds_controller *scic,
|
|
struct scic_sds_request *sci_req)
|
|
{
|
|
struct scu_task_context *task_context_buffer;
|
|
|
|
task_context_buffer = scic_sds_controller_get_task_context_buffer(
|
|
scic, sci_req->io_tag);
|
|
|
|
memcpy(task_context_buffer,
|
|
sci_req->task_context_buffer,
|
|
offsetof(struct scu_task_context, sgl_snapshot_ac));
|
|
|
|
/*
|
|
* Now that the soft copy of the TC has been copied into the TC
|
|
* table accessible by the silicon. Thus, any further changes to
|
|
* the TC (e.g. TC termination) occur in the appropriate location. */
|
|
sci_req->task_context_buffer = task_context_buffer;
|
|
}
|
|
|
|
/**
|
|
* This method returns the task context buffer for the given io tag.
|
|
* @scic:
|
|
* @io_tag:
|
|
*
|
|
* struct scu_task_context*
|
|
*/
|
|
struct scu_task_context *scic_sds_controller_get_task_context_buffer(
|
|
struct scic_sds_controller *scic,
|
|
u16 io_tag
|
|
) {
|
|
u16 task_index = scic_sds_io_tag_get_index(io_tag);
|
|
|
|
if (task_index < scic->task_context_entries) {
|
|
return &scic->task_context_table[task_index];
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
struct scic_sds_request *scic_request_by_tag(struct scic_sds_controller *scic,
|
|
u16 io_tag)
|
|
{
|
|
u16 task_index;
|
|
u16 task_sequence;
|
|
|
|
task_index = scic_sds_io_tag_get_index(io_tag);
|
|
|
|
if (task_index < scic->task_context_entries) {
|
|
if (scic->io_request_table[task_index] != NULL) {
|
|
task_sequence = scic_sds_io_tag_get_sequence(io_tag);
|
|
|
|
if (task_sequence == scic->io_request_sequence[task_index]) {
|
|
return scic->io_request_table[task_index];
|
|
}
|
|
}
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/**
|
|
* This method allocates remote node index and the reserves the remote node
|
|
* context space for use. This method can fail if there are no more remote
|
|
* node index available.
|
|
* @scic: This is the controller object which contains the set of
|
|
* free remote node ids
|
|
* @sci_dev: This is the device object which is requesting the a remote node
|
|
* id
|
|
* @node_id: This is the remote node id that is assinged to the device if one
|
|
* is available
|
|
*
|
|
* enum sci_status SCI_FAILURE_OUT_OF_RESOURCES if there are no available remote
|
|
* node index available.
|
|
*/
|
|
enum sci_status scic_sds_controller_allocate_remote_node_context(
|
|
struct scic_sds_controller *scic,
|
|
struct scic_sds_remote_device *sci_dev,
|
|
u16 *node_id)
|
|
{
|
|
u16 node_index;
|
|
u32 remote_node_count = scic_sds_remote_device_node_count(sci_dev);
|
|
|
|
node_index = scic_sds_remote_node_table_allocate_remote_node(
|
|
&scic->available_remote_nodes, remote_node_count
|
|
);
|
|
|
|
if (node_index != SCIC_SDS_REMOTE_NODE_CONTEXT_INVALID_INDEX) {
|
|
scic->device_table[node_index] = sci_dev;
|
|
|
|
*node_id = node_index;
|
|
|
|
return SCI_SUCCESS;
|
|
}
|
|
|
|
return SCI_FAILURE_INSUFFICIENT_RESOURCES;
|
|
}
|
|
|
|
/**
|
|
* This method frees the remote node index back to the available pool. Once
|
|
* this is done the remote node context buffer is no longer valid and can
|
|
* not be used.
|
|
* @scic:
|
|
* @sci_dev:
|
|
* @node_id:
|
|
*
|
|
*/
|
|
void scic_sds_controller_free_remote_node_context(
|
|
struct scic_sds_controller *scic,
|
|
struct scic_sds_remote_device *sci_dev,
|
|
u16 node_id)
|
|
{
|
|
u32 remote_node_count = scic_sds_remote_device_node_count(sci_dev);
|
|
|
|
if (scic->device_table[node_id] == sci_dev) {
|
|
scic->device_table[node_id] = NULL;
|
|
|
|
scic_sds_remote_node_table_release_remote_node_index(
|
|
&scic->available_remote_nodes, remote_node_count, node_id
|
|
);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* This method returns the union scu_remote_node_context for the specified remote
|
|
* node id.
|
|
* @scic:
|
|
* @node_id:
|
|
*
|
|
* union scu_remote_node_context*
|
|
*/
|
|
union scu_remote_node_context *scic_sds_controller_get_remote_node_context_buffer(
|
|
struct scic_sds_controller *scic,
|
|
u16 node_id
|
|
) {
|
|
if (
|
|
(node_id < scic->remote_node_entries)
|
|
&& (scic->device_table[node_id] != NULL)
|
|
) {
|
|
return &scic->remote_node_context_table[node_id];
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/**
|
|
*
|
|
* @resposne_buffer: This is the buffer into which the D2H register FIS will be
|
|
* constructed.
|
|
* @frame_header: This is the frame header returned by the hardware.
|
|
* @frame_buffer: This is the frame buffer returned by the hardware.
|
|
*
|
|
* This method will combind the frame header and frame buffer to create a SATA
|
|
* D2H register FIS none
|
|
*/
|
|
void scic_sds_controller_copy_sata_response(
|
|
void *response_buffer,
|
|
void *frame_header,
|
|
void *frame_buffer)
|
|
{
|
|
memcpy(response_buffer, frame_header, sizeof(u32));
|
|
|
|
memcpy(response_buffer + sizeof(u32),
|
|
frame_buffer,
|
|
sizeof(struct dev_to_host_fis) - sizeof(u32));
|
|
}
|
|
|
|
/**
|
|
* This method releases the frame once this is done the frame is available for
|
|
* re-use by the hardware. The data contained in the frame header and frame
|
|
* buffer is no longer valid. The UF queue get pointer is only updated if UF
|
|
* control indicates this is appropriate.
|
|
* @scic:
|
|
* @frame_index:
|
|
*
|
|
*/
|
|
void scic_sds_controller_release_frame(
|
|
struct scic_sds_controller *scic,
|
|
u32 frame_index)
|
|
{
|
|
if (scic_sds_unsolicited_frame_control_release_frame(
|
|
&scic->uf_control, frame_index) == true)
|
|
writel(scic->uf_control.get,
|
|
&scic->scu_registers->sdma.unsolicited_frame_get_pointer);
|
|
}
|
|
|
|
/**
|
|
* scic_controller_start_io() - This method is called by the SCI user to
|
|
* send/start an IO request. If the method invocation is successful, then
|
|
* the IO request has been queued to the hardware for processing.
|
|
* @controller: the handle to the controller object for which to start an IO
|
|
* request.
|
|
* @remote_device: the handle to the remote device object for which to start an
|
|
* IO request.
|
|
* @io_request: the handle to the io request object to start.
|
|
* @io_tag: This parameter specifies a previously allocated IO tag that the
|
|
* user desires to be utilized for this request. This parameter is optional.
|
|
* The user is allowed to supply SCI_CONTROLLER_INVALID_IO_TAG as the value
|
|
* for this parameter.
|
|
*
|
|
* - IO tags are a protected resource. It is incumbent upon the SCI Core user
|
|
* to ensure that each of the methods that may allocate or free available IO
|
|
* tags are handled in a mutually exclusive manner. This method is one of said
|
|
* methods requiring proper critical code section protection (e.g. semaphore,
|
|
* spin-lock, etc.). - For SATA, the user is required to manage NCQ tags. As a
|
|
* result, it is expected the user will have set the NCQ tag field in the host
|
|
* to device register FIS prior to calling this method. There is also a
|
|
* requirement for the user to call scic_stp_io_set_ncq_tag() prior to invoking
|
|
* the scic_controller_start_io() method. scic_controller_allocate_tag() for
|
|
* more information on allocating a tag. Indicate if the controller
|
|
* successfully started the IO request. SCI_SUCCESS if the IO request was
|
|
* successfully started. Determine the failure situations and return values.
|
|
*/
|
|
enum sci_status scic_controller_start_io(
|
|
struct scic_sds_controller *scic,
|
|
struct scic_sds_remote_device *rdev,
|
|
struct scic_sds_request *req,
|
|
u16 io_tag)
|
|
{
|
|
enum sci_status status;
|
|
|
|
if (scic->state_machine.current_state_id !=
|
|
SCI_BASE_CONTROLLER_STATE_READY) {
|
|
dev_warn(scic_to_dev(scic), "invalid state to start I/O");
|
|
return SCI_FAILURE_INVALID_STATE;
|
|
}
|
|
|
|
status = scic_sds_remote_device_start_io(scic, rdev, req);
|
|
if (status != SCI_SUCCESS)
|
|
return status;
|
|
|
|
scic->io_request_table[scic_sds_io_tag_get_index(req->io_tag)] = req;
|
|
scic_sds_controller_post_request(scic, scic_sds_request_get_post_context(req));
|
|
return SCI_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
* scic_controller_terminate_request() - This method is called by the SCI Core
|
|
* user to terminate an ongoing (i.e. started) core IO request. This does
|
|
* not abort the IO request at the target, but rather removes the IO request
|
|
* from the host controller.
|
|
* @controller: the handle to the controller object for which to terminate a
|
|
* request.
|
|
* @remote_device: the handle to the remote device object for which to
|
|
* terminate a request.
|
|
* @request: the handle to the io or task management request object to
|
|
* terminate.
|
|
*
|
|
* Indicate if the controller successfully began the terminate process for the
|
|
* IO request. SCI_SUCCESS if the terminate process was successfully started
|
|
* for the request. Determine the failure situations and return values.
|
|
*/
|
|
enum sci_status scic_controller_terminate_request(
|
|
struct scic_sds_controller *scic,
|
|
struct scic_sds_remote_device *rdev,
|
|
struct scic_sds_request *req)
|
|
{
|
|
enum sci_status status;
|
|
|
|
if (scic->state_machine.current_state_id !=
|
|
SCI_BASE_CONTROLLER_STATE_READY) {
|
|
dev_warn(scic_to_dev(scic),
|
|
"invalid state to terminate request\n");
|
|
return SCI_FAILURE_INVALID_STATE;
|
|
}
|
|
|
|
status = scic_sds_io_request_terminate(req);
|
|
if (status != SCI_SUCCESS)
|
|
return status;
|
|
|
|
/*
|
|
* Utilize the original post context command and or in the POST_TC_ABORT
|
|
* request sub-type.
|
|
*/
|
|
scic_sds_controller_post_request(scic,
|
|
scic_sds_request_get_post_context(req) |
|
|
SCU_CONTEXT_COMMAND_REQUEST_POST_TC_ABORT);
|
|
return SCI_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
* scic_controller_complete_io() - This method will perform core specific
|
|
* completion operations for an IO request. After this method is invoked,
|
|
* the user should consider the IO request as invalid until it is properly
|
|
* reused (i.e. re-constructed).
|
|
* @controller: The handle to the controller object for which to complete the
|
|
* IO request.
|
|
* @remote_device: The handle to the remote device object for which to complete
|
|
* the IO request.
|
|
* @io_request: the handle to the io request object to complete.
|
|
*
|
|
* - IO tags are a protected resource. It is incumbent upon the SCI Core user
|
|
* to ensure that each of the methods that may allocate or free available IO
|
|
* tags are handled in a mutually exclusive manner. This method is one of said
|
|
* methods requiring proper critical code section protection (e.g. semaphore,
|
|
* spin-lock, etc.). - If the IO tag for a request was allocated, by the SCI
|
|
* Core user, using the scic_controller_allocate_io_tag() method, then it is
|
|
* the responsibility of the caller to invoke the scic_controller_free_io_tag()
|
|
* method to free the tag (i.e. this method will not free the IO tag). Indicate
|
|
* if the controller successfully completed the IO request. SCI_SUCCESS if the
|
|
* completion process was successful.
|
|
*/
|
|
enum sci_status scic_controller_complete_io(
|
|
struct scic_sds_controller *scic,
|
|
struct scic_sds_remote_device *rdev,
|
|
struct scic_sds_request *request)
|
|
{
|
|
enum sci_status status;
|
|
u16 index;
|
|
|
|
switch (scic->state_machine.current_state_id) {
|
|
case SCI_BASE_CONTROLLER_STATE_STOPPING:
|
|
/* XXX: Implement this function */
|
|
return SCI_FAILURE;
|
|
case SCI_BASE_CONTROLLER_STATE_READY:
|
|
status = scic_sds_remote_device_complete_io(scic, rdev, request);
|
|
if (status != SCI_SUCCESS)
|
|
return status;
|
|
|
|
index = scic_sds_io_tag_get_index(request->io_tag);
|
|
scic->io_request_table[index] = NULL;
|
|
return SCI_SUCCESS;
|
|
default:
|
|
dev_warn(scic_to_dev(scic), "invalid state to complete I/O");
|
|
return SCI_FAILURE_INVALID_STATE;
|
|
}
|
|
|
|
}
|
|
|
|
enum sci_status scic_controller_continue_io(struct scic_sds_request *sci_req)
|
|
{
|
|
struct scic_sds_controller *scic = sci_req->owning_controller;
|
|
|
|
if (scic->state_machine.current_state_id !=
|
|
SCI_BASE_CONTROLLER_STATE_READY) {
|
|
dev_warn(scic_to_dev(scic), "invalid state to continue I/O");
|
|
return SCI_FAILURE_INVALID_STATE;
|
|
}
|
|
|
|
scic->io_request_table[scic_sds_io_tag_get_index(sci_req->io_tag)] = sci_req;
|
|
scic_sds_controller_post_request(scic, scic_sds_request_get_post_context(sci_req));
|
|
return SCI_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
* scic_controller_start_task() - This method is called by the SCIC user to
|
|
* send/start a framework task management request.
|
|
* @controller: the handle to the controller object for which to start the task
|
|
* management request.
|
|
* @remote_device: the handle to the remote device object for which to start
|
|
* the task management request.
|
|
* @task_request: the handle to the task request object to start.
|
|
* @io_tag: This parameter specifies a previously allocated IO tag that the
|
|
* user desires to be utilized for this request. Note this not the io_tag
|
|
* of the request being managed. It is to be utilized for the task request
|
|
* itself. This parameter is optional. The user is allowed to supply
|
|
* SCI_CONTROLLER_INVALID_IO_TAG as the value for this parameter.
|
|
*
|
|
* - IO tags are a protected resource. It is incumbent upon the SCI Core user
|
|
* to ensure that each of the methods that may allocate or free available IO
|
|
* tags are handled in a mutually exclusive manner. This method is one of said
|
|
* methods requiring proper critical code section protection (e.g. semaphore,
|
|
* spin-lock, etc.). - The user must synchronize this task with completion
|
|
* queue processing. If they are not synchronized then it is possible for the
|
|
* io requests that are being managed by the task request can complete before
|
|
* starting the task request. scic_controller_allocate_tag() for more
|
|
* information on allocating a tag. Indicate if the controller successfully
|
|
* started the IO request. SCI_TASK_SUCCESS if the task request was
|
|
* successfully started. SCI_TASK_FAILURE_REQUIRES_SCSI_ABORT This value is
|
|
* returned if there is/are task(s) outstanding that require termination or
|
|
* completion before this request can succeed.
|
|
*/
|
|
enum sci_task_status scic_controller_start_task(
|
|
struct scic_sds_controller *scic,
|
|
struct scic_sds_remote_device *rdev,
|
|
struct scic_sds_request *req,
|
|
u16 task_tag)
|
|
{
|
|
enum sci_status status;
|
|
|
|
if (scic->state_machine.current_state_id !=
|
|
SCI_BASE_CONTROLLER_STATE_READY) {
|
|
dev_warn(scic_to_dev(scic),
|
|
"%s: SCIC Controller starting task from invalid "
|
|
"state\n",
|
|
__func__);
|
|
return SCI_TASK_FAILURE_INVALID_STATE;
|
|
}
|
|
|
|
status = scic_sds_remote_device_start_task(scic, rdev, req);
|
|
switch (status) {
|
|
case SCI_FAILURE_RESET_DEVICE_PARTIAL_SUCCESS:
|
|
scic->io_request_table[scic_sds_io_tag_get_index(req->io_tag)] = req;
|
|
|
|
/*
|
|
* We will let framework know this task request started successfully,
|
|
* although core is still woring on starting the request (to post tc when
|
|
* RNC is resumed.)
|
|
*/
|
|
return SCI_SUCCESS;
|
|
case SCI_SUCCESS:
|
|
scic->io_request_table[scic_sds_io_tag_get_index(req->io_tag)] = req;
|
|
|
|
scic_sds_controller_post_request(scic,
|
|
scic_sds_request_get_post_context(req));
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* scic_controller_allocate_io_tag() - This method will allocate a tag from the
|
|
* pool of free IO tags. Direct allocation of IO tags by the SCI Core user
|
|
* is optional. The scic_controller_start_io() method will allocate an IO
|
|
* tag if this method is not utilized and the tag is not supplied to the IO
|
|
* construct routine. Direct allocation of IO tags may provide additional
|
|
* performance improvements in environments capable of supporting this usage
|
|
* model. Additionally, direct allocation of IO tags also provides
|
|
* additional flexibility to the SCI Core user. Specifically, the user may
|
|
* retain IO tags across the lives of multiple IO requests.
|
|
* @controller: the handle to the controller object for which to allocate the
|
|
* tag.
|
|
*
|
|
* IO tags are a protected resource. It is incumbent upon the SCI Core user to
|
|
* ensure that each of the methods that may allocate or free available IO tags
|
|
* are handled in a mutually exclusive manner. This method is one of said
|
|
* methods requiring proper critical code section protection (e.g. semaphore,
|
|
* spin-lock, etc.). An unsigned integer representing an available IO tag.
|
|
* SCI_CONTROLLER_INVALID_IO_TAG This value is returned if there are no
|
|
* currently available tags to be allocated. All return other values indicate a
|
|
* legitimate tag.
|
|
*/
|
|
u16 scic_controller_allocate_io_tag(
|
|
struct scic_sds_controller *scic)
|
|
{
|
|
u16 task_context;
|
|
u16 sequence_count;
|
|
|
|
if (!sci_pool_empty(scic->tci_pool)) {
|
|
sci_pool_get(scic->tci_pool, task_context);
|
|
|
|
sequence_count = scic->io_request_sequence[task_context];
|
|
|
|
return scic_sds_io_tag_construct(sequence_count, task_context);
|
|
}
|
|
|
|
return SCI_CONTROLLER_INVALID_IO_TAG;
|
|
}
|
|
|
|
/**
|
|
* scic_controller_free_io_tag() - This method will free an IO tag to the pool
|
|
* of free IO tags. This method provides the SCI Core user more flexibility
|
|
* with regards to IO tags. The user may desire to keep an IO tag after an
|
|
* IO request has completed, because they plan on re-using the tag for a
|
|
* subsequent IO request. This method is only legal if the tag was
|
|
* allocated via scic_controller_allocate_io_tag().
|
|
* @controller: This parameter specifies the handle to the controller object
|
|
* for which to free/return the tag.
|
|
* @io_tag: This parameter represents the tag to be freed to the pool of
|
|
* available tags.
|
|
*
|
|
* - IO tags are a protected resource. It is incumbent upon the SCI Core user
|
|
* to ensure that each of the methods that may allocate or free available IO
|
|
* tags are handled in a mutually exclusive manner. This method is one of said
|
|
* methods requiring proper critical code section protection (e.g. semaphore,
|
|
* spin-lock, etc.). - If the IO tag for a request was allocated, by the SCI
|
|
* Core user, using the scic_controller_allocate_io_tag() method, then it is
|
|
* the responsibility of the caller to invoke this method to free the tag. This
|
|
* method returns an indication of whether the tag was successfully put back
|
|
* (freed) to the pool of available tags. SCI_SUCCESS This return value
|
|
* indicates the tag was successfully placed into the pool of available IO
|
|
* tags. SCI_FAILURE_INVALID_IO_TAG This value is returned if the supplied tag
|
|
* is not a valid IO tag value.
|
|
*/
|
|
enum sci_status scic_controller_free_io_tag(
|
|
struct scic_sds_controller *scic,
|
|
u16 io_tag)
|
|
{
|
|
u16 sequence;
|
|
u16 index;
|
|
|
|
BUG_ON(io_tag == SCI_CONTROLLER_INVALID_IO_TAG);
|
|
|
|
sequence = scic_sds_io_tag_get_sequence(io_tag);
|
|
index = scic_sds_io_tag_get_index(io_tag);
|
|
|
|
if (!sci_pool_full(scic->tci_pool)) {
|
|
if (sequence == scic->io_request_sequence[index]) {
|
|
scic_sds_io_sequence_increment(
|
|
scic->io_request_sequence[index]);
|
|
|
|
sci_pool_put(scic->tci_pool, index);
|
|
|
|
return SCI_SUCCESS;
|
|
}
|
|
}
|
|
|
|
return SCI_FAILURE_INVALID_IO_TAG;
|
|
}
|
|
|
|
|